File: lmrob-methods.Rout.save

package info (click to toggle)
robustbase 0.8-1-1-1
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 3,156 kB
  • sloc: fortran: 2,553; ansic: 2,419; makefile: 1
file content (271 lines) | stat: -rw-r--r-- 9,216 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

R version 2.11.1 (2010-05-31)
Copyright (C) 2010 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> ### tests methods argument of lmrob.control
> 
> library(robustbase)
> 
> data(stackloss)
> 
> ## S
> set.seed(0)
> summary(m0 <- lmrob(stack.loss ~ ., data = stackloss, method = "S"))
               Length Class      Mode   
coefficients    4     -none-     numeric
scale           1     -none-     numeric
k.iter          1     -none-     numeric
converged       1     -none-     logical
fitted.values  21     -none-     numeric
residuals      21     -none-     numeric
weights        21     -none-     numeric
control        19     -none-     list   
qr              4     qr         list   
rank            1     -none-     numeric
cov            16     -none-     numeric
df.residual     1     -none-     numeric
degree.freedom  1     -none-     numeric
xlevels         0     -none-     list   
call            4     -none-     call   
terms           3     terms      call   
model           4     data.frame list   
x              84     -none-     numeric
Warning message:
In lf.cov(init, x) :
  :.vcov.w: ignoring cov.resid == final since est != final
> set.seed(0)
> m0a <- lmrob.S(m0$x, stack.loss, lmrob.control())
> 
> all.equal(m0[c('coefficients', 'scale', 'weights')],
+           m0a[c('coefficients', 'scale', 'weights')])
[1] TRUE
> 
> ## MM
> set.seed(0)
> summary(m1 <- lmrob(stack.loss ~ ., data = stackloss, method = "MM"))

Call:
lmrob(formula = stack.loss ~ ., data = stackloss, method = "MM")

Weighted Residuals:
      Min        1Q    Median        3Q       Max 
-10.50974  -1.43819  -0.09134   1.02503   7.23113 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -41.52462    5.29780  -7.838 4.82e-07 ***
Air.Flow      0.93885    0.11743   7.995 3.68e-07 ***
Water.Temp    0.57955    0.26296   2.204   0.0416 *  
Acid.Conc.   -0.11292    0.06989  -1.616   0.1246    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Robust residual standard error: 1.912 
Convergence in 17 IRWLS iterations

Robustness weights: 
 observation 21 is an outlier with |weight| = 0 ( < 0.0048); 
 2 weights are ~= 1. The remaining 18 ones are summarized as
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.1215  0.8757  0.9428  0.8721  0.9797  0.9978 
Algorithmic parameters: 
tuning.chi         bb tuning.psi refine.tol    rel.tol 
 1.5476400  0.5000000  4.6850610  0.0000001  0.0000001 
 nResample     max.it     groups    n.group   best.r.s   k.fast.s      k.max 
       500         50          5        400          2          1        200 
 trace.lev compute.rd  numpoints 
         0          0         10 
          psi        method           cov 
   "bisquare"          "MM" ".vcov.avar1" 
seed : int(0) 
> 
> set.seed(0)
> m2 <- update(m1, method = "SM")
> 
> all.equal(m1[c('coefficients', 'scale', 'cov')],
+           m2[c('coefficients', 'scale', 'cov')])
[1] TRUE
> 
> set.seed(0)
> m3 <- update(m0, method = "SM", cov = '.vcov.w')
> 
> ## SMD
> set.seed(0)
> summary(m4 <- lmrob(stack.loss ~ ., data = stackloss, method = "SMD", psi = 'bisquare'))

Call:
lmrob(formula = stack.loss ~ ., data = stackloss, method = "SMD", 
    psi = "bisquare")

Weighted Residuals:
      Min        1Q    Median        3Q       Max 
-10.50974  -1.43819  -0.09134   1.02503   7.23113 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -41.5246     8.8552  -4.689 0.000211 ***
Air.Flow      0.9388     0.1162   8.078  3.2e-07 ***
Water.Temp    0.5796     0.3164   1.831 0.084610 .  
Acid.Conc.   -0.1129     0.1163  -0.971 0.345380    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Robust residual standard error: 2.651 
Convergence in 17 IRWLS iterations

Robustness weights: 
 observation 21 is an outlier with |weight| = 0 ( < 0.0048); 
 2 weights are ~= 1. The remaining 18 ones are summarized as
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.1215  0.8757  0.9428  0.8721  0.9797  0.9978 
Algorithmic parameters: 
tuning.chi         bb tuning.psi refine.tol    rel.tol 
 1.5476400  0.5000000  4.6850610  0.0000001  0.0000001 
 nResample     max.it     groups    n.group   best.r.s   k.fast.s      k.max 
       500         50          5        400          2          1        200 
 trace.lev compute.rd  numpoints 
         0          0         10 
       psi     method        cov 
"bisquare"      "SMD"  ".vcov.w" 
seed : int(0) 
> summary(m4a <- lmrob..D..fit(m3))

Call:
lmrob(formula = stack.loss ~ ., data = stackloss, method = "SMD", 
    cov = ".vcov.w")

Weighted Residuals:
      Min        1Q    Median        3Q       Max 
-10.50974  -1.43819  -0.09134   1.02503   7.23113 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -41.5246     8.8552  -4.689 0.000211 ***
Air.Flow      0.9388     0.1162   8.078  3.2e-07 ***
Water.Temp    0.5796     0.3164   1.831 0.084610 .  
Acid.Conc.   -0.1129     0.1163  -0.971 0.345380    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Robust residual standard error: 2.651 
Convergence in 17 IRWLS iterations

Robustness weights: 
 observation 21 is an outlier with |weight| = 0 ( < 0.0048); 
 2 weights are ~= 1. The remaining 18 ones are summarized as
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.1215  0.8757  0.9428  0.8721  0.9797  0.9978 
Algorithmic parameters: 
tuning.chi         bb tuning.psi refine.tol    rel.tol 
 1.5476400  0.5000000  4.6850610  0.0000001  0.0000001 
 nResample     max.it     groups    n.group   best.r.s   k.fast.s      k.max 
       500         50          5        400          2          1        200 
 trace.lev compute.rd  numpoints 
         0          0         10 
       psi     method        cov 
"bisquare"      "SMD"  ".vcov.w" 
seed : int(0) 
> 
> ## rearrange m4a and update call
> m4a <- m4a[names(m4)]
> class(m4a) <- class(m4)
> m4a$call <- m4$call
> 
> all.equal(m4, m4a)
[1] TRUE
> 
> ## SMDM
> set.seed(0)
> summary(m5 <- lmrob(stack.loss ~ ., data = stackloss, method = "SMDM", psi = 'bisquare'))

Call:
lmrob(formula = stack.loss ~ ., data = stackloss, method = "SMDM", 
    psi = "bisquare")

Weighted Residuals:
    Min      1Q  Median      3Q     Max 
-9.6746 -1.7721  0.1346  1.2041  6.6080 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -41.9398     9.6482  -4.347 0.000438 ***
Air.Flow      0.8747     0.1215   7.198 1.49e-06 ***
Water.Temp    0.8099     0.3320   2.439 0.025977 *  
Acid.Conc.   -0.1188     0.1268  -0.937 0.361693    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Robust residual standard error: 2.651 
Convergence in 17 IRWLS iterations

Robustness weights: 
 2 weights are ~= 1. The remaining 19 ones are summarized as
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.1546  0.9139  0.9597  0.8874  0.9866  0.9966 
Algorithmic parameters: 
tuning.chi         bb tuning.psi refine.tol    rel.tol 
 1.5476400  0.5000000  4.6850610  0.0000001  0.0000001 
 nResample     max.it     groups    n.group   best.r.s   k.fast.s      k.max 
       500         50          5        400          2          1        200 
 trace.lev compute.rd  numpoints 
         0          0         10 
       psi     method        cov 
"bisquare"     "SMDM"  ".vcov.w" 
seed : int(0) 
> summary(m5a <- lmrob..M..fit(obj=m4))

Call:
lmrob(formula = stack.loss ~ ., data = stackloss, method = "SMDM", 
    psi = "bisquare")

Weighted Residuals:
    Min      1Q  Median      3Q     Max 
-9.6746 -1.7721  0.1346  1.2041  6.6080 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -41.9398     9.6482  -4.347 0.000438 ***
Air.Flow      0.8747     0.1215   7.198 1.49e-06 ***
Water.Temp    0.8099     0.3320   2.439 0.025977 *  
Acid.Conc.   -0.1188     0.1268  -0.937 0.361693    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Robust residual standard error: 2.651 
Convergence in 17 IRWLS iterations

Robustness weights: 
 2 weights are ~= 1. The remaining 19 ones are summarized as
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.1546  0.9139  0.9597  0.8874  0.9866  0.9966 
Algorithmic parameters: 
tuning.chi         bb tuning.psi refine.tol    rel.tol 
 1.5476400  0.5000000  4.6850610  0.0000001  0.0000001 
 nResample     max.it     groups    n.group   best.r.s   k.fast.s      k.max 
       500         50          5        400          2          1        200 
 trace.lev compute.rd  numpoints 
         0          0         10 
       psi     method        cov 
"bisquare"     "SMDM"  ".vcov.w" 
seed : int(0) 
> 
> ## rearrange m5a
> m5a <- m5a[names(m5)]
> class(m5a) <- class(m5)
> 
> all.equal(m5, m5a)
[1] TRUE
>