1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
\name{adjOutlyingness}
\alias{adjOutlyingness}
\title{Compute (Skewness-adjusted) Multivariate Outlyingness}
\newcommand{\CRANpkg}{\href{https://CRAN.R-project.org/package=#1}{\pkg{#1}}}
\description{
For an \eqn{n \times p}{n * p} data matrix (or data frame) \code{x},
compute the \dQuote{\emph{outlyingness}} of all \eqn{n} observations.
Outlyingness here is a generalization of the Donoho-Stahel
outlyingness measure, where skewness is taken into account via the
medcouple, \code{\link{mc}()}.
}
\usage{
adjOutlyingness(x, ndir = 250, p.samp = p, clower = 4, cupper = 3,
alpha.cutoff = 0.75, coef = 1.5,
qr.tol = 1e-12, keep.tol = 1e-12,
only.outlyingness = FALSE, maxit.mult = max(100, p),
trace.lev = 0)
}
\arguments{
\item{x}{a numeric \code{\link{matrix}} or \code{\link{data.frame}},
which must be of full rank \eqn{p}.}
\item{ndir}{positive integer specifying the number of directions that
should be searched.}
\item{p.samp}{the sample size to use for finding good random
directions, must be at least \code{p}. The default, \code{p} had
been hard coded previously.}
\item{clower, cupper}{the constant to be used for the lower and upper
tails, in order to transform the data towards symmetry. You can set
\code{clower = 0, cupper = 0} to get the \emph{non}-adjusted,
i.e., classical (\dQuote{central} or \dQuote{symmetric})
outlyingness. In that case, \code{\link{mc}()} is not used.}
\item{alpha.cutoff}{number in (0,1) specifying the quantiles
\eqn{(\alpha, 1-\alpha)} which determine the \dQuote{outlier}
cutoff. The default, using quartiles, corresponds to the definition
of the medcouple (\code{\link{mc}}), but there is no stringent
reason for using the same alpha for the outlier cutoff.}
\item{coef}{positive number specifying the factor with which the
interquartile range (\code{\link{IQR}}) is multiplied to determine
\sQuote{boxplot hinges}-like upper and lower bounds.}
\item{qr.tol}{positive tolerance to be used for \code{\link{qr}} and
\code{\link{solve.qr}} for determining the \code{ndir} directions,
each determined by a random sample of \eqn{p} (out of \eqn{n})
observations. Note that the default \eqn{10^{-12}} is rather small,
and \code{\link{qr}}'s default \code{= 1e-7} may be more appropriate.}
\item{keep.tol}{positive tolerance to determine which of the sample
direction should be kept, namely only those for which
\eqn{\|x\| \cdot \|B\|}{||x|| * ||B||} is larger than \code{keep.tol}.}
\item{only.outlyingness}{logical indicating if the final outlier
determination should be skipped. In that case, a vector is
returned, see \sQuote{Value:} below.}
\item{maxit.mult}{integer factor; \code{maxit <- maxit.mult * ndir}
will determine the maximal number of direction searching
iterations. May need to be increased for higher dimensional data,
though increasing \code{ndir} may be more important.}
\item{trace.lev}{an integer, if positive allows to monitor the
direction search.}
}
\note{
The result is \emph{random} as it depends on the sample of
\code{ndir} directions chosen; hence \code{\link{set.seed}()} yourself
for reproducibility!
Till Aug/Oct. 2014, the default values for \code{clower} and \code{cupper} were
accidentally reversed, and the signs inside \code{exp(.)} where swapped
in the (now corrected) two expressions \preformatted{
tup <- Q3 + coef * IQR * exp(.... + clower * tmc * (tmc < 0))
tlo <- Q1 - coef * IQR * exp(.... - cupper * tmc * (tmc < 0))
}
already in the code from Antwerpen (\file{mcrsoft/adjoutlingness.R}),
contrary to the published reference.
Further, the original algorithm had not been scale-equivariant in the
direction construction, which has been amended in 2014-10 as well.
The results, including diagnosed outliers, therefore have changed,
typically slightly, since \pkg{robustbase} version 0.92-0.
}
\details{
\bold{FIXME}: Details in the comment of the Matlab code;
also in the reference(s).
%% SEE /u/maechler/R/MM/STATISTICS/robust/MC/mcmatl/adjoutlyingness.m
%% ---- which has notes about input/output etc of the corresponding
%% Matlab code
The method as described can be useful as preprocessing in
FASTICA (\url{http://www.cis.hut.fi/projects/ica/fastica/};
see also the \R package \CRANpkg{fastICA}.
}
\value{
If \code{only.outlyingness} is true, a vector \code{adjout},
otherwise, as by default, a list with components
\item{adjout}{numeric of \code{length(n)} giving the adjusted
outlyingness of each observation.}
\item{cutoff}{cutoff for \dQuote{outlier} with respect to the adjusted
outlyingnesses, and depending on \code{alpha.cutoff}.}
\item{nonOut}{logical of \code{length(n)}, \code{TRUE} when the
corresponding observation is \bold{non}-outlying with respect to the
cutoff and the adjusted outlyingnesses.}
}
\references{
Brys, G., Hubert, M., and Rousseeuw, P.J. (2005)
A Robustification of Independent Component Analysis;
\emph{Journal of Chemometrics}, \bold{19}, 1--12.
Hubert, M., Van der Veeken, S. (2008)
Outlier detection for skewed data;
\emph{Journal of Chemometrics} \bold{22}, 235--246.
%% preprint \url{http://wis.kuleuven.be/stat/robust/papers/2008/outlierdetectionskeweddata-revision.pdf}
%%MM: Journal-pdf ~/save/papers/robust-diverse/Hubert_VdV_skewed-Chemom_2008.pdf
%%MM: Compstat 2010: Slides (of talk) and paper of Mia H:
%% ~/save/papers/robust-diverse/Hubert_skewed-CS2010-slides.pdf and
%% ~/save/papers/robust-diverse/Hubert_skewed-CS2010-paper.pdf (slides are better !!)
For the up-to-date reference, please consult
\url{http://wis.kuleuven.be/stat/robust}
}
\author{Guy Brys; help page and improvements by Martin Maechler}
\seealso{the adjusted boxplot, \code{\link{adjbox}} and the medcouple,
\code{\link{mc}}.
}
\examples{
## An Example with bad condition number and "border case" outliers
dim(longley)
set.seed(1) ## result is random!
ao1 <- adjOutlyingness(longley)
## which are outlying ?
which(!ao1$nonOut) ## one: "1948" - for this seed! (often: none)
stopifnot(all(ao1$nonOut[-2]))
## An Example with outliers :
dim(hbk)
set.seed(1)
ao.hbk <- adjOutlyingness(hbk)
str(ao.hbk)
hist(ao.hbk $adjout)## really two groups
table(ao.hbk$nonOut)## 14 outliers, 61 non-outliers:
## outliers are :
which(! ao.hbk$nonOut) # 1 .. 14 --- but not for all random seeds!
## here, they are the same as found by (much faster) MCD:
cc <- covMcd(hbk)
stopifnot(all(cc$mcd.wt == ao.hbk$nonOut))
## This is revealing: About 1--2 cases, where outliers are *not* == 1:14
## but needs almost 1 [sec] per call:
if(interactive()) {
for(i in 1:30) {
print(system.time(ao.hbk <- adjOutlyingness(hbk)))
if(!identical(iout <- which(!ao.hbk$nonOut), 1:14)) {
cat("Outliers:\n"); print(iout)
}
}
}
## "Central" outlyingness: *not* calling mc() anymore, since 2014-12-11:
trace(mc)
out <- capture.output(
oo <- adjOutlyingness(hbk, clower=0, cupper=0)
)
untrace(mc)
stopifnot(length(out) == 0)
## A rank-deficient case
T <- tcrossprod(data.matrix(toxicity))
try(adjOutlyingness(T, maxit. = 20, trace.lev = 2)) # fails and recommends:
T. <- fullRank(T)
aT <- adjOutlyingness(T.)
plot(sort(aT$adjout, decreasing=TRUE), log="y")
plot(T.[,9:10], col = (1:2)[1 + (aT$adjout > 10000)])
## .. (not conclusive; directions are random, more 'ndir' makes a difference!)
}
\keyword{robust}
\keyword{multivariate}
|