1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
\name{Qn}
\alias{Qn}
\alias{Qn.old}
\alias{s_Qn}
%
\title{Robust Location-Free Scale Estimate More Efficient than MAD}
\description{
Compute the robust scale estimator \eqn{Q_n}{Qn}, an efficient
alternative to the MAD.
By default, \eqn{Q_n(x_1, \ldots, x_n)}{Qn(x1, .., xn)} is the \eqn{k}-th
order statistic (a quantile) of the \code{choose(n, 2)} absolute
differences \eqn{|x_i - x_j|}{abs(x[i] - x[j])},
(for \eqn{1 \le i < j \le n}{1 <= i < j <= n}),
where by default (originally only possible value) \eqn{k = choose(n\%/\% 2 + 1, 2)}
which is about the first quartile (25\% quantile) of these
pairwise differences. See the references for more.
}
\usage{
Qn(x, constant = NULL, finite.corr = is.null(constant) && missing(k),
na.rm = FALSE, k = choose(n \%/\% 2 + 1, 2), warn.finite.corr = TRUE)
s_Qn(x, mu.too = FALSE, \dots)
}
\arguments{% >> ../R/qnsn.R <<
\item{x}{numeric vector of observations.}
\item{constant}{number by which the result is multiplied; the default
achieves consistency for normally distributed data. Note that until
Nov. 2010, \dQuote{thanks} to a typo in the very first papers, a slightly
wrong default constant, 2.2219, was used instead of the correct one
which is equal to \code{1 / (sqrt(2) * qnorm(5/8))} (as mentioned
already on p.1277, after (3.7) in Rousseeuw and Croux (1993)).
If you need the old slightly off version for historical
reproducibility, you can use \code{Qn.old()}.
Note that the relative difference is only about 1 in 1000, and that
the correction should not affect the finite sample corrections for
\eqn{n \le 9}{n <= 9}.
}
\item{finite.corr}{logical indicating if the finite sample bias
correction factor should be applied. Defaults to \code{TRUE} unless
\code{constant} is specified. Note the for non-default \code{k}, the
consistency \code{constant} already depends on \code{n} leading to
\emph{some} finite sample correction, but no simulation-based
small-\code{n} correction factors are available.}
\item{na.rm}{logical specifying if missing values (\code{\link{NA}})
should be removed from \code{x} before further computation. If false
as by default, and if there are \code{NA}s, i.e., \code{if(anyNA(x))},
the result will be \code{NA}.}
\item{k}{integer, typically half of n, specifying the \dQuote{quantile}, i.e., rather the
order statistic that \code{Qn()} should return; for the Qn() proper,
this has been hard wired to \code{choose(n\%/\%2 +1, 2)}, i.e.,
\eqn{\lfloor\frac{n}{2}\rfloor +1}{floor(n/2) +1}. Choosing a large \code{k} is less robust but
allows to get non-zero results in case the default \code{Qn()} is zero.}
\item{warn.finite.corr}{logical indicating if a \code{\link{warning}}
should be signalled when \code{k} is non-default, in which case specific
small-\eqn{n} correction is not yet provided.}
\item{mu.too}{logical indicating if the \code{\link[stats]{median}(x)} should
also be returned for \code{s_Qn()}.}
\item{\dots}{potentially further arguments for \code{s_Qn()} passed to
\code{Qn()}.}
}
\value{
\code{Qn()} returns a number, the \eqn{Q_n}{Qn} robust scale
estimator, scaled to be consistent for \eqn{\sigma^2} and
i.i.d. Gaussian observations, optionally bias corrected for finite
samples.
\code{s_Qn(x, mu.too=TRUE)} returns a length-2 vector with location
(\eqn{\mu}) and scale; this is typically only useful for
\code{\link{covOGK}(*, sigmamu = s_Qn)}.
}
\details{
As the (default, consistency) constant needed to be corrected,
the finite sample correction has been based on a much more extensive
simulation, and on a 3rd or 4th degree polynomial model in \eqn{1/n}
for odd or even n, respectively.
}
\references{
Rousseeuw, P.J. and Croux, C. (1993)
Alternatives to the Median Absolute Deviation,
\emph{Journal of the American Statistical Association} \bold{88}, 1273--1283.
\doi{10.2307/2291267}% JSTOR
% MM: ~/save/papers/Rousseeuw/93/R+Croux_MAD_Sn_Qn.pdf
Christophe Croux and Peter J. Rousseeuw (1992)
A class of high-breakdown scale estimators based on subranges ,
\emph{Communications in Statistics - Theory and Methods} \bold{21}, 1935--1951;
\doi{10.1080/03610929208830889}
Christophe Croux and Peter J. Rousseeuw (1992)
Time-Efficient Algorithms for Two Highly Robust Estimators of Scale,
\emph{Computational Statistics, Vol. 1}, ed. Dodge and Whittaker,
Physica-Verlag Heidelberg, 411--428; available via Springer Link.
% MM: ~/save/papers/robust-diverse/Croux-Rousseeuw-Timeff_Scale_1992.pdf
%% no longer \url{http://win-www.uia.ac.be/u/statis/abstract/Timeff92.htm}.
About the typo in the \code{constant}:\cr
Christophe Croux (2010)
Private e-mail, Fri Jul 16, w/ Subject
\emph{Re: Slight inaccuracy of Qn implementation \dots\dots}.
}
\seealso{\code{\link[stats]{mad}} for the \sQuote{most robust} but much less efficient
scale estimator; \code{\link{Sn}} for a similar faster but less
efficient alternative. Finally, \code{\link{scaleTau2}} which some
consider \dQuote{uniformly} better than Qn or competitors.
}
\author{Original Fortran code:
Christophe Croux and Peter Rousseeuw \email{rousse@wins.uia.ac.be}.
\cr
Port to C and R: Martin Maechler, \email{maechler@R-project.org}
}
\examples{
set.seed(153)
x <- sort(c(rnorm(80), rt(20, df = 1)))
s_Qn(x, mu.too = TRUE)
Qn(x, finite.corr = FALSE)
## A simple pure-R version of Qn() -- slow and memory-rich for large n: O(n^2)
Qn0R <- function(x, k = choose(n \%/\% 2 + 1, 2)) { %
n <- length(x <- sort(x))
if(n == 0) return(NA) else if(n == 1) return(0.)
stopifnot(is.numeric(k), k == as.integer(k), 1 <= k, k <= n*(n-1)/2)
m <- outer(x,x,"-")# abs not needed as x[] is sorted
sort(m[lower.tri(m)], partial = k)[k]
}
(Qx1 <- Qn(x, constant=1)) # 0.5498463
## the C-algorithm "rounds" to 'float' single precision ..
stopifnot(all.equal(Qx1, Qn0R(x), tol = 1e-6))
(qn <- Qn(c(1:4, 10, Inf, NA), na.rm=TRUE))
stopifnot(is.finite(qn), all.equal(4.075672524, qn, tol=1e-10))
## -- compute for different 'k' :
n <- length(x) # = 100 here
(k0 <- choose(floor(n/2) + 1, 2)) # 51*50/2 == 1275
stopifnot(identical(Qx1, Qn(x, constant=1, k=k0)))
nn2 <- n*(n-1)/2
all.k <- 1:nn2
system.time(Qss <- sapply(all.k, function(k) Qn(x, 1, k=k)))
system.time(Qs <- Qn (x, 1, k = all.k))
system.time(Qs0 <- Qn0R(x, k = all.k) )
stopifnot(exprs = {
Qs[1] == min(diff(x))
Qs[nn2] == diff(range(x))
all.equal(Qs, Qss, tol = 1e-15) # even exactly
all.equal(Qs0, Qs, tol = 1e-7) # see 2.68e-8, as Qn() C-code rounds to (float)
})
plot(2:nn2, Qs[-1], type="b", log="y", main = "Qn(*, k), k = 2..n(n-1)/2")
}
\keyword{robust}
\keyword{univar}
|