File: covPlot.Rd

package info (click to toggle)
robustbase 0.99-4-1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,552 kB
  • sloc: fortran: 3,245; ansic: 3,243; sh: 15; makefile: 2
file content (138 lines) | stat: -rw-r--r-- 5,548 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
\name{plot.mcd}
\alias{covPlot}
\alias{plot.mcd}
%NO \alias{ddplot}
%NO \alias{distplot}
%NO \alias{chi2qqplot}
%NO \alias{ellipse}
\title{Robust Distance Plots}
\description{
  Shows the Mahalanobis distances based on robust and classical estimates
  of the location and the covariance matrix in different plots.
  The following plots are available:
  \itemize{
    \item index plot of the robust and mahalanobis distances
    \item distance-distance plot
    \item Chisquare QQ-plot of the robust and mahalanobis distances
    \item plot of the tolerance ellipses (robust and classic)
    \item Scree plot - Eigenvalues comparison plot
  }
}
\usage{
\method{plot}{mcd}(x,
     which = c("all", "dd", "distance", "qqchi2",
               "tolEllipsePlot", "screeplot"),
     classic = FALSE, ask = (which[1] == "all" && dev.interactive()),
     cutoff, id.n, labels.id = rownames(x$X), cex.id = 0.75,
     label.pos = c(4,2), tol = 1e-7, \dots)

covPlot(x,
     which = c("all", "dd", "distance", "qqchi2",
               "tolEllipsePlot", "screeplot"),
     classic = FALSE, ask = (which[1] == "all" && dev.interactive()),
     m.cov = covMcd(x),
     cutoff = NULL, id.n, labels.id = rownames(x), cex.id = 0.75,
     label.pos = c(4,2), tol = 1e-07, \dots)
%% ddplot(x, \dots)
%% distplot(x, \dots)
%% chi2qqplot(x, \dots)
%% ellipse(x, \dots)
}

\arguments{
  \item{x}{For the \code{plot()} method, a \code{mcd} object, typically
    result of \code{\link{covMcd}}.\cr
    For \code{covPlot()}, the numeric data matrix such as the \code{X}
    component as returned from \code{\link{covMcd}}.}
  \item{which}{string indicating which plot to show.  See the
    \emph{Details} section for a description of the options.  Defaults to \code{"all"}.}.
  \item{classic}{whether to plot the classical distances too.
    Defaults to \code{FALSE}.}.
  \item{ask}{logical indicating if the user should be \emph{ask}ed
    before each plot, see \code{\link{par}(ask=.)}.  Defaults to
    \code{which == "all" && \link{dev.interactive}()}.
  }
  \item{cutoff}{the cutoff value for the distances.}
  \item{id.n}{number of observations to be identified by a label.  If
    not supplied, the number of observations with distance larger than
    \code{cutoff} is used.}
  \item{labels.id}{vector of labels, from which the labels for extreme
    points will be chosen.  \code{NULL} uses observation numbers.}
  \item{cex.id}{magnification of point labels.}
  \item{label.pos}{positioning of labels, for the left half and right
    half of the graph respectively (used as \code{\link{text}(.., pos=*)}).}
  \item{tol}{tolerance to be used for computing the inverse, see
    \code{\link{solve}}.  Defaults to \code{tol = 1e-7}.}
  \item{m.cov}{an object similar to those of class \code{"mcd"}; however
    only its components \code{center} and \code{cov} will be used.  If
    missing, the MCD will be computed (via \code{\link{covMcd}()}).}
  \item{\dots}{other parameters to be passed through to plotting functions.}
}
\details{
  These functions produce several plots based on the robust and classical
  location and covariance matrix.  Which of them to select is specified
  by the attribute  \code{which}.  The \code{plot} method for
  \code{"mcd"} objects is calling \code{covPlot()} directly, whereas
  \code{covPlot()} should also be useful for plotting other (robust)
  covariance estimates.  The possible options are:
  \describe{
    \item{\code{distance}}{index plot of the robust distances}

    \item{\code{dd}}{distance-distance plot}

    \item{\code{qqchi2}}{a qq-plot of the robust distances versus the
      quantiles of the chi-squared distribution}

    \item{\code{tolEllipsePlot}}{a tolerance ellipse plot, via
      \code{\link{tolEllipsePlot}()}}

    \item{\code{screeplot}}{an eigenvalues comparison plot - screeplot}
  }

  The Distance-Distance Plot, introduced by
  Rousseeuw and van Zomeren (1990), displays the robust distances
  versus the classical Mahalanobis distances.  The dashed line is the set of
  points where the robust distance is equal to the classical distance.
  The horizontal and vertical lines are drawn at values equal to the cutoff
  which defaults to square root of the 97.5\% quantile of a chi-squared
  distribution with p degrees of freedom.  Points beyond these lines can
  be considered outliers.
}
%\value{}
\references{
  P. J. Rousseeuw and van Zomeren, B. C. (1990).
  Unmasking Multivariate Outliers and Leverage Points.
  \emph{Journal of the American Statistical Association} \bold{85}, 633--639.

  P. J. Rousseeuw and K. van Driessen (1999)
  A fast algorithm for the minimum covariance determinant estimator.
  \emph{Technometrics} \bold{41}, 212--223.
}
\seealso{
  \code{\link{tolEllipsePlot}}
}
\examples{
data(Animals, package ="MASS")
brain <- Animals[c(1:24, 26:25, 27:28),]
mcd <- covMcd(log(brain))

plot(mcd, which = "distance", classic = TRUE)# 2 plots
plot(mcd, which = "dd")
plot(mcd, which = "tolEllipsePlot", classic = TRUE)
op <- par(mfrow = c(2,3))
plot(mcd) ## -> which = "all" (5 plots)
par(op)

## same plots for another robust Cov estimate:
data(hbk)
hbk.x <- data.matrix(hbk[, 1:3])
cOGK <- covOGK(hbk.x, n.iter = 2, sigmamu = scaleTau2,
               weight.fn = hard.rejection)
covPlot(hbk.x, m.cov = cOGK, classic = TRUE)
% %% this "\dont*{} case is needed for R <= 2.3.1 :
% \dontrun{ covPlot(hbk.x, m.cov = cOGK, classic = TRUE, ask= TRUE)}
% \dontshow{covPlot(hbk.x, m.cov = cOGK, classic = TRUE, ask= FALSE)}
}
\keyword{hplot}
\keyword{robust}
\keyword{multivariate}