File: education.Rd

package info (click to toggle)
robustbase 0.99-4-1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,552 kB
  • sloc: fortran: 3,245; ansic: 3,243; sh: 15; makefile: 2
file content (40 lines) | stat: -rw-r--r-- 1,388 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
\name{education}
\alias{education}
\docType{data}
\title{Education Expenditure Data}
\description{
   Education Expenditure Data, from Chatterjee and Price (1977,
   p.108).  This data set, representing the education expenditure
   variables in the 50 US states, providing an interesting example of
   heteroscedacity.
}
\usage{data(education, package="robustbase")}
\format{
  A data frame with 50 observations on the following 6 variables.

  \describe{
    \item{\code{State}}{State}
    \item{\code{Region}}{Region (1=Northeastern, 2=North central, 3=Southern, 4=Western)}
    \item{\code{X1}}{Number of residents per thousand residing in urban areas in 1970}
    \item{\code{X2}}{Per capita personal income in 1973}
    \item{\code{X3}}{Number of residents per thousand under 18 years of age in 1974}
    \item{\code{Y}}{Per capita expenditure on public education in a
      state, projected for 1975}
  }
}
\source{
  P. J. Rousseeuw and A. M. Leroy (1987)
  \emph{Robust Regression and Outlier Detection};
  Wiley, p.110, table 16.
}
\examples{
data(education)
education.x <- data.matrix(education[, 3:5])
%%covMcd(education.x)
%%______ FIXME ___ X1:X3 is not what you mean !! ________
summary(lm.education <- lm(Y ~ Region + X1+X2+X3, data=education))
%%summary(lts.education <- ltsReg(Y .....)

## See  example(lmrob.M.S) # for how robust regression is used
}
\keyword{datasets}