1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
\name{glmrob}
\alias{glmrob}
\title{Robust Fitting of Generalized Linear Models}
\encoding{utf8}
\description{
\code{glmrob} is used to fit generalized linear models by robust
methods. The models are specified by giving a symbolic description of
the linear predictor and a description of the error distribution.
Currently, robust methods are implemented for \code{\link{family} =
binomial}, \code{ = poisson}, \code{ = Gamma} and \code{ = gaussian}.
}
\usage{
glmrob(formula, family, data, weights, subset, na.action,
start = NULL, offset, method = c("Mqle", "BY", "WBY", "MT"),
weights.on.x = c("none", "hat", "robCov", "covMcd"), control = NULL,
model = TRUE, x = FALSE, y = TRUE, contrasts = NULL, trace.lev = 0, ...)
}
\arguments{
\item{formula}{a \code{\link{formula}}, i.e., a symbolic description
of the model to be fit (cf. \code{\link{glm}} or \code{\link{lm}}).}
\item{family}{a description of the error distribution and link function to
be used in the model. This can be a character string naming a
family function, a family \code{\link{function}} or the result of a
call to a family function. (See \code{\link{family}} for details of
family functions.)}
\item{data}{an optional data frame containing the variables
in the model. If not found in \code{data}, the variables are taken
from \code{environment(formula)}, typically the environment from
which \code{glmrob} is called.}
\item{weights}{an optional vector of weights to be used in the fitting
process.}
\item{subset}{an optional vector specifying a subset of observations to be
used in the fitting process.}
\item{na.action}{a function which indicates what should happen
when the data contain \code{NA}s. The default is set by
the \code{na.action} setting in \code{\link{options}}. The
\dQuote{factory-fresh} default is \code{\link{na.omit}}.}
\item{start}{starting values for the parameters in the linear
predictor. Note that specifying \code{start} has somewhat different
meaning for the different \code{method}s. Notably, for \code{"MT"},
this skips the expensive computation of initial estimates via sub
samples, but needs to be \emph{robust} itself.}
\item{offset}{this can be used to specify an \emph{a priori}
known component to be included in the linear predictor
during fitting.}
\item{method}{a character string specifying the robust fitting
method. The details of method specification are given below.}
\item{weights.on.x}{
a character string (can be abbreviated), a \code{\link{function}} or
\code{\link{list}} (see below), or a numeric vector of length
\code{n}, specifying how points (potential outliers) in x-space are
downweighted. If \code{"hat"},
weights on the design of the form \eqn{\sqrt{1-h_{ii}}} are used,
where \eqn{h_{ii}} are the diagonal elements of the hat matrix. If
\code{"robCov"}, weights based on the robust Mahalanobis distance of the
design matrix (intercept excluded) are used where the covariance
matrix and the centre is estimated by \code{\link[MASS]{cov.rob}}
from the package \CRANpkg{MASS}.\cr
Similarly, if \code{"covMcd"}, robust weights are computed using
\code{\link{covMcd}}. The default is \code{"none"}.
If \code{weights.on.x} is a \code{\link{function}}, it is called
with arguments \code{(X, intercept)} and must return an n-vector of
non-negative weights.
If it is a \code{\link{list}}, it must be of length one, and as
element contain a function much like \code{\link{covMcd}()} or
\code{\link[MASS]{cov.rob}()} (package \CRANpkg{MASS}), which computes
multivariate location and \dQuote{scatter} of a data matrix \code{X}.
}
\item{control}{a list of parameters for controlling the fitting process.
See the documentation for \code{\link{glmrobMqle.control}} for
details.}
\item{model}{a logical value indicating whether \emph{model frame}
should be included as a component of the returned value.}
\item{x, y}{logical values indicating whether the response
vector and model matrix used in the fitting process should be
returned as components of the returned value.}
\item{contrasts}{an optional list. See the \code{contrasts.arg}
of \code{model.matrix.default}.}
\item{trace.lev}{logical (or integer) indicating if intermediate results
should be printed; defaults to \code{0} (the same as \code{FALSE}).}
\item{\dots}{arguments passed to \code{\link{glmrobMqle.control}} when
\code{control} is \code{NULL} (as per default).}
}
\details{
\code{method="model.frame"} returns the \code{\link{model.frame}()},
the same as \code{\link{glm}()}.
\cr
\code{method="Mqle"} fits a generalized linear
model using Mallows or Huber type robust estimators, as described in
Cantoni and Ronchetti (2001) and Cantoni and Ronchetti (2006). In
contrast to the implementation
described in Cantoni (2004), the pure influence algorithm is
implemented.
\cr
\code{method="WBY"} and \code{method="BY"},
available for logistic regression (\code{family = binomial}) only, call
\code{\link{BYlogreg}(*, initwml= . )} for the (weighted) Bianco-Yohai
estimator, where \code{initwml} is true for \code{"WBY"}, and false
for \code{"BY"}.
\cr
\code{method="MT"}, currently only implemented for \code{family = poisson},
computes an \dQuote{[M]-Estimator based on [T]ransformation}, % -> ../R/MTestimador2.R
by Valdora and Yohai (2013), via (hidden internal) \code{glmrobMT()}; as
that uses \code{\link{sample}()}, from \R version 3.6.0 it depends on
\code{\link{RNGkind}(*, sample.kind)}. Exact reproducibility of results
from \R versions 3.5.3 and earlier, requires setting
\code{\link{RNGversion}("3.5.0")}.% same text in ./adjOutlyingness.Rd
\code{weights.on.x= "robCov"} makes sense if all explanatory variables
are continuous.
In the cases,where \code{weights.on.x} is \code{"covMcd"} or
\code{"robCov"}, or list with a \dQuote{robCov} function, the
mahalanobis distances \code{D^2} are computed with respect to the
covariance (location and scatter) estimate, and the weights are
\code{1/sqrt(1+ pmax.int(0, 8*(D2 - p)/sqrt(2*p)))},
where \code{D2 = D^2} and \code{p = ncol(X)}.
}
\value{
\code{glmrob} returns an object of class \code{"glmrob"} and is also
inheriting from \code{\link{glm}}.
\cr
The \code{\link{summary}} method, see \code{\link{summary.glmrob}}, can
be used to obtain or print a summary of the results.
\cr
The generic accessor functions \code{\link{coefficients}},
\code{effects}, \code{fitted.values} and \code{residuals} (see
\code{\link{residuals.glmrob}}) can be used to extract various useful
features of the value returned by \code{glmrob()}.
An object of class \code{"glmrob"} is a list with at least the
following components:
\item{coefficients}{a named vector of coefficients}
\item{residuals}{the \emph{working} residuals, that is the (robustly
\dQuote{huberized}) residuals in the final iteration of the IWLS fit.}
\item{fitted.values}{the fitted mean values, obtained by transforming
the linear predictors by the inverse of the link function.}
\item{w.r}{robustness weights for each observations; i.e.,
\code{residuals} \eqn{\times}{*} \code{w.r} equals the psi-function of the
Preason's residuals.}
\item{w.x}{weights used to down-weight observations based on the
position of the observation in the design space.}
\item{dispersion}{robust estimation of dispersion paramter if appropriate}
\item{cov}{the estimated asymptotic covariance matrix of the estimated
coefficients.}
\item{tcc}{the tuning constant c in Huber's psi-function.}
\item{family}{the \code{\link{family}} object used.}
\item{linear.predictors}{the linear fit on link scale.}
\item{deviance}{NULL; Exists because of compatipility reasons.}
\item{iter}{the number of iterations used by the influence algorithm.}
\item{converged}{logical. Was the IWLS algorithm judged to have converged?}
\item{call}{the matched call.}
\item{formula}{the formula supplied.}
\item{terms}{the \code{\link{terms}} object used.}
\item{data}{the \code{data argument}.}
\item{offset}{the offset vector used.}
\item{control}{the value of the \code{control} argument used.}
\item{method}{the name of the robust fitter function used.}
\item{contrasts}{(where relevant) the contrasts used.}
\item{xlevels}{(where relevant) a record of the levels of the factors
used in fitting.}
%% FIXME: This is for glm() -- but *not* (yet ??) for glmrob()
%% ----- should we change?
% If a \code{\link{binomial}} \code{glm} model was specified by giving a
% two-column response, the weights returned by \code{prior.weights} are
% the total numbers of cases (multipied by the supplied case weights) and
% the component \code{y} of the result is the proportion of successes.
}
\references{
Eva Cantoni and Elvezio Ronchetti (2001)
Robust Inference for Generalized Linear Models.
\emph{JASA} \bold{96} (455), 1022--1030.
Eva Cantoni (2004)
Analysis of Robust Quasi-deviances for Generalized Linear Models.
\emph{Journal of Statistical Software}, \bold{10},
\url{https://www.jstatsoft.org/article/view/v010i04}
Eva Cantoni and Elvezio Ronchetti (2006)
A robust approach for skewed and heavy-tailed outcomes in the analysis
of health care expenditures.
\emph{Journal of Health Economics} \bold{25}, 198--213.
S. Heritier, E. Cantoni, S. Copt, M.-P. Victoria-Feser (2009)
\emph{Robust Methods in Biostatistics}. Wiley Series in Probability
and Statistics.
Marina Valdora and VĂctor J. Yohai (2013)
Robust estimators for Generalized Linear Models. In progress.
}
\author{Andreas Ruckstuhl ("Mqle") and Martin Maechler}
%%\note{ }
\seealso{
\code{\link{predict.glmrob}} for prediction;
\code{\link{glmrobMqle.control}}
}
\examples{
## Binomial response --------------
data(carrots)
Cfit1 <- glm(cbind(success, total-success) ~ logdose + block,
data = carrots, family = binomial)
summary(Cfit1)
Rfit1 <- glmrob(cbind(success, total-success) ~ logdose + block,
family = binomial, data = carrots, method= "Mqle",
control= glmrobMqle.control(tcc=1.2))
summary(Rfit1)
Rfit2 <- glmrob(success/total ~ logdose + block, weights = total,
family = binomial, data = carrots, method= "Mqle",
control= glmrobMqle.control(tcc=1.2))
coef(Rfit2) ## The same as Rfit1
## Binary response --------------
data(vaso)
Vfit1 <- glm(Y ~ log(Volume) + log(Rate), family=binomial, data=vaso)
coef(Vfit1)
Vfit2 <- glmrob(Y ~ log(Volume) + log(Rate), family=binomial, data=vaso,
method="Mqle", control = glmrobMqle.control(tcc=3.5))
coef(Vfit2) # c = 3.5 ==> not much different from classical
## Note the problems with tcc <= 3 %% FIXME algorithm ???
Vfit3 <- glmrob(Y ~ log(Volume) + log(Rate), family=binomial, data=vaso,
method= "BY")
coef(Vfit3)## note that results differ much.
## That's not unreasonable however, see Kuensch et al.(1989), p.465
## Poisson response --------------
data(epilepsy)
Efit1 <- glm(Ysum ~ Age10 + Base4*Trt, family=poisson, data=epilepsy)
summary(Efit1)
Efit2 <- glmrob(Ysum ~ Age10 + Base4*Trt, family = poisson,
data = epilepsy, method= "Mqle",
control = glmrobMqle.control(tcc= 1.2))
summary(Efit2)
## 'x' weighting:
(Efit3 <- glmrob(Ysum ~ Age10 + Base4*Trt, family = poisson,
data = epilepsy, method= "Mqle", weights.on.x = "hat",
control = glmrobMqle.control(tcc= 1.2)))
try( # gives singular cov matrix: 'Trt' is binary factor -->
# affine equivariance and subsampling are problematic
Efit4 <- glmrob(Ysum ~ Age10 + Base4*Trt, family = poisson,
data = epilepsy, method= "Mqle", weights.on.x = "covMcd",
control = glmrobMqle.control(tcc=1.2, maxit=100))
)
##--> See example(possumDiv) for another Poisson-regression
### -------- Gamma family -- data from example(glm) ---
clotting <- data.frame(
u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12))
summary(cl <- glm (lot1 ~ log(u), data=clotting, family=Gamma))
summary(ro <- glmrob(lot1 ~ log(u), data=clotting, family=Gamma))
clotM5.high <- within(clotting, { lot1[5] <- 60 })
op <- par(mfrow=2:1, mgp = c(1.6, 0.8, 0), mar = c(3,3:1))
plot( lot1 ~ log(u), data=clotM5.high)
plot(1/lot1 ~ log(u), data=clotM5.high)
par(op)
## Obviously, there the first observation is an outlier with respect to both
## representations!
cl5.high <- glm (lot1 ~ log(u), data=clotM5.high, family=Gamma)
ro5.high <- glmrob(lot1 ~ log(u), data=clotM5.high, family=Gamma)
with(ro5.high, cbind(w.x, w.r))## the 5th obs. is downweighted heavily!
plot(1/lot1 ~ log(u), data=clotM5.high)
abline(cl5.high, lty=2, col="red")
abline(ro5.high, lwd=2, col="blue") ## result is ok (but not "perfect")
%% FIXME: Need work -- option of *starting* from
%% ----- see Andreas' ~/R/MM/Pkg-ex/robustbase/glmrob-gamma-ARu.R
% ## a "regular outlier" in the middle :
% clotM4.3 <- within(clotting, { lot1[4] <- 1000 })
% ## .. not even this one works : ... need *robust* start ?!
% try(cl4.3 <- glm (lot1 ~ log(u), data=clotM4.3, family=Gamma))
% try(ro4.3 <- glmrob(lot1 ~ log(u), data=clotM4.3, family=Gamma))
% ## The new option to start from "lmrobMM" --- not yet ok either
% try(
% ro4.3 <- glmrob(lot1 ~ log(u), data=clotM4.3, family=Gamma,
% start = "lmrobMM")
% )
% ## summary(ro4.3)
%% TODO the "same" with lot2 :
%% summary(glm(lot2 ~ log(u), data=clotting, family=Gamma))
}
\keyword{robust}
\keyword{regression}
\keyword{nonlinear}
|