1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
|
\name{lmrob..D..fit}
\alias{lmrob..D..fit}
\title{Compute Design Adaptive Scale estimate}
\description{This function calculates a Design Adaptive Scale estimate
for a given MM-estimate. This is supposed to be a part of a chain of
estimates like \code{SMD} or \code{SMDM}.
}
\usage{
lmrob..D..fit(obj, x=obj$x, control = obj$control,
mf,
method = obj$control$method)
}
\arguments{
\item{obj}{\code{lmrob}-object based on which the estimate is to be
calculated.}
\item{x}{the design matrix; if \code{\link{missing}}, the method tries
to get it from \code{obj$x} and if this fails from \code{obj$model}.}
\item{control}{list of control parameters, as returned
by \code{\link{lmrob.control}}.}
\item{mf}{defunct.}
\item{method}{optional; the \code{method} used for \emph{obj} computation.}
}
\details{
This function is used by \code{\link{lmrob.fit}} and typically not to
be used on its own. Note that \code{lmrob.fit()} specifies
\code{control} potentially differently than the default, but does use
the default for \code{method}.
}
\value{The given \code{lmrob}-object with the following elements updated:
\item{scale}{The Design Adaptive Scale estimate}
\item{converged}{ \code{TRUE} if the scale calculation converged,
\code{FALSE} other.}
}
\references{
Koller, M. and Stahel, W.A. (2011), Sharpening Wald-type inference in
robust regression for small samples, \emph{Computational Statistics &
Data Analysis} \bold{55}(8), 2504--2515.
}
\seealso{
\code{\link{lmrob.fit}}, \code{\link{lmrob}}
}
\examples{
data(stackloss)
## Compute manual SMD-estimate:
## 1) MM-estimate
m1 <- lmrob(stack.loss ~ ., data = stackloss)
## 2) Add Design Adaptive Scale estimate
m2 <- lmrob..D..fit(m1)
print(c(m1$scale, m2$scale))
summary(m1)
summary(m2) ## the covariance matrix estimate is also updated
}
\author{Manuel Koller}
\keyword{robust}
\keyword{regression}
|