1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
\name{lmrob..M..fit}
\alias{lmrob..M..fit}
\title{Compute M-estimators of regression}
\description{
This function performs RWLS iterations to find an
M-estimator of regression. When started from an S-estimated
\code{beta.initial}, this results in an MM-estimator.
}
\usage{
lmrob..M..fit(x = obj$x, y = obj$y,
beta.initial = obj$coef, scale = obj$scale, control = obj$control,
obj,
mf,
method = obj$control$method)
}
\arguments{
\item{x}{design matrix (\eqn{n \times p}{n x p}) typically including a
column of \code{1}s for the intercept.}
\item{y}{numeric response vector (of length \eqn{n}).}
\item{beta.initial}{numeric vector (of length \eqn{p}) of initial
estimate. Usually the result of an S-regression estimator.}
\item{scale}{robust residual scale estimate. Usually
an S-scale estimator.}
\item{control}{list of control parameters, as returned
by \code{\link{lmrob.control}}. Currently, the components
\code{c("max.it", "rel.tol","trace.lev", "psi", "tuning.psi", "mts", "subsampling")}
are accessed.}
\item{obj}{an optional \code{lmrob}-object. If specified, this is
typically used to set values for the other arguments.}
\item{mf}{defunct.}
\item{method}{optional; the \code{method} used for \emph{obj} computation.}
}
\details{
This function is used by \code{\link{lmrob.fit}} (and
\code{anova(<lmrob>, type = "Deviance")}) and typically not to be used
on its own.
}
\value{A list with the following elements:
\item{coef}{the M-estimator (or MM-estim.) of regression}
\item{control}{the \code{control} list input used}
\item{scale}{ The residual scale estimate}
\item{seed }{ The random number generator seed}
\item{converged}{ \code{TRUE} if the RWLS iterations converged,
\code{FALSE} otherwise}
}
\references{
Yohai, 1987
}
\seealso{
\code{\link{lmrob.fit}}, \code{\link{lmrob}};
\code{\link[MASS]{rlm}} from package \CRANpkg{MASS}.
}
\author{Matias Salibian-Barrera and Martin Maechler}
\examples{
data(stackloss)
X <- model.matrix(stack.loss ~ . , data = stackloss)
y <- stack.loss
## Compute manual MM-estimate:
## 1) initial LTS:
m0 <- ltsReg(X[,-1], y)
## 2) M-estimate started from LTS:
m1 <- lmrob..M..fit(X, y, beta.initial = coef(m0), scale = m0$scale, method = "SM",
control = lmrob.control(tuning.psi = 1.6, psi = 'bisquare'))
## no 'method' (nor 'obj'):
m1. <- lmrob..M..fit(X, y, beta.initial = coef(m0), scale = m0$scale,
control = m1$control)
stopifnot(all.equal(m1, m1., tol = 1e-15)) # identical {call *not* stored!}
cbind(m0$coef, m1$coef)
## the scale is kept fixed:
stopifnot(identical(unname(m0$scale), m1$scale))
## robustness weights: are
r.s <- with(m1, residuals/scale) # scaled residuals
m1.wts <- Mpsi(r.s, cc = 1.6, psi="tukey") / r.s
summarizeRobWeights(m1.wts)
##--> outliers 1,3,4,13,21
which(m0$lts.wt == 0) # 1,3,4,21 but not 13
\dontshow{stopifnot(which(m0$lts.wt == 0) == c(1,3,4,21))
}
## Manually add M-step to SMD-estimate (=> equivalent to "SMDM"):
m2 <- lmrob(stack.loss ~ ., data = stackloss, method = 'SMD')
m3 <- lmrob..M..fit(obj = m2)
## Simple function that allows custom initial estimates
## (Deprecated; use init argument to lmrob() instead.) %% MM: why deprecated?
lmrob.custom <- function(x, y, beta.initial, scale, terms) {
## initialize object
obj <- list(control = lmrob.control("KS2011"),
terms = terms) ## terms is needed for summary()
## M-step
obj <- lmrob..M..fit(x, y, beta.initial, scale, obj = obj)
## D-step
obj <- lmrob..D..fit(obj, x)
## Add some missing elements
obj$cov <- TRUE ## enables calculation of cov matrix
obj$p <- obj$qr$rank
obj$degree.freedom <- length(y) - obj$p
## M-step
obj <- lmrob..M..fit(x, y, obj=obj)
obj$control$method <- ".MDM"
obj
}
m4 <- lmrob.custom(X, y, m2$init$init.S$coef,
m2$init$scale, m2$terms)
stopifnot(all.equal(m4$coef, m3$coef))
## Start from ltsReg:
m5 <- ltsReg(stack.loss ~ ., data = stackloss)
m6 <- lmrob.custom(m5$X, m5$Y, coef(m5), m5$scale, m5$terms)
}
\keyword{robust}
\keyword{regression}
|