1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
\name{predict.lmrob}
\alias{predict.lmrob}
\title{Predict method for Robust Linear Model ("lmrob") Fits}
\description{
Predicted values based on robust linear model object.
}
\usage{
\method{predict}{lmrob}(object, newdata, se.fit = FALSE,
scale = NULL, df = NULL,
interval = c("none", "confidence", "prediction"), level = 0.95,
type = c("response", "terms"), terms = NULL,
na.action = na.pass, pred.var = res.var/weights, weights = 1, ...)
}
\arguments{
%% the following is +- copy-pasted from predict.lm.Rd:
\item{object}{object of class inheriting from \code{"lmrob"}}
\item{newdata}{an optional data frame in which to look for variables with
which to predict. If omitted, the fitted values are used.}
\item{se.fit}{a switch indicating if standard errors are required.}
\item{scale}{scale parameter for std.err. calculation}
\item{df}{degrees of freedom for scale}
\item{interval}{type of interval calculation.}
\item{level}{tolerance/confidence level}
\item{type}{Type of prediction (response or model term).}
\item{terms}{if \code{type="terms"}, which terms (default is all terms)}
\item{na.action}{function determining what should be done with missing
values in \code{newdata}. The default is to predict \code{NA}.}
\item{pred.var}{the variance(s) for future observations to be assumed
for prediction intervals. See \sQuote{Details}.}
\item{weights}{variance weights for prediction. This can be a numeric
vector or a one-sided model formula. In the latter case, it is
interpreted as an expression evaluated in \code{newdata}}
\item{\dots}{further arguments passed to or from other methods.}
}
\details{
Note that this \code{lmrob} method for \code{\link{predict}} is
closely modeled after the method for \code{lm()},
\code{\link{predict.lm}}, maybe see there for caveats with missing
value treatment.
%% Also lifted from predict.lm.Rd :
The prediction intervals are for a single observation at each case in
\code{newdata} (or by default, the data used for the fit) with error
variance(s) \code{pred.var}. This can be a multiple of \code{res.var},
the estimated value of \eqn{\sigma^2}: the default is to assume that
future observations have the same error variance as those
used for fitting. If \code{weights} is supplied, the inverse of this
is used as a scale factor. For a weighted fit, if the prediction
is for the original data frame, \code{weights} defaults to the weights
used for the model fit, with a warning since it might not be the
intended result. If the fit was weighted and \code{newdata} is given, the
default is to assume constant prediction variance, with a warning.
}
\value{
%% the following is +- copy-pasted from predict.lm.Rd:
\code{predict.lmrob} produces a vector of predictions or a matrix of
predictions and bounds with column names \code{fit}, \code{lwr}, and
\code{upr} if \code{interval} is set. If \code{se.fit} is
\code{TRUE}, a list with the following components is returned:
\item{fit}{vector or matrix as above}
\item{se.fit}{standard error of predicted means}
\item{residual.scale}{residual standard deviations}
\item{df}{degrees of freedom for residual}
}
% \references{
% }
\author{Andreas Ruckstuhl}
\seealso{
\code{\link{lmrob}} and the (non-robust) traditional
\code{\link{predict.lm}} method.
}
\examples{
## Predictions --- artificial example -- closely following example(predict.lm)
set.seed(5)
n <- length(x <- sort(c(round(rnorm(25), 1), 20)))
y <- x + rnorm(n)
iO <- c(sample(n-1, 3), n)
y[iO] <- y[iO] + 10*rcauchy(iO)
p.ex <- function(...) {
plot(y ~ x, ...); abline(0,1, col="sky blue")
points(y ~ x, subset=iO, col="red", pch=2)
abline(lm (y ~ x), col = "gray40")
abline(lmrob(y ~ x), col = "forest green")
legend("topleft", c("true", "Least Squares", "robust"),
col = c("sky blue", "gray40", "forest green"), lwd=1.5, bty="n")
}
p.ex()
fm <- lmrob(y ~ x)
predict(fm)
new <- data.frame(x = seq(-3, 10, 0.25))
str(predict(fm, new, se.fit = TRUE))
pred.w.plim <- predict(fm, new, interval = "prediction")
pred.w.clim <- predict(fm, new, interval = "confidence")
pmat <- cbind(pred.w.clim, pred.w.plim[,-1])
matlines(new$x, pmat, lty = c(1,2,2,3,3))# add to first plot
## show zoom-in region :
rect(xleft = -3, ybottom = -20, xright = 10, ytop = 40,
lty = 3, border="orange4")
## now zoom in :
p.ex(xlim = c(-3,10), ylim = c(-20, 40))
matlines(new$x, pmat, lty = c(1,2,2,3,3))
box(lty = 3, col="orange4", lwd=3)
legend("bottom", c("fit", "lwr CI", "upr CI", "lwr Pred.I", "upr Pred.I"),
col = 1:5, lty=c(1,2,2,3,3), bty="n")
## Prediction intervals, special cases
## The first three of these throw warnings
w <- 1 + x^2
fit <- lmrob(y ~ x)
wfit <- lmrob(y ~ x, weights = w)
predict(fit, interval = "prediction")
predict(wfit, interval = "prediction")
predict(wfit, new, interval = "prediction")
predict(wfit, new, interval = "prediction", weights = (new$x)^2) -> p.w2
p.w2
stopifnot(identical(p.w2, ## the same as using formula:
predict(wfit, new, interval = "prediction", weights = ~x^2)))
}
\keyword{robust}
\keyword{regression}
|