1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
|
\documentclass[11pt, a4paper]{article}
\usepackage[a4paper, text={16cm,25cm}]{geometry}
%\VignetteIndexEntry{Simulations for Robust Regression Inference in Small Samples}
%\VignettePackage{robustbase}
%\VignetteDepends{xtable,ggplot2,GGally,RColorBrewer,grid,reshape2}
\usepackage{amsmath}
\usepackage{natbib}
\usepackage[utf8]{inputenc}
\newcommand{\makeright}[2]{\ifx#1\left\right#2\else#1#2\fi}
\newcommand{\Norm}[2][\left]{\mathcal N #1( #2 \makeright{#1}{)}}
\newcommand{\norm}[1] {\| #1 \|}
\newcommand{\bld}[1]{\boldsymbol{#1}} % shortcut for bold symbol
\newcommand{\T}[1] {\texttt{#1}}
\DeclareMathOperator{\wgt}{w}
\DeclareMathOperator{\var}{var}
\DeclareMathOperator{\diag}{diag}
\DeclareMathOperator{\median}{median}
\DeclareMathOperator{\mad}{mad}
\DeclareMathOperator{\Erw}{\mathbf{E}}
\SweaveOpts{prefix.string=plot, eps = FALSE, pdf = TRUE, strip.white=true}
\SweaveOpts{width=6, height=4}
\usepackage[noae]{Sweave}
\begin{document}
\setkeys{Gin}{width=\textwidth}
\setlength{\abovecaptionskip}{-5pt}
<<initial-setup, echo=FALSE, results=hide>>=
## set options
options(width=60,
warn=1) # see warnings where they happen (should eliminate)
## number of workers to start
if(FALSE) {## good for pkg developers
options(cores= max(1, parallel::detectCores() - 2))
} else { ## CRAN allows maximum of 2:
options(cores= min(2, parallel::detectCores()))
}
## Number of Repetitions:
N <- 1000
## get path (= ../inst/doc/ in source pkg)
robustDoc <- system.file('doc', package='robustbase')
robustDta <- robustDoc
## initialize (packages, data, ...):
source(file.path(robustDoc, 'simulation.init.R')) # 'xtable'
## set the amount of trimming used in calculation of average results
trim <- 0.1
<<graphics-setup,echo=FALSE,results=hide>>=
## load required packages for graphics
stopifnot(require(ggplot2),
require(GGally),# for ggpairs() which replaces ggplot2::plotmatrix()
require(grid),
require(reshape2))
source(file.path(robustDoc, 'graphics.functions.R'))
if(getRversion() < "4.4.0")
`%||%` <- function (x, orElse) if (!is.null(x)) x else orElse
## set ggplot theme
theme <- theme_bw(base_size = 10)
theme$legend.key.size <- unit(1, "lines")# was 0.9 in pre-v.3 ggplot2
theme$plot.margin <- unit(c(1/2, 1/8, 1/8, 1/8), "lines")# was (1/2, 0,0,0)
theme_set(theme)
## old and new ggplot2:
stopifnot(is.list(theme_G <- theme$panel.grid.major %||% theme$panel.grid))
## set default sizes for lines and points
update_geom_defaults("point", list(size = 4/3))
update_geom_defaults("line", list(size = 1/4))
update_geom_defaults("hline", list(size = 1/4))
update_geom_defaults("smooth", list(size = 1/4))
## alpha value for plots with many points
alpha.error <- 0.3
alpha.n <- 0.4
## set truncation limits used by f.truncate() & g.truncate.*:
trunc <- c(0.02, 0.14)
trunc.plot <- c(0.0185, 0.155)
f.truncate <- function(x, up = trunc.plot[2], low = trunc.plot[1]) {
x[x > up] <- up
x[x < low] <- low
x
}
g.truncate.lines <- geom_hline(yintercept = trunc,
color = theme$panel.border$colour)
g.truncate.line <- geom_hline(yintercept = trunc[2],
color = theme$panel.border$colour)
g.truncate.areas <- annotate("rect", xmin=rep(-Inf,2), xmax=rep(Inf,2),
ymin=c(0,Inf), ymax=trunc,
fill = theme_G$colour)
g.truncate.area <- annotate("rect", xmin=-Inf, xmax=Inf,
ymin=trunc[2], ymax=Inf,
fill = theme_G$colour)
legend.mod <- list(`SMD.Wtau` = quote('SMD.W'~tau),
`SMDM.Wtau` = quote('SMDM.W'~tau),
`MM.Avar1` = quote('MM.'~Avar[1]),
`MMqT` = quote('MM'~~q[T]),
`MMqT.Wssc` = quote('MM'~~q[T]*'.Wssc'),
`MMqE` = quote('MM'~~q[E]),
`MMqE.Wssc` = quote('MM'~~q[E]*'.Wssc'),
`sigma_S` = quote(hat(sigma)[S]),
`sigma_D` = quote(hat(sigma)[D]),
`sigma_S*qE` = quote(q[E]*hat(sigma)[S]),
`sigma_S*qT` = quote(q[T]*hat(sigma)[S]),
`sigma_robust` = quote(hat(sigma)[robust]),
`sigma_OLS` = quote(hat(sigma)[OLS]),
`t1` = quote(t[1]),
`t3` = quote(t[3]),
`t5` = quote(t[5]),
`cskt(Inf,2)` = quote(cskt(infinity,2))
)
@% end{graphics-setup}
\title{Simulations for Sharpening Wald-type Inference in Robust Regression
for Small Samples}
\author{Manuel Koller}
\maketitle
\tableofcontents
\section{Introduction}
In this vignette, we recreate the simulation study of \citet{KS2011}. This
vignette is supposed to complement the results presented in the above cited
reference and render its results reproducible. Another goal is to provide
simulation functions, that, with small changes, could also be used for other
simulation studies.
Additionally, in Section~\ref{sec:maximum-asymptotic-bias}, we calculate
the maximum asymptotic bias curves of the $\psi$-functions used in the
simulation.
\section{Setting}
The simulation setting used here is similar to the one in
\citet{maronna2009correcting}. We simulate $N = \Sexpr{N}$ repetitions. To
repeat the simulation, we recommend using a small value of $N$ here, since
for large $n$ and $p$, computing all the replicates will take days.
\subsection{Methods}
We compare the methods
\begin{itemize}
\item MM, SMD, SMDM as described in \citet{KS2011}. These methods are
available in the package \T{robustbase} (\T{lmrob}).
\item MM as implemented in the package \T{robust} (\T{lmRob}). This method
will be denoted as \emph{MMrobust} later on.
\item MM using S-scale correction by $q_{\rm T}$ and $q_{\rm E}$ as
proposed by \citet{maronna2009correcting}.
$q_{\rm T}$ and $q_{\rm E}$ are defined as follows.
\begin{equation*}
q_{\rm E} = \frac{1}{1 - (1.29 - 6.02/n)p/n},
\end{equation*}
\begin{equation*}
\hat q_{\rm T} = 1 + \frac{p}{2n}\frac{\hat a}{\hat b\hat c},
\end{equation*}
where
\begin{equation*}
\hat a = \frac{1}{n}\sum_{i=1}^n
\psi\left(\frac{r_i}{\hat\sigma_{\rm S}}\right)^2,
\hat b = \frac{1}{n}
\sum_{i=1}^n\psi'\left(\frac{r_i}{\hat\sigma_{\rm S}}\right),%'
\hat c = \frac{1}{n}\sum_{i=1}^n
\psi\left(\frac{r_i}{\hat\sigma_{\rm S}}\right)
\frac{r_i}{\hat\sigma_{\rm S}},
\end{equation*}
with $\psi = \rho'$,%'
$n$ the number of observations, $p$ the number of
predictor variables, $\hat\sigma_{\rm S}$ is the S-scale estimate and
$r_i$ is the residual of the $i$-th observation.
When using $q_{\rm E}$ it is necessary to adjust the tuning constants of
$\chi$ to account for the dependence of $\kappa$ on $p$. For $q_{\rm T}$
no change is required.
This method is implemented as \T{lmrob.mar()} in the source file
\T{estimating.functions.R}.
\end{itemize}
\subsection[Psi-Functions]{$\psi$-Functions}
We compare \emph{bisquare}, \emph{optimal}, \emph{lqq} and \emph{Hampel}
$\psi$-functions. They are illustrated in Fig.~\ref{fig:psi.functions}. The
tuning constants used in the simulation are compiled in
Table~\ref{tab:psi-functions}. Note that the \emph{Hampel} $\psi$-function
is tuned to have a downward slope of $-1/3$ instead of the originally
proposed $-1/2$. This was set to allow for a comparison to an even slower
descending $\psi$-function.
%% generate table of tuning constants used for \psi functions
\begin{table}[ht]
\begin{center}
<<tab-psi-functions, results=tex, echo=FALSE>>=
## get list of psi functions
lst <- lapply(estlist$procedures, function(x) {
if (is.null(x$args)) return(list(NULL, NULL, NULL))
if (!is.null(x$args$weight))
return(list(x$args$weight[2],
round(f.psi2c.chi(x$args$weight[1]),3),
round(f.eff2c.psi(x$args$efficiency, x$args$weight[2]),3)))
return(list(x$args$psi,
round(if (is.null(x$args$tuning.chi))
lmrob.control(psi=x$args$psi)$tuning.chi else
x$args$tuning.chi,3),
round(if (is.null(x$args$tuning.psi))
lmrob.control(psi=x$args$psi)$tuning.psi else
x$args$tuning.psi,3)))
})
lst <- unique(lst) ## because of rounding, down from 21 to 5 !
lst <- lst[sapply(lst, function(x) !is.null(x[[1]]))] # 5 --> 4
## convert to table
tbl <- do.call(rbind, lst)
tbl[,2:3] <- apply(tbl[,2:3], 1:2, function(x) {
gsub('\\$NA\\$', '\\\\texttt{NA}',
paste('$', unlist(x), collapse=', ', '$', sep='')) })
tbl[,1] <- paste('\\texttt{', tbl[,1], '}', sep='')
colnames(tbl) <- paste0('\\texttt{', c('psi', 'tuning.chi', 'tuning.psi'), '}')
require("xtable") # need also print() method:
print(xtable(tbl), sanitize.text.function=identity,
include.rownames = FALSE, floating=FALSE)
@ %def
\vspace{15pt}
\caption{Tuning constants of $\psi$-functions used in the simulation.}
\label{tab:psi-functions}
\end{center}
\end{table}
\begin{figure}
\begin{center}
<<fig-psi-functions, fig=TRUE, echo=FALSE>>=
d.x_psi <- function(x, psi) {
cc <- lmrob.control(psi = psi)$tuning.psi
data.frame(x=x, value=Mpsi(x, cc, psi), psi = psi)
}
x <- seq(0, 10, length.out = 1000)
tmp <- rbind(d.x_psi(x, 'optimal'),
d.x_psi(x, 'bisquare'),
d.x_psi(x, 'lqq'),
d.x_psi(x, 'hampel'))
print( ggplot(tmp, aes(x, value, color = psi)) +
geom_line(lwd=1.25) + ylab(quote(psi(x))) +
scale_color_discrete(name = quote(psi ~ '-function')))
@
\end{center}
\caption{$\psi$-functions used in the simulation.}
\label{fig:psi.functions}
\end{figure}
\subsection{Designs}
Two types of designs are used in the simulation: fixed and random designs.
One design with $n=20$ observations, $p=1+3$ predictors and strong leverage
points. This design also includes an intercept column. It is shown in
Fig.~\ref{fig:design-predict}. The other designs are random, i.e.,
regenerated for every repetition, and the models are fitted without an
intercept. We use the same distribution to generate the designs as for the
errors. The number of observations simulated are $n = 25, 50, 100, 400$ and
the ratio to the number of parameters are $p/n = 1/20, 1/10, 1/5, 1/3,
1/2$. We round $p$ to the nearest smaller integer if necessary.
The random datasets are generated using the following code.
<<fgen, results=hide, keep.source=TRUE>>=
f.gen <- function(n, p, rep, err) {
## get function name and parameters
lerrfun <- f.errname(err$err)
lerrpar <- err$args
## generate random predictors
ret <- replicate(rep, matrix(do.call(lerrfun, c(n = n*p, lerrpar)),
n, p), simplify=FALSE)
attr(ret[[1]], 'gen') <- f.gen
ret
}
ratios <- c(1/20, 1/10, 1/5, 1/3, 1/2)## p/n
lsit <- expand.grid(n = c(25, 50, 100, 400), p = ratios)
lsit <- within(lsit, p <- as.integer(n*p))
.errs.normal.1 <- list(err = 'normal',
args = list(mean = 0, sd = 1))
for (i in 1:NROW(lsit))
assign(paste('rand',lsit[i,1],lsit[i,2],sep='_'),
f.gen(lsit[i,1], lsit[i,2], rep = 1, err = .errs.normal.1)[[1]])
@
An example design is shown in Fig.~\ref{fig:example.design}.
\begin{figure}
\begin{center}
<<fig-example-design, fig=TRUE, echo=FALSE>>=
require(GGally)
colnames(rand_25_5) <- paste0("X", 1:5) # workaround new (2014-12) change in GGally
## and the 2016-11-* change needs data frames:
df.r_25_5 <- as.data.frame(rand_25_5)
try( ## fails with old GGally and new packageVersion("ggplot2") >= "2.2.1.9000"
print(ggpairs(df.r_25_5, axisLabels="show", title = "rand_25_5: n=25, p=5"))
)
@
\end{center}
\caption{Example random design.}
\label{fig:example.design}
\end{figure}
\subsection{Error Distributions}
We simulate the following error distributions
\begin{itemize}
\item standard normal distribution,
\item $t_5$, $t_3$, $t_1$,
\item centered skewed t with $df = \infty, 5$ and $\gamma = 2$ (denoted by
\emph{cskt$(\infty,2)$} and \emph{cskt}$(5,2)$, respectively); as
introduced by \citet{fernandez1998bayesian} using the \T{R} package
\T{skewt},
\item contaminated normal, $\Norm{0,1}$ contaminated with $10\%$
$\Norm{0, 10}$ (symmetric, \emph{cnorm}$(0.1,0,3.16)$) or
$\Norm{4, 1}$ (asymmetric, \emph{cnorm}$(0.1,4,1)$).
\end{itemize}
\subsection{Covariance Matrix Estimators}
For the standard MM estimator, we compare ${\rm Avar}_1$ of \citet{croux03}
and the empirical weighted covariance matrix estimate corrected by Huber's
small sample correction as described in \citet{HubPR09} (denoted by
\emph{Wssc}). The latter is also used for the variation of the MM estimate
proposed by \citet{maronna2009correcting}. For the SMD and SMDM variants we
use the covariance matrix estimate as described in \citet{KS2011}
(\emph{W$\tau$}).
The covariance matrix estimate consists of three parts:
\begin{equation*}
{\rm cov}(\hat\beta) = \sigma^2\gamma\bld V_{\bld X}^{-1}.
\end{equation*}
The SMD and SMDM methods of \T{lmrob} use the following defaults.
\begin{equation}
\label{eq:gammatau}
\hat\gamma =
\frac{\frac{1}{n}\sum_{i=1}^n\tau_i^2
\psi\left(\frac{r_i}{\tau_i\hat\sigma}\right)^2}
{\frac{1}{n}\sum_{i=1}^n\psi'\left(\frac{r_i}{\tau_i\hat\sigma}\right)}
\end{equation}
where $\tau_i$ is the rescaling factor used for the D-scale estimate (see
\citet{KS2011}).
\noindent\textbf{Remark: } Equation \eqref{eq:gammatau} is a corrected
version of $\gamma$. It was changed in \texttt{robustbase} version
\texttt{0.91} (April 2014) to ensure that the equation reduces to $1$ in
the classical case ($\psi(x) = x$). If the former (incorrect) version is
needed for compatibility reasons, it can be obtained by adding the argument
\texttt{cov.corrfact = "tauold"}.
\begin{equation*}
\bld{\widehat V}_{\bld X} =
\frac{1}{\frac{1}{n}\sum_{i=1}^n\wgt_{ii}}\bld X^T\bld W\bld X
\end{equation*}
where $\bld W = \diag\left(\wgt\left(\frac{r_1}{\hat\sigma}\right), \dots,
\wgt\left(\frac{r_n}{\hat\sigma}\right)\right)$. The function $\wgt(r) =
\psi(r)/r$ produces the robustness weights.
\section{Simulation}
The main loop of the simulation is fairly simple. (This code is only run if
there are no aggregate results available.)
%% set eval to TRUE for chunks simulation-run and simulation-aggr
%% if you really want to run the simulations again.
%% (better fail with an error than run for weeks)
<<results=hide>>=
aggrResultsFile <- file.path(robustDta, "aggr_results.Rdata")
<<simulation-run,results=hide>>=
if (!file.exists(aggrResultsFile)) {
## load packages required only for simulation
stopifnot(require(robust),
require(skewt),
require(foreach))
if (!is.null(getOption("cores"))) {
if (getOption("cores") == 1)
registerDoSEQ() ## no not use parallel processing
else {
stopifnot(require(doParallel))
if (.Platform$OS.type == "windows") {
cl <- makeCluster(getOption("cores"))
clusterExport(cl, c("N", "robustDoc"))
clusterEvalQ(cl, slave <- TRUE)
clusterEvalQ(cl, source(file.path(robustDoc, 'simulation.init.R')))
registerDoParallel(cl)
} else registerDoParallel()
}
} else registerDoSEQ() ## no not use parallel processing
for (design in c("dd", ls(pattern = 'rand_\\d+_\\d+'))) {
print(design)
## set design
estlist$design <- get(design)
estlist$use.intercept <- !grepl('^rand', design)
## add design.predict: pc
estlist$design.predict <-
if (is.null(attr(estlist$design, 'gen')))
f.prediction.points(estlist$design) else
f.prediction.points(estlist$design, max.pc = 2)
filename <- file.path(robustDta,
sprintf('r.test.final.%s.Rdata',design))
if (!file.exists(filename)) {
## run
print(system.time(r.test <- f.sim(estlist, silent = TRUE)))
## save
save(r.test, file=filename)
## delete output
rm(r.test)
## run garbage collection
gc()
}
}
}
@
The variable \T{estlist} is a list containing all the necessary
settings required to run the simulation as outlined above. Most of its
elements are self-explanatory.
<<str-estlist>>=
str(estlist, 1)
@
\T{errs} is a list containing all the error distributions to be
simulated. The entry for the standard normal looks as follows.
<<estl-errs>>=
estlist$errs[[1]]
@
\T{err} is translated internally to the corresponding random generation or
quantile function, e.g., in this case \T{rnorm} or \T{qnorm}. \T{args}
is a list containing all the required arguments to call the
function. The errors are then generated internally with the following call.
<<show-errs,eval=FALSE>>=
set.seed(estlist$seed)
errs <- c(sapply(1:nrep, function(x) do.call(fun, c(n = nobs, args))))
@
All required random numbers are generated at once instead of during the
simulation. Like this, it is certain, that all the compared methods run on
exactly the same data.
The entry \T{procedures} follows a similar convention. \T{design.predict}
contains the design used for the prediction of observations and calculation
of confidence or prediction intervals. The objects returned by the
procedures are processed by the functions contained in the
\T{estlist\$output} list.
<<>>=
str(estlist$output[1:3], 2)
@
The results are stored in a 4-dimensional array. The dimensions are:
repetition number, type of value, procedure id, error id. Using \T{apply}
it is very easy and fast to generate summary statistics. The raw results
are stored on the hard disk, because typically it takes much longer to
execute all the procedures than to calculate the summary statistics. The
variables saved take up a lot of space quite quickly, so only the necessary
data is stored. These are $\sigma$, $\bld\beta$ as well as the
corresponding standard errors.
To speed up the simulation routine \T{f.sim}, the simulations are carried
out in parallel, as long as this is possible. This is accomplished with the
help of the \T{R}-package \T{foreach}. This is most easily done on a
machine with multiple processors or cores. The \T{multicore} package
provides the methods to do so easily. The worker processes are just forked
from the main \T{R} process.
After all the methods have been simulated, the simulation output is
processed. The code is quite lengthy and thus not displayed here (check the
Sweave source file \T{lmrob\_simulation.Rnw}). The
residuals, robustness weights, leverages and $\tau$ values have to be
recalculated. Using vectorized operations and some specialized \T{C} code,
this is quite cheap. The summary statistics generated are discussed in the
next section.
<<simulation-aggr, results=hide, echo=FALSE>>=
if (!file.exists(aggrResultsFile)) {
files <- list.files(robustDta, pattern = 'r.test.final\\.')
res <- foreach(file = files) %dopar% {
## get design, load r.test, initialize other stuff
design <- substr(basename(file), 14, nchar(basename(file)) - 6)
cat(design, ' ')
load(file.path(robustDta, file))
estlist <- attr(r.test, 'estlist')
use.intercept <-
if (!is.null(estlist$use.intercept)) estlist$use.intercept else TRUE
sel <- dimnames(r.test)[[3]] ## [dimnames(r.test)[[3]] != "estname=lm"]
n.betas <- paste('beta',1:(NCOL(estlist$design)+use.intercept),sep='_')
## get design
lX <- if (use.intercept)
as.matrix(cbind(1, get(design))) else as.matrix(get(design))
n <- NROW(lX)
p <- NCOL(lX)
## prepare arrays for variable designs and leverages
if (is.function(attr(estlist$design, 'gen'))) {
lXs <- array(NA, c(n, NCOL(lX), dim(r.test)[c(1, 4)]),
list(Obs = NULL, Pred = colnames(lX), Data = NULL,
Errstr = dimnames(r.test)[[4]]))
}
## generate errors
lerrs <- array(NA, c(n, dim(r.test)[c(1,4)]) ,
list(Obs = NULL, Data = NULL, Errstr = dimnames(r.test)[[4]]))
for (i in 1:dim(lerrs)[3]) {
lerrstr <- f.list2str(estlist$errs[[i]])
lerr <- f.errs(estlist, estlist$errs[[i]],
gen = attr(estlist$design, 'gen'),
nobs = n, npar = NCOL(lX))
lerrs[,,lerrstr] <- lerr
if (!is.null(attr(lerr, 'designs'))) {
## retrieve generated designs: this returns a list of designs
lXs[,,,i] <- unlist(attr(lerr, 'designs'))
if (use.intercept)
stop('intercept not implemented for random desings')
}
rm(lerr)
}
if (is.function(attr(estlist$design, 'gen'))) {
## calculate leverages
lXlevs <- apply(lXs, 3:4, .lmrob.hat)
}
## calculate fitted values from betas
if (!is.function(attr(estlist$design, 'gen'))) { ## fixed design case
lfitted <- apply(r.test[,n.betas,sel,,drop=FALSE],c(3:4),
function(bhat) { lX %*% t(bhat) } )
} else { ## variable design case
lfitted <- array(NA, n*prod(dim(r.test)[c(1,4)])*length(sel))
lfitted <- .C('R_calc_fitted',
as.double(lXs), ## designs
as.double(r.test[,n.betas,sel,,drop=FALSE]), ## betas
as.double(lfitted), ## result
as.integer(n), ## n
as.integer(p), ## p
as.integer(dim(r.test)[1]), ## nrep
as.integer(length(sel)), ## n procstr
as.integer(dim(r.test)[4]), ## n errstr
DUP=FALSE, NAOK=TRUE, PACKAGE="robustbase")[[3]]
}
tdim <- dim(lfitted) <-
c(n, dim(r.test)[1], length(sel),dim(r.test)[4])
lfitted <- aperm(lfitted, c(1,2,4,3))
## calculate residuals = y - fitted.values
lfitted <- as.vector(lerrs) - as.vector(lfitted)
dim(lfitted) <- tdim[c(1,2,4,3)]
lfitted <- aperm(lfitted, c(1,2,4,3))
dimnames(lfitted) <-
c(list(Obs = NULL), dimnames(r.test[,,sel,,drop=FALSE])[c(1,3,4)])
lresids <- lfitted
rm(lfitted)
## calculate lm MSE and trim trimmed MSE of betas
tf.MSE <- function(lbetas) {
lnrm <- rowSums(lbetas^2)
c(MSE=mean(lnrm,na.rm=TRUE),MSE.1=mean(lnrm,trim=trim,na.rm=TRUE))
}
MSEs <- apply(r.test[,n.betas,,,drop=FALSE],3:4,tf.MSE)
li <- 1 ## so we can reconstruct where we are
lres <- apply(lresids,3:4,f.aggregate.results <- {
function(lresid) {
## the counter li tells us, where we are
## we walk dimensions from left to right
lcdn <- f.get.current.dimnames(li, dimnames(lresids), 3:4)
lr <- r.test[,,lcdn[1],lcdn[2]]
## update counter
li <<- li + 1
## transpose and normalize residuals with sigma
lresid <- t(lresid) / lr[,'sigma']
if (lcdn[1] != 'estname=lm') {
## convert procstr to proclst and get control list
largs <- f.str2list(lcdn[1])[[1]]$args
if (grepl('lm.robust', lcdn[1])) {
lctrl <- list()
lctrl$psi <- toupper(largs$weight2)
lctrl$tuning.psi <-
f.eff2c.psi(largs$efficiency, lctrl$psi)
lctrl$method <- 'MM'
} else {
lctrl <- do.call('lmrob.control',largs)
}
## calculate correction factors
## A
lsp2 <- rowSums(Mpsi(lresid,lctrl$tuning.psi, lctrl$psi)^2)
## B
lspp <- rowSums(lpp <- Mpsi(lresid,lctrl$tuning.psi, lctrl$psi,1))
## calculate Huber\'s small sample correction factor
lK <- 1 + rowSums((lpp - lspp/n)^2)*NCOL(lX)/lspp^2 ## 1/n cancels
} else {
lK <- lspp <- lsp2 <- NA
}
## only calculate tau variants if possible
if (grepl('args.method=\\w*(D|T)\\w*\\b', lcdn[1])) { ## SMD or SMDM
## calculate robustness weights
lwgts <- Mwgt(lresid, lctrl$tuning.psi, lctrl$psi)
## function to calculate robustified leverages
tfun <-
if (is.function(attr(estlist$design, 'gen')))
function(i) {
if (all(is.na(wi <- lwgts[i,]))) wi
else .lmrob.hat(lXs[,,i,lcdn[2]],wi)
}
else
function(i) {
if (all(is.na(wi <- lwgts[i,]))) wi else .lmrob.hat(lX, wi)
}
llev <- sapply(1:dim(r.test)[1], tfun)
## calculate unique leverages
lt <- robustbase:::lmrob.tau(list(),h=llev,control=lctrl)
## normalize residuals with tau (transpose lresid)
lresid <- t(lresid) / lt
## A
lsp2t <- colSums(Mpsi(lresid,lctrl$tuning.psi,
lctrl$psi)^2)
## B
lsppt <- colSums(Mpsi(lresid,lctrl$tuning.psi,
lctrl$psi,1))
} else {
lsp2t <- lsppt <- NA
}
## calculate raw scales based on the errors
lproc <- f.str2list(lcdn[1])[[1]]
q <- NA
M <- NA
if (lproc$estname == 'lmrob.mar' && lproc$args$type == 'qE') {
## for lmrob_mar, qE variant
lctrl <- lmrob.control(psi = 'bisquare',
tuning.chi=uniroot(function(c)
robustbase:::lmrob.bp('bisquare', c) - (1-p/n)/2,
c(1, 3))$root)
se <- apply(lerrs[,,lcdn[2]],2,lmrob.mscale,control=lctrl,p=p)
ltmp <- se/lr[,'sigma']
q <- median(ltmp, na.rm = TRUE)
M <- mad(ltmp, na.rm = TRUE)
} else if (!is.null(lproc$args$method) && lproc$args$method == 'SMD') {
## for D-scales
se <- apply(lerrs[,,lcdn[2]],2,lmrob.dscale,control=lctrl,
kappa=robustbase:::lmrob.kappa(control=lctrl))
ltmp <- se/lr[,'sigma']
q <- median(ltmp, na.rm = TRUE)
M <- mad(ltmp, na.rm = TRUE)
}
## calculate empirical correct test value (to yield 5% level)
t.val_2 <- t.val_1 <- quantile(abs(lr[,'beta_1']/lr[,'se_1']), 0.95,
na.rm = TRUE)
if (p > 1) t.val_2 <- quantile(abs(lr[,'beta_2']/lr[,'se_2']), 0.95,
na.rm = TRUE)
## return output: summary statistics:
c(## gamma
AdB2.1 = mean(lsp2/lspp^2,trim=trim,na.rm=TRUE)*n,
K2AdB2.1 = mean(lK^2*lsp2/lspp^2,trim=trim,na.rm=TRUE)*n,
AdB2t.1 = mean(lsp2t/lsppt^2,trim=trim,na.rm=TRUE)*n,
sdAdB2.1 = sd.trim(lsp2/lspp^2*n,trim=trim,na.rm=TRUE),
sdK2AdB2.1 = sd.trim(lK^2*lsp2/lspp^2*n,trim=trim,na.rm=TRUE),
sdAdB2t.1 = sd.trim(lsp2t/lsppt^2*n,trim=trim,na.rm=TRUE),
## sigma
medsigma = median(lr[,'sigma'],na.rm=TRUE),
madsigma = mad(lr[,'sigma'],na.rm=TRUE),
meansigma.1 = mean(lr[,'sigma'],trim=trim,na.rm=TRUE),
sdsigma.1 = sd.trim(lr[,'sigma'],trim=trim,na.rm=TRUE),
meanlogsigma = mean(log(lr[,'sigma']),na.rm=TRUE),
meanlogsigma.1 = mean(log(lr[,'sigma']),trim=trim,na.rm=TRUE),
sdlogsigma = sd(log(lr[,'sigma']),na.rm=TRUE),
sdlogsigma.1 = sd.trim(log(lr[,'sigma']),trim=trim,na.rm=TRUE),
q = q,
M = M,
## beta
efficiency.1 = MSEs['MSE.1','estname=lm',lcdn[2]] /
MSEs['MSE.1',lcdn[1],lcdn[2]],
## t-value: level
emplev_1 = mean(abs(lr[,'beta_1']/lr[,'se_1']) > qt(0.975, n - p),
na.rm = TRUE),
emplev_2 = if (p>1) {
mean(abs(lr[,'beta_2']/lr[,'se_2']) > qt(0.975, n - p), na.rm = TRUE)
} else NA,
## t-value: power
power_1_0.2 = mean(abs(lr[,'beta_1']-0.2)/lr[,'se_1'] > t.val_1,
na.rm = TRUE),
power_2_0.2 = if (p>1) {
mean(abs(lr[,'beta_2']-0.2)/lr[,'se_2'] > t.val_2, na.rm = TRUE)
} else NA,
power_1_0.4 = mean(abs(lr[,'beta_1']-0.4)/lr[,'se_1'] > t.val_1,
na.rm = TRUE),
power_2_0.4 = if (p>1) {
mean(abs(lr[,'beta_2']-0.4)/lr[,'se_2'] > t.val_2, na.rm = TRUE)
} else NA,
power_1_0.6 = mean(abs(lr[,'beta_1']-0.6)/lr[,'se_1'] > t.val_1,
na.rm = TRUE),
power_2_0.6 = if (p>1) {
mean(abs(lr[,'beta_2']-0.6)/lr[,'se_2'] > t.val_2, na.rm = TRUE)
} else NA,
power_1_0.8 = mean(abs(lr[,'beta_1']-0.8)/lr[,'se_1'] > t.val_1,
na.rm = TRUE),
power_2_0.8 = if (p>1) {
mean(abs(lr[,'beta_2']-0.8)/lr[,'se_2'] > t.val_2, na.rm = TRUE)
} else NA,
power_1_1 = mean(abs(lr[,'beta_1']-1)/lr[,'se_1'] > t.val_1,
na.rm = TRUE),
power_2_1 = if (p>1) {
mean(abs(lr[,'beta_2']-1)/lr[,'se_2'] > t.val_2, na.rm = TRUE)
} else NA,
## coverage probability: calculate empirically
## the evaluation points are constant, but the designs change
## therefore this makes only sense for fixed designs
cpr_1 = mean(lr[,'upr_1'] < 0 | lr[,'lwr_1'] > 0, na.rm = TRUE),
cpr_2 = mean(lr[,'upr_2'] < 0 | lr[,'lwr_2'] > 0, na.rm = TRUE),
cpr_3 = mean(lr[,'upr_3'] < 0 | lr[,'lwr_3'] > 0, na.rm = TRUE),
cpr_4 = mean(lr[,'upr_4'] < 0 | lr[,'lwr_4'] > 0, na.rm = TRUE),
cpr_5 = if (any(colnames(lr) == 'upr_5')) {
mean(lr[,'upr_5'] < 0 | lr[,'lwr_5'] > 0, na.rm = TRUE) } else NA,
cpr_6 = if (any(colnames(lr) == 'upr_6')) {
mean(lr[,'upr_6'] < 0 | lr[,'lwr_6'] > 0, na.rm = TRUE) } else NA,
cpr_7 = if (any(colnames(lr) == 'upr_7')) {
mean(lr[,'upr_7'] < 0 | lr[,'lwr_7'] > 0, na.rm = TRUE) } else NA
)
}})
## convert to data.frame
lres <- f.a2df.2(lres, split = '___NO___')
## add additional info
lres$n <- NROW(lX)
lres$p <- NCOL(lX)
lres$nmpdn <- with(lres, (n-p)/n)
lres$Design <- design
## clean up
rm(r.test, lXs, lXlevs, lresids, lerrs)
gc()
## return lres
lres
}
save(res, trim, file = aggrResultsFile)
## stop cluster
if (exists("cl")) stopCluster(cl)
}
<<simulation-aggr2,results=hide,echo=FALSE>>=
load(aggrResultsFile)
## this will fail if the file is not found (for a reason)
## set eval to TRUE for chunks simulation-run and simulation-aggr
## if you really want to run the simulations again.
## (better fail with an error than run for weeks)
## combine list elements to data.frame
test.1 <- do.call('rbind', res)
test.1 <- within(test.1, {
Method[Method == "SM"] <- "MM"
Method <- Method[, drop = TRUE]
Estimator <- interaction(Method, D.type, drop = TRUE)
Estimator <- f.rename.level(Estimator, 'MM.S', 'MM')
Estimator <- f.rename.level(Estimator, 'SMD.D', 'SMD')
Estimator <- f.rename.level(Estimator, 'SMDM.D', 'SMDM')
Estimator <- f.rename.level(Estimator, 'MM.qT', 'MMqT')
Estimator <- f.rename.level(Estimator, 'MM.qE', 'MMqE')
Estimator <- f.rename.level(Estimator, 'MM.rob', 'MMrobust')
Estimator <- f.rename.level(Estimator, 'lsq.lm', 'OLS')
Est.Scale <- f.rename.level(Estimator, 'MM', 'sigma_S')
Est.Scale <- f.rename.level(Est.Scale, 'MMrobust', 'sigma_robust')
Est.Scale <- f.rename.level(Est.Scale, 'MMqE', 'sigma_S*qE')
Est.Scale <- f.rename.level(Est.Scale, 'MMqT', 'sigma_S*qT')
Est.Scale <- f.rename.level(Est.Scale, 'SMDM', 'sigma_D')
Est.Scale <- f.rename.level(Est.Scale, 'SMD', 'sigma_D')
Est.Scale <- f.rename.level(Est.Scale, 'OLS', 'sigma_OLS')
Psi <- f.rename.level(Psi, 'hampel', 'Hampel')
})
## add interaction of Method and Cov
test.1 <- within(test.1, {
method.cov <- interaction(Estimator, Cov, drop=TRUE)
levels(method.cov) <-
sub('\\.+vcov\\.(a?)[wacrv1]*', '\\1', levels(method.cov))
method.cov <- f.rename.level(method.cov, "MMa", "MM.Avar1")
method.cov <- f.rename.level(method.cov, "MMrobust.Default", "MMrobust.Wssc")
method.cov <- f.rename.level(method.cov, "MM", "MM.Wssc")
method.cov <- f.rename.level(method.cov, "SMD", "SMD.Wtau")
method.cov <- f.rename.level(method.cov, "SMDM", "SMDM.Wtau")
method.cov <- f.rename.level(method.cov, "MMqT", "MMqT.Wssc")
method.cov <- f.rename.level(method.cov, "MMqE", "MMqE.Wssc")
method.cov <- f.rename.level(method.cov, "OLS.Default", "OLS")
## ratio: the closest 'desired ratios' instead of exact p/n;
## needed in plots only for stat_*(): median over "close" p/n's:
ratio <- ratios[apply(abs(as.matrix(1/ratios) %*% t(as.matrix(p / n)) - 1),
2, which.min)]
})
## calculate expected values of psi^2 and psi'
test.1$Ep2 <- test.1$Epp <- NA
for(Procstr in levels(test.1$Procstr)) {
args <- f.str2list(Procstr)[[1]]$args
if (is.null(args)) next
lctrl <- do.call('lmrob.control',args)
test.1$Ep2[test.1$Procstr == Procstr] <-
robustbase:::lmrob.E(psi(r)^2, lctrl, use.integrate = TRUE)
test.1$Epp[test.1$Procstr == Procstr] <-
robustbase:::lmrob.E(psi(r,1), lctrl, use.integrate = TRUE)
}
## drop some observations, separate fixed and random designs
test.fixed <- droplevels(subset(test.1, n == 20)) ## n = 20 -- fixed design
test.1 <- droplevels(subset(test.1, n != 20)) ## n !=20 -- random designs
test.lm <- droplevels(subset(test.1, Function == 'lm')) # lm = OLS
test.1 <- droplevels(subset(test.1, Function != 'lm')) # Rob := all "robust"
test.lm$Psi <- NULL
test.lm.2 <- droplevels(subset(test.lm, Error == 'N(0,1)')) # OLS for N(*)
test.2 <- droplevels(subset(test.1, Error == 'N(0,1)' & Function != 'lm'))# Rob for N(*)
## subsets
test.3 <- droplevels(subset(test.2, Method != 'SMDM'))# Rob, not SMDM for N(*)
test.4 <- droplevels(subset(test.1, Method != 'SMDM'))# Rob, not SMDM for all
@
\section{Simulation Results}
\subsection{Criteria}
The simulated methods are compared using the following criteria.
\textbf{Scale estimates.} The criteria for scale estimates are all
calculated on the log-scale. The bias of the estimators is measured by
the $\Sexpr{trim*100}\%$ trimmed mean. To recover a meaningful scale, the
results are exponentiated before plotting. It is easy to see that this is
equivalent to calculating geometric means. Since the methods are all
tuned at the central model, ${\mathcal N}(0,1)$, a meaningful comparison
of biases can only be made for ${\mathcal N}(0,1)$ distributed errors.
The variability of the estimators, on the other hand, can be compared
over all simulated error distributions. It is measured by the
$\Sexpr{trim*100}\%$ trimmed standard deviation, rescaled by the square
root of the number of observations.
For completeness, the statistics used to compare scale estimates in
\citet{maronna2009correcting} are also calculated. They are defined as
\begin{equation}
\label{eq:def.q.and.M}
q = \median\left(\frac{S(\bld e)}{\hat\sigma_S}\right), \quad
M = \mad\left(\frac{S(\bld e)}{\hat\sigma_S}\right),
\end{equation}
where $S(e)$ stands for the S-scale estimate evaluated for the actual
errors $\bld e$. For the D-scale estimate, the definition is
analogue. Since there is no design to correct for, we set $\tau_i = 1\
\forall i$.
\textbf{Coefficients.} The efficiency of estimated regression
coefficients $\bld{\hat\beta}$ is characterized by their mean squared
error (\emph{MSE}). Since we simulate under $H_0: \bld\beta = 0$, this
is determined by the covariance matrix of $\bld{\hat\beta}$. We use
$\Erw\left[\norm{\bld{\hat\beta}}_2^2\right] = \sum_{j=1}^p
\var(\hat\beta_j)$ as a summary. When comparing to the MSE of the
ordinary least squares estimate (\emph{OLS}), this gives the efficiency,
which, by the choice of tuning constants of $\psi$, should yield
\begin{equation*}
\frac{{\rm MSE}(\bld{\hat\beta}_{\rm OLS})}{{\rm MSE}(\bld{\hat\beta})}
\approx 0.95
\end{equation*}
for standard normally distributed errors. The simulation mean of
$\sum_{j=1}^p \var(\hat\beta_j)$ is calculated with $\Sexpr{trim*100}\%$
trimming. For other error distributions, this ratio should be larger than
$1$, since by using robust procedures we expect to gain efficiency at
other error distributions (relative to the least squares estimate).
$\bld\gamma$\textbf{.} We compare the behavior of the various estimators of
$\gamma$ by calculating the trimmed mean and the trimmed standard
deviation for standard normal distributed errors.
\textbf{Covariance matrix estimate.} The covariance matrix estimates
are compared indirectly over the performance of the resulting test
statistics. We compare the empirical level of the hypothesis tests $H_0:
\beta_j = 0$ for some $j \in \{1,\dots, p\}$. The power of the tests is
compared by testing for $H_0: \beta_j = b$ for several values of
$b>0$. The formal power of a more liberal test is generally
higher. Therefore, in order for this comparison to be meaningful, the
critical value for each test statistic was corrected such that all tests
have the same simulated level of $5\%$.
The simple hypothesis tests give only limited insights. To investigate
the effects of other error distributions, e.g., asymmetric error
distributions, we compare the confidence intervals for the prediction of
some fixed points. Since it was not clear how to assess the quality
prediction intervals, either at the central or the simulated model, we do
not calculate them here.
A small number of prediction points is already enough, if they are
chosen properly. We chose to use seven points lying on the first two
principal components, spaced evenly from the center of the design used to
the extended range of the design. The principal components were
calculated robustly (using \T{covMcd} of the \T{robustbase} package) and
the range was extended by a fraction of $0.5$. An example is shown in
Figure~\ref{fig:design-predict}.
\subsection{Results}
The results are given here as plots (Fig.~\ref{fig:meanscale-1} to
Fig.~\ref{fig:cpr}). For a complete discussion of the results, we refer to
\citet{KS2011}.
The different $\psi$-functions are each plotted in a different facet,
except for Fig.~\ref{fig:qscale-all}, Fig.~\ref{fig:Mscale-all} and
Fig.~\ref{fig:lqq-level}, where the facets show the results for various
error distributions. The plots are augmented with auxiliary lines to ease
the comparison of the methods. The lines connect the median values over the
values of $n$ for each simulated ratio $p/n$. In many plots the y-axis has
been truncated. Points in the grey shaded area represent truncated values
using a different scale.
\begin{figure}
\begin{center}
<<fig-meanscale, fig=TRUE, echo=FALSE>>=
## ## exp(mean(log(sigma))): this looks almost identical to mean(sigma)
print(ggplot(test.3, aes(p/n, exp(meanlogsigma.1), color = Est.Scale)) +
stat_summary(aes(x=ratio), # <- "rounded p/n": --> median over "neighborhood"
fun = median, geom='line') +
geom_point(aes(shape = factor(n)), alpha = alpha.n) +
geom_hline(yintercept = 1) +
g.scale_y_log10_1() +
facet_wrap(~ Psi) +
ylab(quote('geometric ' ~ mean(hat(sigma)))) +
scale_shape_discrete(quote(n)) +
scale_colour_discrete("Scale Est.", labels=lab(test.3$Est.Scale)))
@
\end{center}
\caption{Mean of scale estimates for normal errors. The mean is calculated
with $\Sexpr{trim*100}\%$ trimming. The lines connect the median values
for each simulated ratio $p/n$. Results for random designs only. }
\label{fig:meanscale-1}
\end{figure}
\begin{figure}
\begin{center}
<<fig-sdscale-1, fig=TRUE, echo=FALSE>>=
print(ggplot(test.3, aes(p/n, sdlogsigma.1*sqrt(n), color = Est.Scale)) +
stat_summary(aes(x=ratio), fun = median, geom='line') +
geom_point(aes(shape = factor(n)), alpha = alpha.n) +
ylab(quote(sd(log(hat(sigma)))*sqrt(n))) +
facet_wrap(~ Psi) +
geom_point (data=test.lm.2, alpha=alpha.n, aes(color = Est.Scale)) +
stat_summary(data=test.lm.2, aes(x=ratio, color = Est.Scale),
fun = median, geom='line') +
scale_shape_discrete(quote(n)) +
scale_colour_discrete("Scale Est.",
labels= lab(test.3 $Est.Scale,
test.lm.2$Est.Scale)))
@
\end{center}
\caption{Variability of the scale estimates for normal errors. The standard
deviation is calculated with $\Sexpr{trim*100}\%$ trimming.
}
\label{fig:sdscale-1}
\end{figure}
\begin{figure}
\begin{center}
<<fig-sdscale-all, fig=TRUE, echo=FALSE>>=
print(ggplot(test.4,
aes(p/n, sdlogsigma.1*sqrt(n), color = Est.Scale)) +
ylim(with(test.4, range(sdlogsigma.1*sqrt(n)))) +
ylab(quote(sd(log(hat(sigma)))*sqrt(n))) +
stat_summary(aes(x=ratio), fun = median, geom='line') +
geom_point(aes(shape = Error), alpha = alpha.error) +
facet_wrap(~ Psi) +
geom_point (data=test.lm, aes(color = Est.Scale), alpha=alpha.n, na.rm = TRUE) +
##-> na.rm=T: avoid Warning: Removed 108 rows containing missing values (geom_point).
stat_summary(data=test.lm, aes(x = ratio, color = Est.Scale),
fun = median, geom='line', na.rm = TRUE) +
##-> na.rm=T: avoid Warning: Removed 108 rows containing non-finite values (stat_summary).
g.scale_shape(labels=lab(test.4$Error)) +
scale_colour_discrete("Scale Est.",
labels=lab(test.4 $Est.Scale,
test.lm$Est.Scale)))
@
\end{center}
\caption{Variability of the scale estimates for all simulated error distributions.}
\label{fig:sdscale-all}
\end{figure}
\begin{figure}
\begin{center}
<<fig-qscale, fig=TRUE, echo=FALSE>>=
t3est2 <- droplevels(subset(test.3, Estimator %in% c("SMD", "MMqE")))
print(ggplot(t3est2,
aes(p/n, q, color = Est.Scale)) + ylab(quote(q)) +
stat_summary(aes(x=ratio), fun = median, geom='line') +
geom_point(aes(shape = factor(n)), alpha = alpha.n) +
geom_hline(yintercept = 1) +
g.scale_y_log10_1() +
facet_wrap(~ Psi) +
scale_shape_discrete(quote(n)) +
scale_colour_discrete("Scale Est.", labels=lab(t3est2$Est.Scale)))
@
\end{center}
\caption{$q$ statistic for normal errors. $q$ is defined in \eqref{eq:def.q.and.M}.}
\label{fig:qscale-1}
\end{figure}
\begin{figure}
\begin{center}
<<fig-Mscale, fig=TRUE, echo=FALSE>>=
print(ggplot(t3est2,
aes(p/n, M/q, color = Est.Scale)) +
stat_summary(aes(x=ratio), fun = median, geom='line') +
geom_point(aes(shape = factor(n)), alpha = alpha.n) +
g.scale_y_log10_0.05() +
facet_wrap(~ Psi) +
ylab(quote(M/q)) +
scale_shape_discrete(quote(n)) +
scale_colour_discrete("Scale Est.", labels=lab(t3est2$Est.Scale)))
@
\end{center}
\caption{$M/q$ statistic for normal errors. $M$ and $q$ are defined in
\eqref{eq:def.q.and.M}.}
\label{fig:Mscale-1}
\end{figure}
\begin{figure}
\begin{center}
<<fig-qscale-all, fig=TRUE, echo=FALSE>>=
t1.bi <- droplevels(subset(test.1, Estimator %in% c("SMD", "MMqE") &
Psi == 'bisquare'))
print(ggplot(t1.bi,
aes(p/n, q, color = Est.Scale)) +
stat_summary(aes(x=ratio), fun = median, geom='line') +
geom_point(aes(shape = factor(n)), alpha = alpha.n) +
geom_hline(yintercept = 1) +
g.scale_y_log10_1() +
facet_wrap(~ Error) + ## labeller missing!
ylab(quote(q)) +
scale_shape_discrete(quote(n)) +
scale_colour_discrete("Scale Est.", labels=lab(tmp$Est.Scale)),
legend.mod = legend.mod)
@
\end{center}
\caption{$q$ statistic for \emph{bisquare} $\psi$.
}
\label{fig:qscale-all}
\end{figure}
\begin{figure}
\begin{center}
<<fig-Mscale-all, fig=TRUE, echo=FALSE>>=
print(ggplot(t1.bi,
aes(p/n, M/q, color = Est.Scale)) +
stat_summary(aes(x=ratio), fun = median, geom='line') +
geom_point(aes(shape = factor(n)), alpha = alpha.n) +
g.scale_y_log10_0.05() +
facet_wrap(~ Error) +
ylab(quote(M/q)) +
scale_shape_discrete(quote(n)) +
scale_colour_discrete("Scale Est.", labels=lab(tmp$Est.Scale)),
legend.mod = legend.mod)
@
\end{center}
\caption{$M/q$ statistic for \emph{bisquare} $\psi$.
}
\label{fig:Mscale-all}
\end{figure}
\clearpage% not nice, but needed against LaTeX Error: Too many unprocessed floats.
\begin{figure}
\begin{center}
<<fig-efficiency, fig=TRUE, echo=FALSE>>=
print(ggplot(test.2, aes(p/n, efficiency.1, color = Estimator)) +
geom_point(aes(shape = factor(n)), alpha = alpha.n) +
geom_hline(yintercept = 0.95) +
stat_summary(aes(x=ratio), fun = median, geom='line') +
facet_wrap(~ Psi) +
ylab(quote('efficiency of' ~~ hat(beta))) +
g.scale_shape(quote(n)) +
scale_colour_discrete(name = "Estimator",
labels = lab(test.2$Estimator)))
@
\end{center}
\caption{Efficiency for normal errors. The efficiency
is calculated by comparing to an OLS estimate and averaging with
$\Sexpr{trim*100}\%$ trimming.
}
\label{fig:efficiency}
\end{figure}
\begin{figure}
\begin{center}
<<fig-efficiency-all, fig=TRUE, echo=FALSE>>=
t.1xt1 <- droplevels(subset(test.1, Error != 't1'))
print(ggplot(t.1xt1,
aes(p/n, efficiency.1, color = Estimator)) +
ylab(quote('efficiency of '~hat(beta))) +
geom_point(aes(shape = Error), alpha = alpha.error) +
geom_hline(yintercept = 0.95) +
stat_summary(aes(x=ratio), fun = median, geom='line') +
g.scale_shape(values=c(16,17,15,3,7,8,9,1,2,4)[-4],
labels=lab(t.1xt1$Error)) +
facet_wrap(~ Psi) +
scale_colour_discrete(name = "Estimator",
labels = lab(t.1xt1$Estimator)))
@
\end{center}
\caption{Efficiency for all simulated error distributions except $t_1$.
}
\label{fig:efficiency-all}
\end{figure}
\begin{figure}
\begin{center}
<<fig-AdB2-1, fig=TRUE, echo=FALSE>>=
t.2o. <- droplevels(subset(test.2, !is.na(AdB2t.1)))
print(ggplot(t.2o., aes(p/n, AdB2.1/(1-p/n), color = Estimator)) +
geom_point(aes(shape=factor(n)), alpha = alpha.n) +
geom_point(aes(y=K2AdB2.1/(1-p/n)), alpha = alpha.n) +
geom_point(aes(y=AdB2t.1), alpha = alpha.n) +
stat_summary(aes(x=ratio), fun = median, geom='line') +
stat_summary(aes(x=ratio, y=K2AdB2.1/(1-p/n)), fun = median, geom='line', linetype=2) +
stat_summary(aes(x=ratio, y=AdB2t.1), fun = median, geom='line', linetype=3) +
geom_hline(yintercept = 1/0.95) +
g.scale_y_log10_1() +
scale_shape_discrete(quote(n)) +
scale_colour_discrete(name = "Estimator", labels = lab(t.2o.$Estimator)) +
ylab(quote(mean(hat(gamma)))) +
facet_wrap(~ Psi))
@
\end{center}
\caption{Comparing the estimates of $\gamma$. The solid line connects the
uncorrected estimate, dotted the $\tau$ corrected estimate and
dashed Huber's small sample correction.
}
\label{fig:AdB2-1}
\end{figure}
\begin{figure}
\begin{center}
<<fig-sdAdB2-1, fig=TRUE, echo=FALSE>>=
t.2ok <- droplevels(subset(test.2, !is.na(sdAdB2t.1)))
print(ggplot(t.2ok,
aes(p/n, sdAdB2.1/(1-p/n), color = Estimator)) +
geom_point(aes(shape=factor(n)), alpha = alpha.n) +
geom_point(aes(y=sdK2AdB2.1/(1-p/n)), alpha = alpha.n) +
geom_point(aes(y=sdAdB2t.1), alpha = alpha.n) +
stat_summary(aes(x=ratio), fun = median, geom='line') +
stat_summary(aes(x=ratio, y=sdK2AdB2.1/(1-p/n)), fun = median, geom='line', linetype= 2) +
stat_summary(aes(x=ratio, y=sdAdB2t.1), fun = median, geom='line', linetype= 3) +
g.scale_y_log10_0.05() +
scale_shape_discrete(quote(n)) +
scale_colour_discrete(name = "Estimator", labels=lab(t.2ok$Estimator)) +
ylab(quote(sd(hat(gamma)))) +
facet_wrap(~ Psi))
@
\end{center}
\caption{Comparing the estimates of $\gamma$. The solid line connects the
uncorrected estimate, dotted the $\tau$ corrected estimate and
dashed Huber's small sample correction.
}
\label{fig:sdAdB2-1}
\end{figure}
\begin{figure}
\begin{center}
<<fig-emp-level,fig=TRUE,echo=FALSE>>=
t.2en0 <- droplevels(subset(test.2, emplev_1 != 0))
print(ggplot(t.2en0,
aes(p/n, f.truncate(emplev_1), color = method.cov)) +
g.truncate.line + g.truncate.area +
geom_point(aes(shape = factor(n)), alpha = alpha.n) +
scale_shape_discrete(quote(n)) +
stat_summary(aes(x=ratio), fun = median, geom='line') +
geom_hline(yintercept = 0.05) +
g.scale_y_log10_0.05() +
scale_colour_discrete(name = "Estimator", labels=lab(t.2en0$method.cov)) +
ylab(quote("empirical level "~ list (H[0] : beta[1] == 0) )) +
facet_wrap(~ Psi))
@
\end{center}
\caption{Empirical levels of test $H_0: \beta_1 = 0$ for normal errors. The
y-values are truncated at $\Sexpr{trunc[1]}$ and $\Sexpr{trunc[2]}$.
}
\label{fig:emp-level}
\end{figure}
\begin{figure}
\begin{center}
<<fig-lqq-level, fig=TRUE, echo=FALSE>>=
tmp <- droplevels(subset(test.1, Psi == 'lqq' & emplev_1 != 0))
print(ggplot(tmp, aes(p/n, f.truncate(emplev_1), color = method.cov)) +
g.truncate.line + g.truncate.area +
geom_point(aes(shape = factor(n)), alpha = alpha.n) +
stat_summary(aes(x=ratio), fun = median, geom='line') +
geom_hline(yintercept = 0.05) +
g.scale_y_log10_0.05() +
g.scale_shape(quote(n)) +
scale_colour_discrete(name = "Estimator", labels=lab(tmp$method.cov)) +
ylab(quote("empirical level "~ list (H[0] : beta[1] == 0) )) +
facet_wrap(~ Error)
,
legend.mod = legend.mod
)
@
\end{center}
\caption{Empirical levels of test $H_0: \beta_1 = 0$ for \emph{lqq}
$\psi$-function and different error distributions.
}
\label{fig:lqq-level}
\end{figure}
\begin{figure}
\begin{center}
<<fig-power-1-0_2, fig=TRUE, echo=FALSE>>=
t2.25 <- droplevels(subset(test.2, n == 25))# <-- fixed n ==> no need for 'ratio'
tL2.25 <- droplevels(subset(test.lm.2, n == 25))
scale_col_D2.25 <- scale_colour_discrete(name = "Estimator (Cov. Est.)",
labels=lab(t2.25 $method.cov,
tL2.25$method.cov))
print(ggplot(t2.25,
aes(p/n, power_1_0.2, color = method.cov)) +
ylab(quote("empirical power "~ list (H[0] : beta[1] == 0.2) )) +
geom_point(# aes(shape = Error),
alpha = alpha.error) +
stat_summary(fun = median, geom='line') +
geom_point (data=tL2.25, alpha = alpha.n) +
stat_summary(data=tL2.25, fun = median, geom='line') +
## g.scale_shape("Error", labels=lab(t2.25$Error)) +
scale_col_D2.25 +
facet_wrap(~ Psi)
)
@
\end{center}
\caption{Empirical power of test $H_0: \beta_1 = 0.2$ for different
$\psi$-functions. Results for $n = 25$ and normal errors only.
}
\label{fig:power-1-0_2}
\end{figure}
\begin{figure}
\begin{center}
<<fig-power-1-0_4, fig=TRUE, echo=FALSE>>=
print(ggplot(t2.25,
aes(p/n, power_1_0.4, color = method.cov)) +
ylab(quote("empirical power "~ list (H[0] : beta[1] == 0.4) )) +
geom_point(alpha = alpha.error) +
stat_summary(fun = median, geom='line') +
geom_point (data=tL2.25, alpha = alpha.n) +
stat_summary(data=tL2.25,
fun = median, geom='line') +
## g.scale_shape("Error", labels=lab(t2.25$Error)) +
scale_col_D2.25 +
facet_wrap(~ Psi)
)
@
\end{center}
\caption{Empirical power of test $H_0: \beta_1 = 0.4$ for different
$\psi$-functions. Results for $n = 25$ and normal errors only.
}
\label{fig:power-1-0_4}
\end{figure}
\begin{figure}
\begin{center}
<<fig-power-1-0_6, fig=TRUE, echo=FALSE>>=
print(ggplot(t2.25,
aes(p/n, power_1_0.6, color = method.cov)) +
ylab(quote("empirical power "~ list (H[0] : beta[1] == 0.6) )) +
geom_point(# aes(shape = Error),
alpha = alpha.error) +
stat_summary(fun = median, geom='line') +
geom_point (data=tL2.25, alpha = alpha.n) +
stat_summary(data=tL2.25, fun = median, geom='line') +
scale_col_D2.25 +
facet_wrap(~ Psi)
)
@
\end{center}
\caption{Empirical power of test $H_0: \beta_1 = 0.6$ for different
$\psi$-functions. Results for $n = 25$ and normal errors only.
}
\label{fig:power-1-0_6}
\end{figure}
\begin{figure}
\begin{center}
<<fig-power-1-0_8, fig=TRUE, echo=FALSE>>=
print(ggplot(t2.25,
aes(p/n, power_1_0.8, color = method.cov)) +
ylab(quote("empirical power "~ list (H[0] : beta[1] == 0.8) )) +
geom_point(alpha = alpha.error) +
stat_summary(fun = median, geom='line') +
geom_point (data=tL2.25, alpha = alpha.n) +
stat_summary(data=tL2.25, fun = median, geom='line') +
g.scale_shape("Error", labels=lab(t2.25$Error)) +
scale_col_D2.25 +
facet_wrap(~ Psi)
)
@
\end{center}
\caption{Empirical power of test $H_0: \beta_1 = 0.8$ for different
$\psi$-functions. Results for $n = 25$ and normal errors only.
}
\label{fig:power-1-0_8}
\end{figure}
\begin{figure}
\begin{center}
<<fig-power-1-1, fig=TRUE, echo=FALSE>>=
print(ggplot(t2.25,
aes(p/n, power_1_1, color = method.cov)) +
ylab(quote("empirical power "~ list (H[0] : beta[1] == 1) )) +
geom_point(alpha = alpha.error) +
stat_summary(fun = median, geom='line') +
geom_point (data=tL2.25, alpha = alpha.n) +
stat_summary(data=tL2.25, fun = median, geom='line') +
## g.scale_shape("Error", labels=lab(t2.25$Error)) +
scale_col_D2.25 +
facet_wrap(~ Psi)
)
@
\end{center}
\caption{Empirical power of test $H_0: \beta_1 = 1$ for different
$\psi$-functions. Results for $n = 25$ and normal errors only.
}
\label{fig:power-1-1}
\end{figure}
%\clearpage
\begin{figure}
\begin{center}
%% now (2016-11 GGally) works --- but fails with new 2018-05 ggplot2:
<<fig-pred-points, fig=TRUE, echo=FALSE>>=
pp <- f.prediction.points(dd)[1:7,]
## Worked in older ggplot2 -- now plotmatrix() is gone, to be replaced by GGally::ggpairs):
## tmp <- plotmatrix(pp)$data
## tmp$label <- as.character(1:7)
## print(plotmatrix(dd) + geom_text(data=tmp, color = 2, aes(label=label), size = 2.5))
if(FALSE) {
tmp <- ggpairs(pp)$data
tmp$label <- as.character(1:7) # and now?
}
## ggpairs() + geom_text() does *NOT* work {ggpairs has own class}
## print(ggpairs(dd) + geom_text(data=tmp, color = 2, aes(label=label), size = 2.5))
try( ## fails with old GGally and new packageVersion("ggplot2") >= "2.2.1.9000"
print( ggpairs(dd) )## now (2016-11) fine
)
@
\end{center}
\caption{Prediction points for fixed design. The black points are the
points of the original design. The red digits indicate the numbers and
locations of the points where predictions are taken.}
\label{fig:design-predict}
\end{figure}
\begin{figure}
\begin{center}
<<fig-cpr, fig=TRUE,echo=FALSE>>=
n.cprs <- names(test.fixed)[grep('cpr', names(test.fixed))] # test.fixed: n=20 => no 'x=ratio'
test.5 <- melt(test.fixed[,c('method.cov', 'Error', 'Psi', n.cprs)])
test.5 <- within(test.5, {
Point <- as.numeric(do.call('rbind', strsplit(levels(variable), '_'))[,2])[variable]
})
print(ggplot(test.5,
aes(Point, f.truncate(value), color = method.cov)) +
geom_point(aes(shape = Error), alpha = alpha.error) +
g.truncate.line + g.truncate.area +
stat_summary(fun = median, geom='line') +
geom_hline(yintercept = 0.05) +
g.scale_y_log10_0.05() +
g.scale_shape(labels=lab(test.5$Error)) +
scale_colour_discrete(name = "Estimator (Cov. Est.)",
labels=lab(test.5$method.cov)) +
ylab("empirical level of confidence intervals") +
facet_wrap(~ Psi)
)
@
\end{center}
\caption{Empirical coverage probabilities. Results for fixed design. The
y-values are truncated at $\Sexpr{trunc[2]}$.
}
\label{fig:cpr}
\end{figure}
\clearpage
\section{Maximum Asymptotic Bias}
\label{sec:maximum-asymptotic-bias}
The slower redescending $\psi$-functions come with higher asymptotic bias
as illustrated in Fig.~\ref{fig:max-asymptotic-bias}. We calculate the
asymptotic bias as in \citet{berrendero2007maximum}.
<<maxbias-fn, results=hide,echo=FALSE>>=
## Henning (1994) eq 33:
g <- Vectorize(function(s, theta, mu, ...) {
lctrl <- lmrob.control(...)
rho <- function(x)
Mchi(x, lctrl$tuning.chi, lctrl$psi, deriv = 0)
integrate(function(x) rho(((1 + theta^2)/s^2*x)^2)*dchisq(x, 1, mu^2/(1 + theta^2)),
-Inf, Inf)$value
})
## Martin et al 1989 Section 3.2: for mu = 0
g.2 <- Vectorize(function(s, theta, mu, ...) {
lctrl <- lmrob.control(...)
lctrl$tuning.psi <- lctrl$tuning.chi
robustbase:::lmrob.E(chi(sqrt(1 + theta^2)/s*r), lctrl, use.integrate = TRUE)})
g.2.MM <- Vectorize(function(s, theta, mu, ...) {
lctrl <- lmrob.control(...)
robustbase:::lmrob.E(chi(sqrt(1 + theta^2)/s*r), lctrl, use.integrate = TRUE)})
## Henning (1994) eq 30, one parameter case
g.3 <- Vectorize(function(s, theta, mu, ...) {
lctrl <- lmrob.control(...)
rho <- function(x)
Mchi(x, lctrl$tuning.chi, lctrl$psi, deriv = 0)
int.x <- Vectorize(function(y) {
integrate(function(x) rho((y - x*theta - mu)/s)*dnorm(x)*dnorm(y),-Inf, Inf)$value })
integrate(int.x,-Inf, Inf)$value
})
inv.g1 <- function(value, theta, mu, ...) {
g <- if (mu == 0) g.2 else g.3
uniroot(function(s) g(s, theta, mu, ...) - value, c(0.1, 100))$root
}
inv.g1.MM <- function(value, theta, mu, ...) {
g <- if (mu == 0) g.2.MM else g.3.MM
ret <- tryCatch(uniroot(function(s) g(s, theta, mu, ...) - value, c(0.01, 100)),
error = function(e)e)
if (inherits(ret, 'error')) {
warning('inv.g1.MM: ', value, ' ', theta, ' ', mu,' -> Error: ', ret$message)
NA
} else {
ret$root
}
}
s.min <- function(epsilon, ...) inv.g1(0.5/(1 - epsilon), 0, 0, ...)
s.max <- function(epsilon, ...) inv.g1((0.5-epsilon)/(1-epsilon), 0, 0, ...)
BS <- Vectorize(function(epsilon, ...) {
sqrt(s.max(epsilon, ...)/s.min(epsilon, ...)^2 - 1) })
l <- Vectorize(function(epsilon, ...) {
sigma_be <- s.max(epsilon, ...)
sqrt((sigma_be/inv.g1.MM(g.2.MM(sigma_be,0,0,...) +
epsilon/(1-epsilon),0,0,...))^2 - 1) })
u <- Vectorize(function(epsilon, ...) {
gamma_be <- s.min(epsilon, ...)
max(l(epsilon, ...),
sqrt((gamma_be/inv.g1.MM(g.2.MM(gamma_be,0,0,...) +
epsilon/(1-epsilon),0,0,...))^2 - 1)) })
@
\begin{figure}[h!]
\begin{center}
<<max-asymptotic-bias,echo=FALSE>>=
asymptMBFile <- file.path(robustDta, 'asymptotic.max.bias.Rdata')
if (!file.exists(asymptMBFile)) {
x <- seq(0, 0.35, length.out = 100)
rmb <- rbind(data.frame(l=l(x, psi = 'hampel'),
u=u(x, psi = 'hampel'), psi = 'Hampel'),
data.frame(l=l(x, psi = 'lqq'),
u=u(x, psi = 'lqq'), psi = 'lqq'),
data.frame(l=l(x, psi = 'bisquare'),
u=u(x, psi = 'bisquare'), psi = 'bisquare'),
data.frame(l=l(x, psi = 'optimal'),
u=u(x, psi = 'optimal'), psi = 'optimal'))
rmb$x <- x
save(rmb, file=asymptMBFile)
} else load(asymptMBFile)
<<fig-max-asymptotic-bias,fig=TRUE,echo=FALSE>>=
print(ggplot(rmb, aes(x, l, color=psi)) + geom_line() +
geom_line(aes(x, u, color=psi), linetype = 2) +
xlab(quote("amount of contamination" ~~ epsilon)) +
ylab("maximum asymptotic bias bounds") +
coord_cartesian(ylim = c(0,10)) +
scale_y_continuous(breaks = 1:10) +
scale_colour_hue(quote(psi ~ '-function')))
@
\end{center}
\caption{Maximum asymptotic bias bound for the $\psi$-functions used in the
simulation. Solid line: lower bound. Dashed line: upper bound.}
\label{fig:max-asymptotic-bias}
\end{figure}
\bibliographystyle{chicago}
\bibliography{robustbase}
\end{document}
|