1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
|
\documentclass[11pt, a4paper]{article}
\usepackage[a4paper, text={16cm,25cm}]{geometry}
%\VignetteIndexEntry{Definitions of Psi-Functions Available in Robustbase}
%\VignetteDepends{robustbase}
\SweaveOpts{prefix.string=psi, eps=FALSE, pdf=TRUE, strip.white=true}
\SweaveOpts{width=6, height=4.1, echo=FALSE, fig=TRUE}
%% --------------------- !!
\usepackage{amsmath}
\usepackage{amsfonts}% \mathbb
\usepackage{natbib}
\usepackage[utf8]{inputenc}
\newcommand{\abs}[1]{\left| #1 \right|}
\DeclareMathOperator{\sign}{sign}
\newcommand{\R}{\mathbb{R}}
\newcommand{\code}[1]{\texttt{#1}}
\newcommand*{\pkg}[1]{\texttt{#1}}
%% The following is R's share/texmf/Rd.sty
\usepackage{color}
\definecolor{Blue}{rgb}{0,0,0.8}
\definecolor{Red}{rgb}{0.7,0,0}
\usepackage{hyperref}
\hypersetup{%
% hyperindex,%
colorlinks={true},%
% pagebackref,%
linktocpage,%
plainpages={false},%
linkcolor={Blue},%
citecolor={Blue},%
urlcolor={Red},%
pdfstartview={Fit},%
pdfview={XYZ null null null}%
}
% *after* the hypersetup (necessary for Debian TeX Live Aug.2024):
\newtheorem{definition}{Definition}
<<init, fig=FALSE>>=
# set margins for plots
options(SweaveHooks=list(fig=function() par(mar=c(3,3,1.4,0.7),
mgp=c(1.5, 0.5, 0))))
## x axis for plots:
x. <- seq(-5, 10, length.out = 1501)
require(robustbase)
<<source-p-psiFun, fig=FALSE>>=
source(system.file("xtraR/plot-psiFun.R", package = "robustbase", mustWork=TRUE))
@% = ../inst/xtraR/plot-psiFun.R --> p.psiFun() --> robustbase:::matPlotPsi() {for nice legends; lines ..}
\begin{document}
\setkeys{Gin}{width=0.9\textwidth}
\setlength{\abovecaptionskip}{-5pt}
\title{Definitions of \texorpdfstring{$\psi$}{psi}-Functions Available in Robustbase}
\author{Manuel Koller and Martin M\"achler}
\maketitle
\tableofcontents
\section*{Preamble}
Unless otherwise stated, the following definitions of functions are
given by \citet[p. 31]{MarRMY06}, however our definitions differ sometimes slightly
from theirs, as we prefer a different way of \emph{standardizing} the
functions. To avoid confusion, we first define
$\psi$- and $\rho$-functions.
\begin{definition}\label{def.psi}
A \emph{$\psi$-function} is a piecewise continuous function $\psi: \R \to \R$ such that
\begin{enumerate}
\item $\psi$ is odd, i.e., \ $\psi(-x) = -\psi(x) \: \forall x$,
\item $\psi(x) \ge 0$ for $x \ge 0$, and $\psi(x) > 0$ for $0 < x < x_r :=
\sup\{\tilde x : \psi(\tilde x) > 0\}$ \ \ ($x_r > 0$, possibly $x_r = \infty$).
\item[3*] Its slope is $1$ at $0$, i.e., $\displaystyle \psi'(0) = 1$.
\end{enumerate}
Note that `3*' is not strictly required mathematically, but
we use it for standardization in those cases where $\psi$ is continuous
at 0. Then, it also follows (from 1.) that $\psi(0) = 0$, and we require
$\psi(0)=0$ also for the case where $\psi$ is discontinuous in 0, as it is,
e.g., for the M-estimator defining the median.
\end{definition}
\begin{definition}
A \emph{$\rho$-function} can be represented by the following % definite
integral of a $\psi$-function,
\begin{equation}\label{def.rho}
\rho(x) = \int_0^x \psi(u) du\;,
\end{equation}
which entails that $\rho(0) = 0$ and $\rho$ is an even function.
\end{definition}
A $\psi$-function is called \emph{redescending} if $\psi(x) = 0$ for
all $x \ge x_r$ for $x_r < \infty$, and $x_r$ is often called
\emph{rejection point}. Corresponding to a redescending
$\psi$-function, we define the function $\tilde\rho$, a version of $\rho$
standardized such as to attain maximum value one. Formally,
\begin{equation}
\label{eq:tilde-rho}
\tilde\rho(x) = \rho(x)/\rho(\infty).
\end{equation}
Note that $\rho(\infty) = \rho(x_r) \equiv \rho(x) \ \forall \abs{x} >= x_r$.
$\tilde\rho$ is a $\rho$-function as defined in
\citet{MarRMY06} and has been called $\chi$ function in other contexts. For
example, in package \pkg{robustbase}, \code{Mchi(x, *)} computes
$\tilde\rho(x)$, whereas \code{Mpsi(x, *, deriv=-1)}
(``(-1)-st derivative'' is the primitive or antiderivative) computes $\rho(x)$,
both according to the above definitions.
\textbf{Note:} An alternative slightly more general definition of
\emph{redescending} would only require $\rho(\infty) :=
\lim_{x\to\infty}\rho(x)$ to be finite. E.g., \texttt{"Welsh"} does \emph{not} have a finite
rejection point, but \emph{does} have bounded $\rho$, and hence well defined
$\rho(\infty)$, and we \emph{can} use it in
\texttt{lmrob()}.\footnote{E-mail Oct.~18, 2014 to Manuel and Werner,
proposing to change the definition of ``redescending''.}
%% \section{Weak Redescenders}
%% \subsection{t_nu score functions}
%% t_1 (=Cauchy) has been propagated as "Lorentzian merit function"
%% regression for outlier detection
\paragraph{Weakly redescending $\psi$ functions.}\
Note that the above definition does require a finite rejection point $x_r$. Consequently,
e.g., the score function $s(x) = -f'(x)/f(x)$ for the Cauchy ($= t_1$)
distribution, which is $s(x) = 2x/(1+x^2)$ and hence non-monotone and ``re
descends'' to 0 for $x\to \pm\infty$, and $\psi_C(x) := s(x)/2$ also
fulfills ${\psi_C}'(0) = 1$, but it has $x_r=\infty$ and hence $\psi_C()$
is \emph{not} a redescending $\psi$-function in our sense.
As they appear e.g. in the MLE for $t_\nu$, we call $\psi$-functions fulfulling
$\lim_{x\to\infty}\psi(x) = 0$ \emph{weakly redescending}.
Note that they'd naturally fall into two sub categories, namely the one
with a \emph{finite} $\rho$-limit, i.e. $\rho(\infty) :=
\lim_{x\to\infty}\rho(x)$, and those, as e.g., the $t_\nu$ score functions
above, for which $\rho(x)$ is unbounded even though $\rho' = \psi$ tends to zero.
%% --> ../../TODO section 'Psi/Rho/Chi/Wgt Functions'
%% ~~~~~~~~~~
%%
%% FIXME: where?? MM: can no longer find it in Hampel et al(1986) \citet{hamfrrs86}.
%% FIXME: 0) Mention our psi_func class // and the C interface for "the other" functions
%% ----- i.e., we currently have *both* and in addition there is all
%% the (to be *deprecated* !) ../R/biweight-funs.R (& ../man/tukeyChi.Rd & ../man/tukeyPsi1.Rd)
%%
%% FIXME: 1) explain plot(<psiFun>) {the plot method of psi_func}
%% FIXME: 2) Show how to compute asymptotic efficiency and breakdown point:
%% -------
%% a) end of ../../tests/psi-rho-etc.R has aeff.P() and bp.P() and chkP()
%% which now uses the psi_func class to compute these *analytically*
%% b) Of course, Manuel had used the numeric integration only,
%% in ../../R/lmrob.MM.R, lmrob.efficiency(psi, cc, ...) and lmrob.bp(psi, cc, ...)
%% ~~~~~~~~~~~~~~~~~~
%% c) *REALLY* nice general solution is via PhiI() in ../../R/psi-rho-funs.R
%% for all piecewise polynomial psi()/rho() ~~~~~~~~~~~~~~~~~~~~~~
%%\clearpage
\section{Monotone \texorpdfstring{$\psi$}{psi}-Functions}
Montone $\psi$-functions lead to convex $\rho$-functions such that the
corresponding M-estimators are defined uniquely.
Historically, the ``Huber function'' has been the first $\psi$-function,
proposed by Peter Huber in \citet{HubP64}.
\clearpage
\subsection{Huber}
The family of Huber functions is defined as,
\begin{align*}
\rho_k(x) = {}& \left\{ \begin{array}{ll}
\frac{1}{2} x^2 & \mbox{ if } \abs{x} \leq k \\
k(\abs{x} - \frac{k}{2})& \mbox{ if } \abs{x} > k
\end{array} \right. \;,\\
\psi_k(x) = {} & \left\{ \begin{array}{ll}
x & \mbox{ if } \abs{x} \leq k \\
k \ \sign(x)& \mbox{ if } \abs{x} > k
%% -k & \mbox{ if } x < -k \\
%% k & \mbox{ if } x > k
\end{array} \right. \;.
\end{align*}
The constant $k$ for $95\%$ efficiency of the regression estimator is
$1.345$.
\begin{figure}[h]
\centering
<<Huber, echo=TRUE>>=
plot(huberPsi, x., ylim=c(-1.4, 5), leg.loc="topright", main=FALSE)
@
\caption{Huber family of functions using tuning parameter $k = 1.345$.}
\end{figure}
\bigskip
\section{Redescenders}
For the MM-estimators and their generalizations available via
\texttt{lmrob()} (and for some methods of \texttt{nlrob()}),
the $\psi$-functions are all redescending, i.e., with finite ``rejection point''
$x_r = \sup\{t; \psi(t) > 0\} < \infty$.
From \texttt{lmrob}, the psi functions are available via
\texttt{lmrob.control}, or more directly, \texttt{.Mpsi.tuning.defaults},
<<lmrob-psi, echo=TRUE,fig=FALSE>>=
names(.Mpsi.tuning.defaults)
@ %$
and their $\psi$, $\rho$, $\psi'$, and weight function $w(x) := \psi(x)/x$,
are all computed efficiently via C code, and are defined and visualized in
the following subsections.
\clearpage
\subsection{Bisquare}
Tukey's bisquare (aka ``biweight'') family of functions is defined as,
\begin{equation*}
\tilde\rho_k(x) = \left\{ \begin{array}{cl}
1 - \bigl(1 - (x/k)^2 \bigr)^3 & \mbox{ if } \abs{x} \leq k \\
1 & \mbox{ if } \abs{x} > k
\end{array} \right.\;,
\end{equation*}
with derivative ${\tilde\rho_k}'(x) = 6\psi_k(x) / k^2$ where,
\begin{equation*}
\psi_k(x) = x \left( 1 - \left(\frac{x}{k}\right)^2\right)^2 \cdot I_{\{\abs{x} \leq k\}}\;.
\end{equation*}
The constant $k$ for $95\%$ efficiency of the regression estimator is
$4.685$ and the constant for a breakdown point of $0.5$ of the
S-estimator is $1.548$. Note that the \emph{exact} default tuning constants
for M- and MM- estimation in \pkg{robustbase} are available via \code{.Mpsi.tuning.default()}
and \code{.Mchi.tuning.default()}, respectively, e.g., here,
% \begin{small}
<<tuning-defaults, echo=TRUE,fig=FALSE>>=
print(c(k.M = .Mpsi.tuning.default("bisquare"),
k.S = .Mchi.tuning.default("bisquare")), digits = 10)
@
% \end{small}
and that the \code{p.psiFun(.)} utility is available via
%\begin{small}
<<note-p-psiFun, echo=TRUE, eval=FALSE>>=
<<source-p-psiFun>>
@
%\end{small}
%\enlargethispage{3ex}
\begin{figure}[h]
\centering
<<bisquare, echo=TRUE>>=
p.psiFun(x., "biweight", par = 4.685)
@
\caption{Bisquare family functions using tuning parameter $k = 4.685$.}
\end{figure}
\clearpage
\subsection{Hampel}
The Hampel family of functions \citep{hamfrrs86} is defined as,
\begin{align*}
\tilde\rho_{a, b, r}(x) ={}& \left\{ \begin{array}{ll}
\frac{1}{2} x^2 / C & \abs{x} \leq a \\
\left( \frac{1}{2}a^2 + a(\abs{x}-a)\right) / C & a < \abs{x} \leq b \\
\frac{a}{2}\left( 2b - a + (\abs{x} - b)
\left(1 + \frac{r - \abs{x}}{r-b}\right) \right) / C
& b < \abs{x} \leq r \\
1 & r < \abs{x}
\end{array} \right. \;, \\
\psi_{a, b, r}(x) ={}& \left\{ \begin{array}{ll}
x & \abs{x} \leq a \\
a \ \sign(x) & a < \abs{x} \leq b \\
a \ \sign(x) \frac{r - \abs{x}}{r - b}& b < \abs{x} \leq r \\
0 & r < \abs{x}
\end{array} \right.\;,
\end{align*}
where $ C := \rho(\infty) = \rho(r)
= \frac{a}{2}\left( 2b - a + (r - b) \right)
= \frac{a}{2}(b-a + r)$.
As per our standardization, $\psi$ has slope $1$ in the center.
The slope of the redescending part ($x\in[b,r]$) is $-a/(r-b)$.
If it is set to $-\frac 1 2$, as recommended sometimes, one has
\begin{equation*}
r = 2a + b\;.
\end{equation*}
Here however, we restrict ourselves to $a = 1.5 k$, $b = 3.5 k$, and $r = 8k$,
hence a redescending slope of $-\frac 1 3$, and vary $k$ to get the desired
efficiency or breakdown point.
The constant $k$ for $95\%$ efficiency of the regression estimator is
$0.902$ (0.9016085, to be exact) and the one for a breakdown point of $0.5$
of the S-estimator is $0.212$ (i.e., 0.2119163).
%% --> ../R/lmrob.MM.R, .Mpsi.tuning.defaults .Mchi.tuning.defaults
\begin{figure}[h]
\centering
<<Hampel>>=
## see also hampelPsi
p.psiFun(x., "Hampel", par = ## Default, but rounded:
round(c(1.5, 3.5, 8) * 0.9016085, 1))
@
\caption{Hampel family of functions using tuning parameters $0.902 \cdot (1.5, 3.5, 8)$.}
\end{figure}
\clearpage
\subsection{GGW}\label{ssec:ggw}
The Generalized Gauss-Weight function, or \emph{ggw} for short, is a
generalization of the Welsh $\psi$-function (subsection
\ref{ssec:Welsh}). In \citet{ks2011} it is defined as,
\begin{equation*}
%% \label{eq:ggw}
\psi_{a, b, c}(x) = \left\{
\begin{array}{ll}
x & \abs{x} \leq c \\
\exp\left(-\frac{1}{2}\frac{(\abs{x} - c)^b}{a}\right)x & \abs{x} > c
\end{array} \right. \;.
\end{equation*}
Our constants, fixing $b=1.5$, and minimial slope at $- \frac 1 2$,
for $95\%$ efficiency of the regression estimator
are $a = 1.387$, $b = 1.5$ and $c = 1.063$, and those for a breakdown point of $0.5$ of the S-estimator
are $a = 0.204$, $b = 1.5$ and $c = 0.296$:
<<GGW-const, echo=TRUE, fig=FALSE>>=
cT <- rbind(cc1 = .psi.ggw.findc(ms = -0.5, b = 1.5, eff = 0.95 ),
cc2 = .psi.ggw.findc(ms = -0.5, b = 1.5, bp = 0.50)); cT
@
Note that above, \code{cc*[1]}$= 0$, \code{cc*[5]}$ = \rho(\infty)$, and
\code{cc*[2:4]}$ = (a, b, c)$. To get this from $(a,b,c)$, you could use
<<rhoInf-ggw, echo=TRUE, fig=FALSE>>=
ipsi.ggw <- .psi2ipsi("GGW") # = 5
ccc <- c(0, cT[1, 2:4], 1)
integrate(.Mpsi, 0, Inf, ccc=ccc, ipsi=ipsi.ggw)$value # = rho(Inf)
@
\begin{figure}[h]
\centering
<<GGW, echo=TRUE>>=
p.psiFun(x., "GGW", par = c(-.5, 1, .95, NA))
@
\caption{GGW family of functions using tuning parameters $a=1.387$, $b=1.5$
and $c=1.063$.}
\end{figure}
\clearpage
\subsection{LQQ}
The ``linear quadratic quadratic'' $\psi$-function, or \emph{lqq} for short,
was proposed by \citet{ks2011}. It is defined as,
\begin{equation*}
\psi_{b,c,s}(x) = \left\{
\begin{array}{ll}
x & \abs{x} \leq c \\
\sign(x)\left(\abs{x} - \frac{s}{2b}\left(\abs{x} - c\right)^2
\right)
& c < \abs{x} \leq b + c \\
\sign(x)\left(c+b-\frac{bs}{2} + \frac{s-1}{a}
\left(\frac{1}{2}\tilde x^2 - a\tilde x\right)
\right) &
b + c < \abs{x} \leq a + b + c \\
0 & \mbox{otherwise,}
\end{array} \right.
\end{equation*}
where
\begin{equation}
\tilde x := \abs{x} - b - c \ \ \mathrm{and}\ \ a := (2c + 2b - bs)/(s-1).\label{lqq.a}
\end{equation}
The parameter $c$ determines the width of the central identity part. The
sharpness of the bend is adjusted by $b$ while the maximal rate of descent
is controlled by $s$ ($s = 1 - \min_x\psi'(x) > 1$). From (\ref{lqq.a}),
the length $a$ of the final descent to $0$ is a function of $b$, $c$ and $s$.
<<lqq-const, echo=TRUE, fig=FALSE>>=
cT <- rbind(cc1 = .psi.lqq.findc(ms= -0.5, b.c = 1.5, eff=0.95, bp=NA ),
cc2 = .psi.lqq.findc(ms= -0.5, b.c = 1.5, eff=NA , bp=0.50))
colnames(cT) <- c("b", "c", "s"); cT
@
If the minimal slope is set to $-\frac 1 2$, i.e., $s = 1.5$, and $b/c = 3/2 = 1.5$,
the constants for $95\%$ efficiency of the regression estimator are
$b=1.473$, $c=0.982$ and $s=1.5$, and those for a breakdown point of $0.5$ of the S-estimator are
$b=0.402$, $c=0.268$ and $s=1.5$.
\begin{figure}[h]
\centering
<<LQQ, echo=TRUE>>=
p.psiFun(x., "LQQ", par = c(-.5,1.5,.95,NA))
@
\caption{LQQ family of functions using tuning parameters $b=1.473$,
$c=0.982$ and $s=1.5$.}
\end{figure}
\clearpage
\subsection{Optimal}
The optimal $\psi$ function as given by \citet[Section~5.9.1]{MarRMY06},
\begin{equation*}
\psi_c(x) = \sign(x)\left(-\frac{\varphi'(\abs{x}) + c}
{\varphi(\abs{x})}\right)_+\;,
\end{equation*}
where $\varphi$ is the standard normal density, $c$ is a constant and $t_+ :=
\max(t, 0)$ denotes the positive part of $t$.
Note that the \pkg{robustbase} implementation uses rational approximations
originating from the \pkg{robust} package's implementation.
That approximation also avoids an anomaly for small $x$ and has a very
different meaning of $c$.
The constant for $95\%$ efficiency of the regression estimator is $1.060$ and
the constant for a breakdown point of $0.5$ of the S-estimator is $0.405$.
\begin{figure}[h]
\centering
<<optimal>>=
p.psiFun(x., "optimal", par = 1.06, leg.loc="bottomright")
@
\caption{`Optimal' family of functions using tuning parameter $c = 1.06$.}
\end{figure}
\clearpage
\subsection{Welsh}\label{ssec:Welsh}
The Welsh $\psi$ function is defined as, %% FIXME: REFERENCE MISSING
%\def\xk{\frac{x}{k}}
\def\xk{x/k}
%\def\xkdt{-\frac{1}{2}\left(\xk\right)^2}
\def\xkdt{- \left(\xk\right)^2 / 2}
\begin{align*}
\tilde\rho_k(x) ={}& 1 - \exp\bigl(\xkdt\bigr) \\
\psi_k(x) ={}& k^2\tilde\rho'_k(x) = x\exp\bigl(\xkdt\bigr) \\
\psi'_k(x) ={}& \bigl(1 - \bigl(\xk\bigr)^2\bigr) \exp\bigl(\xkdt\bigr)
\end{align*}
The constant $k$ for $95\%$ efficiency of the regression estimator is $2.11$ and
the constant for a breakdown point of $0.5$ of the S-estimator is $0.577$.
Note that GGW (subsection \ref{ssec:ggw}) is a 3-parameter generalization
of Welsh, matching for $ b = 2 $, $ c = 0 $, and $ a = k^2$ (see R code there):
<<Welsh-GGW, echo=TRUE, fig=FALSE>>=
ccc <- c(0, a = 2.11^2, b = 2, c = 0, 1)
(ccc[5] <- integrate(.Mpsi, 0, Inf, ccc=ccc, ipsi = 5)$value) # = rho(Inf)
stopifnot(all.equal(Mpsi(x., ccc, "GGW"), ## psi[ GGW ](x; a=k^2, b=2, c=0) ==
Mpsi(x., 2.11, "Welsh")))## psi[Welsh](x; k)
@
\begin{figure}[h]
\centering
<<Welsh>>=
p.psiFun(x., "Welsh", par = 2.11)
@
\caption{Welsh family of functions using tuning parameter $k = 2.11$.}
\end{figure}
\bibliographystyle{chicago}
\bibliography{robustbase}
\end{document}
|