File: AAA.R

package info (click to toggle)
robustbase 0.99-6-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 4,584 kB
  • sloc: fortran: 3,245; ansic: 3,243; sh: 15; makefile: 2
file content (154 lines) | stat: -rw-r--r-- 5,285 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

## if(getRversion() < "2.13") {
##     nobs <- function (object, ...) UseMethod("nobs")
##     ## also used for mlm fits  *and* lmrob :
##     nobs.lm <- function(object, ...)
## 	if(!is.null(w <- object$weights)) sum(w != 0) else NROW(object$residuals)
##     ## for glmrob :
##     nobs.glm <- function(object, ...) sum(!is.na(object$residuals))
## }

## Here and in NAMESPACE:
if(getRversion() < "3.1.0") {

## cut'n'paste from R's source src/library/stats/R/confint.R
format.perc <- function(probs, digits)
    ## Not yet exported, maybe useful in other contexts:
    ## quantile.default() sometimes uses a version of it
    paste(format(100 * probs, trim = TRUE, scientific = FALSE, digits = digits),
	  "%")

confint.lm <- function(object, parm, level = 0.95, ...)
{
    cf <- coef(object)
    pnames <- names(cf)
    if(missing(parm)) parm <- pnames
    else if(is.numeric(parm)) parm <- pnames[parm]
    a <- (1 - level)/2
    a <- c(a, 1 - a)
    fac <- qt(a, object$df.residual) # difference from default method
    pct <- format.perc(a, 3)
    ci <- array(NA, dim = c(length(parm), 2L),
		dimnames = list(parm, pct))
    ses <- sqrt(diag(vcov(object)))[parm] # gives NA for aliased parms
    ci[] <- cf[parm] + ses %o% fac
    ci
}

## cut'n'paste from R's source src/library/stats/R/dummy.coef.R
dummy.coef.lm <- function(object, use.na=FALSE, ...)
{
    Terms <- terms(object)
    tl <- attr(Terms, "term.labels")
    int <- attr(Terms, "intercept")
    facs <- attr(Terms, "factors")[-1, , drop=FALSE]
    Terms <- delete.response(Terms)
    vars <- all.vars(Terms)
    xl <- object$xlevels
    if(!length(xl)) {			# no factors in model
	return(as.list(coef(object)))
    }
    nxl <- setNames(rep.int(1, length(vars)), vars)
    tmp <- unlist(lapply(xl, length)) ## ?? vapply(xl, length, 1L)
    nxl[names(tmp)] <- tmp
    lterms <- apply(facs, 2L, function(x) prod(nxl[x > 0]))
    nl <- sum(lterms)
    args <- setNames(vector("list", length(vars)), vars)
    for(i in vars)
	args[[i]] <- if(nxl[[i]] == 1) rep.int(1, nl)
	else factor(rep.int(xl[[i]][1L], nl), levels = xl[[i]])
    dummy <- do.call("data.frame", args)
    pos <- 0
    rn <- rep.int(tl, lterms)
    rnn <- rep.int("", nl)
    for(j in tl) {
	i <- vars[facs[, j] > 0]
	ifac <- i[nxl[i] > 1]
	if(length(ifac) == 0L) {        # quantitative factor
	    rnn[pos+1] <- j
	} else if(length(ifac) == 1L) {	# main effect
	    dummy[ pos+1L:lterms[j], ifac ] <- xl[[ifac]]
	    rnn[ pos+1L:lterms[j] ] <- as.character(xl[[ifac]])
	} else {			# interaction
	    tmp <- expand.grid(xl[ifac])
	    dummy[ pos+1L:lterms[j], ifac ] <- tmp
	    rnn[ pos+1L:lterms[j] ] <-
		apply(as.matrix(tmp), 1L, function(x) paste(x, collapse=":"))
	}
	pos <- pos + lterms[j]
    }
    ## some terms like poly(x,1) will give problems here, so allow
    ## NaNs and set to NA afterwards.
    mf <- model.frame(Terms, dummy, na.action=function(x)x, xlev=xl)
    mm <- model.matrix(Terms, mf, object$contrasts, xl)
    if(any(is.na(mm))) {
        warning("some terms will have NAs due to the limits of the method")
        mm[is.na(mm)] <- NA
    }
    coef <- object$coefficients
    if(!use.na) coef[is.na(coef)] <- 0
    asgn <- attr(mm,"assign")
    res <- setNames(vector("list", length(tl)), tl)
    for(j in seq_along(tl)) {
	keep <- asgn == j
	ij <- rn == tl[j]
	res[[j]] <-
	    setNames(drop(mm[ij, keep, drop=FALSE] %*% coef[keep]), rnn[ij])
    }
    if(int > 0) {
	res <- c(list("(Intercept)" = coef[int]), res)
    }
    class(res) <- "dummy_coef"
    res
}

}# if R <= 3.1.0

## Not exported; used for faster checking, e.g., on CRAN
doExtras <- function() {
    interactive() || nzchar(Sys.getenv("R_robustbase_check_extra")) ||
        identical("true", unname(Sys.getenv("R_PKG_CHECKING_doExtras")))
}

if(getRversion() < "3.5") {
    isTRUE  <- function(x) is.logical(x) && length(x) == 1L && !is.na(x) && x
    isFALSE <- function(x) is.logical(x) && length(x) == 1L && !is.na(x) && !x
    if(getRversion() < "3.3") {
	sigma <- function(object, ...) UseMethod("sigma")
	## For completeness, and when comparing with nlrob() results:
	sigma.nls <- function(object, ...)
	    ## sqrt (  sum( R_i ^ 2) / (n - p) ) :
	    sqrt( deviance(object) / (nobs(object) - length(coef(object))) )
    }
}


## shortcut -- used often in print() etc:
pasteK <- function(...) paste(..., collapse = ", ")

## stopifnot(..) helper :
is.1num <- function(x) is.numeric(x) && length(x) == 1L

##' return 'x' unless it is NULL where you'd use 'orElse'
`%||%` <- function(x, orElse) if(!is.null(x)) x else orElse

##' Augment a vcov-matrix by NA rows & cols when needed; from */R/src/library/stats/R/vcov.R
.vcov.aliased <-
    asNamespace("stats")$.vcov.aliased %||%
    function(aliased, vc, complete = TRUE) {
        ## Checking for "NA coef": "same" code as in print.summary.lm() in ./lm.R :
        if(complete && nrow(vc) < (P <- length(aliased)) && any(aliased)) {
            ## add NA rows and columns in vcov
            cn <- names(aliased)
            VC <- matrix(NA_real_, P, P, dimnames = list(cn,cn))
            j <- which(!aliased)
            VC[j,j] <- vc
            VC
        } else  # default
            vc
    }


## e.g. for once-per-session warnings:
.optEnv <- new.env(parent = emptyenv(), hash = FALSE)