1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
#### http://www.econ.kuleuven.be/public/NDBAE06/programs/roblog/ :
####
#### August 06, 2010 2:14 PM 9121 BYlogreg.r.txt == BYlogreg.R (*this* original)
#### May 04, 2005 9:24 AM 6702 BYlogreg.txt == BYlogreg.R.~2005~
#### May 04, 2005 9:25 AM 6720 WBYlogreg.txt == WBYlogreg.R
####
#### Sep. 27, 2017: available at
####
#### NB: Splus original Version of this file: BYlogreg.ssc in the
#### -- in FunctionsRob/ (from FunctionsRob.zip) from Wiley's book supplements
#### http://www.wiley.com/legacy/wileychi/robust_statistics/robust.html
#### see my ../misc/MMY-book/Wiley-supplements/FunctionsRob/BYlogreg.ssc
## Computation of the estimator of Bianco and Yohai (1996) in logistic regression
## -------------
## Christophe Croux, Gentiane Haesbroeck
## (thanks to Kristel Joossens and Valentin Todorov for improving the code) -
## ==> Now "contains" both the *weighted* and regular, unweighted BY-estimator
##
## This program computes the estimator of Bianco and Yohai in
## logistic regression. By default, an intercept term is included
## and p parameters are estimated.
##
## For more details we refer to
## Croux, C., and Haesbroeck, G. (2003),
## ``Implementing the Bianco and Yohai estimator for Logistic Regression'',
## Computational Statistics and Data Analysis, 44, 273-295
##
## Changes by Martin Maechler, ---> ../man/BYlogreg.Rd
## ------------------
BYlogreg <- function(x0, y, initwml=TRUE, # w.x=NULL,
addIntercept=TRUE,
const=0.5, kmax = 1000, maxhalf = 10,
sigma.min = 1e-4, trace.lev=0)
{
if(!is.numeric(y))
y <- as.numeric(y)
## if(!is.null(w.x))
## warning("x weights 'w.x' are not yet made use of")
if(!is.null(dim(y))) {
if(ncol(y) != 1)
stop("y is not onedimensional")
y <- as.vector(y)
}
n <- length(y)
if(is.data.frame(x0)) {
x0 <- data.matrix(x0)
} else if (!is.matrix(x0)) {
x0 <- matrix(x0, length(x0), 1,
dimnames = list(names(x0), deparse(substitute(x0))))
}
if(nrow(x0) != n)
stop("Number of observations in x and y not equal")
na.x <- !is.finite(rowSums(x0))
na.y <- !is.finite(y)
ok <- !(na.x | na.y)
if(!all(ok)) {
x0 <- x0[ok, , drop = FALSE]
y <- y [ok] # y[ok, , drop = FALSE]
}
if(addIntercept) {
x <- cbind("Intercept" = 1, x0)
} else { # x0 := x without the "intercept column"
x <- x0
all1 <- apply(x == 1, 2, all)
if(any(all1))
x0 <- x[,!all1, drop = FALSE]
else message("no intercept in the model")
}
dx <- dim(x)
n <- dx[1]
if(n == 0)
stop("All observations have missing values!")
p <- dx[2] # == ncol(x)
family <- binomial()
## Computation of the initial value of the optimization process
gstart <-
if(initwml) {
###_ FIXME: Should allow many more schemes:
###_ 1) using MVE with much less singular cases
###_ 2) Instead of {0,1}-weighting with cutoff, w/ weights --> 0 *continuously*
### --> glm() with "prior" weights instead of 'subset'
## hp <- floor(n*(1-0.25))+1
## mcdx <- cov.mcd(x0, quantile.used =hp,method="mcd")
## rdx=sqrt(mahalanobis(x0,center=mcdx$center,cov=mcdx$cov))
## mcdx <- CovMcd(x0, alpha=0.75)
## rdx <- sqrt(getDistance(mcdx))
mcd <- covMcd(x0, alpha=0.75)
## ----- FIXME: argument!
D <- sqrt( mahalanobis(mcd$X, mcd$center, mcd$cov) )
vc <- sqrt(qchisq(0.975, p-1))
## ----- FIXME: 'vc' should be argument!
wrd <- D <= vc
### FIXME_2: use weights and "weights.on.x' as in Mqle ( ./glmrobMqle.R )
## glm(y~x0, family=binomial, subset = wrd)$coef
glm.fit(x[wrd,,drop=FALSE], y[wrd], family=family)$coef
} else {
glm.fit(x, y, family=family)$coef
}
sigma1 <- 1/sqrt(sum(gstart^2))
xistart <- gstart*sigma1
stscores <- x %*% xistart
## Initial value for the objective function
oldobj <- mean(phiBY3(stscores/sigma1, y, const))
converged <- FALSE
kstep <- 1L
while(kstep < kmax && !converged)
{
unisig <- function(sigma) mean(phiBY3(stscores/sigma, y, const))
## ------
optimsig <- nlminb(sigma1, unisig, lower=0)# "FIXME" arguments to nlminb()
## ======
if(trace.lev) cat(sprintf("k=%2d, s1=%12.8g: => new s1= %12.8g",
kstep, sigma1, optimsig$par))# MM: jhalf =!?= 1 here ??
sigma1 <- optimsig$par
if(sigma1 < sigma.min) {
if(trace.lev) cat("\n")
warning(gettextf("Implosion: sigma1=%g became too small", sigma1))
kstep <- kmax #-> *no* convergence
} else {
## gamma1 <- xistart/sigma1
scores <- stscores/sigma1
newobj <- mean(phiBY3(scores, y,const))
oldobj <- newobj
grad.BY <- colMeans((derphiBY3(scores,y,const) %*% matrix(1,ncol=p))*x)
h <- -grad.BY + c(grad.BY %*% xistart) * xistart
finalstep <- h/sqrt(sum(h^2))
if(trace.lev) {
if(trace.lev >= 2) cat(sprintf(", obj=%12.9g: ", oldobj))
cat("\n")
}
## FIXME repeat { ... } {{next 4 lines are also inside while(..) below}}
xi1 <- xistart+finalstep
xi1 <- xi1/sum(xi1^2)
scores1 <- (x %*% xi1)/sigma1
newobj <- mean(phiBY3(scores1,y,const))
## If 'newobj' is not better, try taking a smaller step size:
hstep <- 1.
jhalf <- 1L
while(jhalf <= maxhalf & newobj > oldobj)
{
hstep <- hstep/2
xi1 <- xistart+finalstep*hstep
xi1 <- xi1/sqrt(sum(xi1^2))
scores1 <- x %*% xi1/sigma1
newobj <- mean(phiBY3(scores1,y,const))
if(trace.lev >= 2)
cat(sprintf(" jh=%2d, hstep=%13.8g => new obj=%13.9g\n",
jhalf, hstep, newobj))
jhalf <- jhalf+1L
}
converged <-
not.improved <- (jhalf > maxhalf && newobj > oldobj)
if(not.improved) {
## newobj is "worse" and step halving did not improve
message("Convergence Achieved")
} else {
jhalf <- 1L
xistart <- xi1
oldobj <- newobj
stscores <- x %*% xi1
kstep <- kstep+1L
}
}
} ## while( kstep )
if(kstep == kmax) {
warning(gettextf("No convergence in %d steps.", kstep), domain=NA)
list(convergence=FALSE, objective=0, coefficients= rep(NA,p))
} else {
gammaest <- xistart/sigma1
V <- vcovBY3(x, y, const, estim=gammaest, addIntercept=FALSE)
list(convergence=TRUE, objective=oldobj, coefficients=gammaest,
cov = V, sterror = sqrt(diag(V)),
iter = kstep)
}
}
### -- FIXME: nlminb() allows many tweaks !!
### -- ----- but we use nlminb() for ONE-dim. minimization over { sigma >= 0 } - really??
## MM: my version would rather use optimize() over over log(sigma)
glmrobBY.control <-
function(maxit = 1000, const = 0.5, maxhalf = 10)
## FIXME: sigma.min
## MM: 'acc' seems a misnomer to me, but it's inherited from MASS::rlm
## TODO acc = 1e-04, test.acc = "coef", tcc = 1.345)
{
## if (!is.numeric(acc) || acc <= 0)
## stop("value of acc must be > 0")
## if (test.acc != "coef")
## stop("Only 'test.acc = \"coef\"' is currently implemented")
## if (!(any(test.vec == c("coef", "resid"))))
## stop("invalid argument for test.acc")
if(!is.numeric(maxit) || maxit <= 0)
stop("maximum number of \"kstep\" iterations must be > 0")
if(!is.numeric(maxhalf) || maxhalf <= 0)
stop("maximal number of *inner* step halvings must be > 0")
## if (!is.numeric(tcc) || tcc <= 0)
## stop("value of the tuning constant c (tcc) must be > 0")
if(!is.numeric(const) || const <= 0)
stop("value of the tuning constant c ('const') must be > 0")
list(## acc = acc, consttest.acc = test.acc,
const=const,
maxhalf=maxhalf,
maxit=maxit #, tcc = tcc
)
}
##' @param intercept logical, if true, X[,] has an intercept column which should
##' not be used for rob.wts
glmrobBY <- function(X, y,
weights = NULL, start = NULL, offset = NULL,
method = c("WBY","BY"), weights.on.x = "none",
control = glmrobBY.control(...), intercept = TRUE,
trace.lev = 0, ...)
{
### THIS is *NOT* exported
method <- match.arg(method)
if(!is.null(weights) || any(weights != 1)) ## FIXME (?)
stop("non-trivial prior 'weights' are not yet implemented for \"BY\"")
if(!is.null(start))
stop(" 'start' cannot yet be passed to glmrobBY()")
if(!is.null(offset))
stop(" 'offset' is not yet implemented for \"BY\"")
const <- if(is.null(cc <- control$const )) 0.5 else cc
kmax <- if(is.null(cc <- control$maxit )) 1e3 else cc
maxhalf <- if(is.null(cc <- control$maxhalf)) 10 else cc
if(!identical(weights.on.x, "none"))
stop(gettextf("'weights.on.x = \"%s\"' is not implemented",
format(weights.on.x)), domain=NA)
## w.x <- robXweights(weights.on.x, X=X, intercept=intercept)
##
## MM: all(?) the BY3() functions below would need to work with weights...
r <- BYlogreg(x0=X, y=y, initwml = (method == "WBY"), ## w.x=w.x,
addIntercept = !intercept, ## add intercept if there is none
const=const, kmax=kmax, maxhalf=maxhalf,
## FIXME sigma.min (is currently x-scale dependent !????)
trace.lev=trace.lev)
## FIXME: make result more "compatible" with other glmrob() methods
r
}
### Functions needed for the computation of estimator of Bianco and Yohai ----------------------
## From their paper:
## A last remark is worth mentioning: when huge outliers occur in
## the logistic regression setting, often numerical imprecision occurs in the computation
## of the deviances given by
## d(s;y_i)= -y_i log F(s) - (1-y_i) log{1-F(s)} .
##
## Instead of directly computing this expression, it can be seen that a
## numerically more stable and accurate formula is given by
## log(1 + exp(-abs(s))) + abs(s)* ((y-0.5)*s < 0)
## in which the second term equals abs(s) if the observation is misclassified, 0 otherwise.
dev1 <- function(s,y) log(1+exp(-abs(s))) + abs(s)*((y-0.5)*s<0)
dev2 <- function(s,y) log1p(exp(-abs(s))) + abs(s)*((y-0.5)*s<0)
dev3 <- function(s,y) -( y * plogis(s, log.p=TRUE) +
(1-y)*plogis(s, lower.tail=FALSE, log.p=TRUE))
## MM[FIXME]: first tests indicate that dev3() is clearly more accurate than
## their dev1() !!
## MM{FIXME2}: In code below have (or "had") three cases of same formula, but
## with 's>0' instead of 's<0' : This is == dev?(-s, y) !!
## for now, 100% back-compatibility:
devBY <- dev1
rm(dev1, dev2, dev3)
## MM: This is from my vignette, but *not* used
log1pexp <- function(x) {
if(has.na <- any(ina <- is.na(x))) {
y <- x
x <- x[ok <- !ina]
}
t1 <- x <= 18
t2 <- !t1 & (tt <- x <= 33.3)
r <- x
r[ t1] <- log1p(exp(x[t1]))
r[ t2] <- { x2 <- x[t2]; x2 + exp(-x2) }
r[!tt] <- x[!tt]
if(has.na) { y[ok] <- r ; y } else r
}
phiBY3 <- function(s,y,c3)
{
s <- as.double(s)
## MM FIXME log(1 + exp(-.)) ... but read the note above !! ---
dev. <- devBY(s,y)
## FIXME: GBY3Fs() computes the 'dev' above *again*, and
## GBY3Fsm() does with 's>0' instead of 's<0'
rhoBY3(dev.,c3) + GBY3Fs(s,c3) + GBY3Fsm(s,c3)
}
rhoBY3 <- function(t,c3)
{
ec3 <- exp(-sqrt(c3))
t*ec3* (t <= c3) +
(ec3*(2+(2*sqrt(c3))+c3) - 2*exp(-sqrt(t))*(1+sqrt(t)))* (t > c3)
}
psiBY3 <- function(t,c3)
{
exp(-sqrt(c3)) *(t <= c3) +
exp(-sqrt( t)) *(t > c3)
}
## MM: This is shorter (but possibly slower when most t are <= c3 :
## psiBY3 <- function(t,c3) exp(-sqrt(pmax(t, c3)))
##' d/dt psi(t, c3)
derpsiBY3 <- function(t, c3)
{
r <- t
r[in. <- (t <= c3)] <- 0
if(any(out <- !in.)) {
t <- t[out]
st <- sqrt(t)
r[out] <- -exp(-st)/(2*st)
}
r
}
## MM: FIXME this is not used above
sigmaBY3 <- function(sigma,s,y,c3)
{
mean(phiBY3(s/sigma,y,c3))
}
derphiBY3 <- function(s,y,c3)
{
Fs <- exp(-devBY(s,1))
ds <- Fs*(1-Fs) ## MM FIXME: use expm1()
dev. <- devBY(s,y)
Gprim1 <- devBY(s,1)
Gprim2 <- devBY(-s,1)
-psiBY3(dev.,c3)*(y-Fs) + ds*(psiBY3(Gprim1,c3) - psiBY3(Gprim2,c3))
}
der2phiBY3 <- function(s, y, c3)
{
s <- as.double(s)
Fs <- exp(-devBY(s,1))
ds <- Fs*(1-Fs) ## MM FIXME: use expm1()
dev. <- devBY(s,y)
Gprim1 <- devBY(s,1)
Gprim2 <- devBY(-s,1)
der2 <- derpsiBY3(dev.,c3)*(Fs-y)^2 + ds*psiBY3(dev.,c3)
der2 <- der2+ ds*(1-2*Fs)*(psiBY3(Gprim1,c3) - psiBY3(Gprim2,c3))
der2 - ds*(derpsiBY3(Gprim1,c3)*(1-Fs) +
derpsiBY3(Gprim2,c3)* Fs )
}
GBY3Fs <- function(s,c3)
{
e.f <- exp(0.25)*sqrt(pi)
## MM FIXME: Fs = exp(..) and below use log(Fs) !!
Fs <- exp(-devBY(s,1))
resGinf <- e.f*(pnorm(sqrt(2)*(0.5+sqrt(-log(Fs))))-1)
## MM FIXME: use expm1():
resGinf <- (resGinf+(Fs*exp(-sqrt(-log(Fs)))))*as.numeric(s <= -log(exp(c3)-1))
resGsup <- ((Fs*exp(-sqrt(c3)))+(e.f*(pnorm(sqrt(2)*(0.5+sqrt(c3)))-1))) *
as.numeric(s > -log(exp(c3)-1))
resGinf + resGsup
}
GBY3Fsm <- function(s,c3)
{
e.f <- exp(0.25)*sqrt(pi)
## MM FIXME: Fsm = exp(..) and below use log(Fsm) !!
Fsm <- exp(-devBY(-s,1))
resGinf <- e.f*(pnorm(sqrt(2)*(0.5+sqrt(-log(Fsm))))-1)
## MM FIXME: use expm1():
resGinf <- (resGinf+(Fsm*exp(-sqrt(-log(Fsm))))) * as.numeric(s >= log(exp(c3)-1))
resGsup <- ((Fsm*exp(-sqrt(c3)))+(e.f*(pnorm(sqrt(2)*(0.5+sqrt(c3)))-1))) *
as.numeric(s < log(exp(c3)-1))
resGinf + resGsup
}
## Compute the standard erros of the estimates -
## this is done by estimating the asymptotic variance of the normal
## limiting distribution of the BY estimator - as derived in Bianco
## and Yohai (1996)
##
sterby3 <- function(x0, y, const, estim, addIntercept)
{
sqrt(diag(vcovBY3(x0, y, const=const, estim=estim, addIntercept=addIntercept)))
}
vcovBY3 <- function(z, y, const, estim, addIntercept)
{
stopifnot(length(dim(z)) == 2)
if(addIntercept) z <- cbind(1, z)
d <- dim(z)
n <- d[1]
p <- d[2]
argum <- z %*% estim
matM <- IFsqr <- matrix(0, p, p)
for(i in 1:n)
{
myscalar <- as.numeric(der2phiBY3(argum[i],y[i], c3=const))
zzt <- tcrossprod(z[i,])
matM <- matM + myscalar * zzt
IFsqr <- IFsqr + derphiBY3(argum[i],y[i], c3=const)^2 * zzt
}
matM <- matM/n
matMinv <- solve(matM)
IFsqr <- IFsqr/n
## Now, asymp.cov = matMinv %*% IFsqr %*% t(matMinv)
## provide vcov(): the full matrix
(matMinv %*% IFsqr %*% t(matMinv))/n
}
|