1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
####========== Pairwise methods for covariance / correlation =================
### From: Kjell Konis <konis@stats.ox.ac.uk>
### To: R-SIG-Robust@stat.math.ethz.ch, Ricardo Maronna ...
### Cc: Rand Wilcox ...
### Subject: Re: [RsR] [R] M-estimator R function question
### Date: Mon, 5 Dec 2005 10:29:11 +0000
### Here is an implementation of the OGK estimator completely in R. I
### haven't touched it for a while and I forget how thoroughly I tested
### it so use it with a bit of caution.
### http://www.stats.ox.ac.uk/~konis/pairwise.q
### --------------------------------------------
##-------------------------------------------------------------------------------
## Computes the orthogonalized pairwise covariance matrix estimate described in
## in Maronna and Zamar (2002).
## Use: pairwise(X, 2, gk.sigmamu, gk, hard.rejection) for the
## Gnanadesikan-Kettenring estimate.
## Alternatively, supply your own functions.
## MM replaced sweep(X, 1, .., '*') which is inefficient!
## == used crossprod() where appropriate
##
## I don't like the names gk.sigmamu() and gk(),
## "gk":= Gnanadesikan-Kettenring; particularly not for the Tau-estimator
## which is not at all related to G.-K.
## ---> replacements s/gk.sigmamu/scaleTau2/
## s/gk/covGK/
## -- also in the line of the many other cov*() functions I've renamed
## s/pairwise/covOGK/
## NOTA BENE: Is *now* consistent, since MM made scaleTau2() consistent
### Documentation -----> ../man/covOGK.Rd
## ============= ================
##' Compute the mahalanobis distances for *diagonal* var/cov matrix:
##' @param x n x p numeric data matrix
##' @param center numeric p-vector (or length 1 - is recycled) or FALSE
##' @param sd numeric p-vector of "standard deviations"
##' @examples all.equal(mahalanobisD(x, FALSE, sd),
##' mahalanobis (x, rep(0,p), diag(sd^2)))
mahalanobisD <- function(x, center, sd) {
## Compute the mahalanobis distances (for diagonal cov).
if(!isFALSE(center))
x <- sweep(x, 2L, center, check.margin=FALSE)
rowSums(sweep(x, 2L, sd, '/', check.margin=FALSE)^2)
}
covOGK <- function(X, n.iter = 2,
sigmamu,
rcov = covGK, weight.fn = hard.rejection,
keep.data = FALSE, ...)
{
stopifnot(n.iter >= 1)
call <- match.call()
X <- as.matrix(X)
p <- ncol(X)
if(p < 2) stop("'X' must have at least two columns")
Z <- X # as we use 'X' for the (re)weighting
U <- diag(p)
A <- list()
## Iteration loop.
for(iter in 1:n.iter) { ## only a few iterations
## Compute the vector of standard deviations d and
## the covariance matrix U.
d <- apply(Z, 2L, sigmamu, ...)
Z <- sweep(Z, 2L, d, '/', check.margin=FALSE)
for(i in 2:p) { # only need lower triangle of U
for(j in 1:(i - 1))
U[i, j] <- rcov(Z[ ,i], Z[ ,j], ...)
}
## Compute the eigenvectors of U and store them as columns of E:
## eigen(U, symmetric) only needs left/lower triangle
E <- eigen(U, symmetric = TRUE)$vectors
## Compute A and store it for each iteration
A[[iter]] <- d * E
## Project the data onto the eigenvectors
Z <- Z %*% E
}
## End of orthogonalization iterations.
## Compute the robust location and scale estimates for
## the transformed data.
sqrt.gamma <- apply(Z, 2L, sigmamu, mu.too = TRUE, ...)
center <- sqrt.gamma[1, ]
sqrt.gamma <- sqrt.gamma[2, ]
distances <- mahalanobisD(Z, center, sd=sqrt.gamma)
## From the inside out compute the robust location and
## covariance matrix estimates. See equation (5).
## MM[FIXME]: 1st iteration (often the only one!) can be made *much* faster
## -----
covmat <- diag(sqrt.gamma^2)
for(iter in n.iter:1) {
covmat <- A[[iter]] %*% covmat %*% t(A[[iter]])
center <- A[[iter]] %*% center
}
center <- as.vector(center)
## Compute the reweighted estimate. First, compute the
## weights using the user specified weight function.
weights <- weight.fn(distances, p, ...)
sweights <- sum(weights)
## Then compute the weighted location and covariance
## matrix estimates.
## MM FIXME 2 : Don't need any of this, if all weights == 1
## ----- (which is not uncommon) ==> detect that "fast"
wcenter <- colSums(X * weights) / sweights
Z <- sweep(X, 2L, wcenter, check.margin=FALSE) * sqrt(weights)
wcovmat <- crossprod(Z) / sweights
list(center = center,
cov = covmat,
wcenter = wcenter,
wcov = wcovmat,
weights = weights,
distances = distances,
n.iter = n.iter,
sigmamu = deparse(substitute(sigmamu)),
weight.fn = deparse(substitute(weight.fn)),
rcov = deparse(substitute(rcov)),
call = call,
## data.name = data.name,
data = if(keep.data) X)
}
## a version with weights and consistency (but only one tuning const!!)
## is in /u/maechler/R/other-people/Mspline/Mspline/R/scaleTau.R
##
scaleTau2 <- function(x, c1 = 4.5, c2 = 3.0, na.rm = FALSE, consistency = TRUE,
mu0 = median(x),
sigma0 = median(x.), # = MAD(x) {without consistency factor}
mu.too = FALSE, iter = 1, tol.iter = 1e-7)
{
if(na.rm)
x <- x[!is.na(x)]
n <- length(x)
x. <- abs(x - mu0)
stopifnot(is.numeric(sigma0), length(sigma0) == 1) # error, not NA ..
if(is.na(sigma0))# not needed (?) || (!na.rm && anyNA(x.)))
return(c(if(mu.too) mu0, sigma0))
if(sigma0 <= 0) { # no way to get tau-estim.
if(!missing(sigma0)) warning("sigma0 =", sigma0," ==> scaleTau2(.) = 0")
return(c(if(mu.too) mu0, 0))
}
stopifnot(iter >= 1, iter == as.integer(iter), # incl. iter=TRUE
is.numeric(tol.iter), tol.iter > 0)
nEs2 <-
if(!isFALSE(consistency)) {
Erho <- function(b)
## E [ rho_b ( X ) ] X ~ N(0,1)
2*((1-b^2)*pnorm(b) - b * dnorm(b) + b^2) - 1
Es2 <- function(c2)
## k^2 * E[ rho_{c2} (X' / k) ] , where X' ~ N(0,1), k= qnorm(3/4)
Erho(c2 * qnorm(3/4))
## the asymptotic E[ sigma^2(X) ] is Es2(c2), {Es2(3) ~= 0.925} :
## TODO: 'n-2' below will probably change; ==> not yet documented
## ---- ==> ~/R/MM/STATISTICS/robust/1d-scaleTau2-small.R
## and ~/R/MM/STATISTICS/robust/1d-scale.R
(if(consistency == "finiteSample") n-2 else n) * Es2(c2)
}
else n
sTau2 <- function(sig0) { # also depends on (x., x, c1,c2, Es2)
mu <-
if(c1 > 0) { # "bi-weight" {in a way that works also with x.=Inf}:
w <- pmax(0, 1 - (x. / (sig0 * c1))^2)^2
if(!is.finite(s.xw <- sum(x*w))) { ## x*w \-> NaN when (x,w) = (Inf,0)
wpos <- w > 0
w <- w[wpos]
s.xw <- sum(x[wpos]*w)
}
s.xw / sum(w)
}
else mu0
x <- (x - mu) / sig0
rho <- x^2
rho[rho > c2^2] <- c2^2
## return
c(m = mu,
## basically sqrt(sigma2) := sqrt( sigma0^2 / n * sum(rho) ) :
s = sig0 * sqrt(sum(rho)/nEs2))
} # { sTau2() }
s0 <- sigma0
if(isTRUE(iter)) iter <- 100000 # "Inf"
repeat {
m.s <- sTau2(s0)
s. <- m.s[["s"]]
if((iter <- iter - 1) <= 0 ||
is.na(s.) ||
abs(s. - s0) <= tol.iter * s.) break
s0 <- s. # and iterate further
}
## return
c(if(mu.too) m.s[["m"]], s.)
}
## Two other simple 'scalefun' to be used for covOGK;
## s_Qn(), s_Sn() are in ./qnsn.R
s_mad <- function(x, mu.too= FALSE, na.rm = FALSE) {
if (na.rm) x <- x[!is.na(x)]
mx <- median(x)
c(if(mu.too) mx, mad(x, center = mx))
}
s_IQR <- function(x, mu.too= FALSE, na.rm = FALSE) {
Qx <- quantile(x, (1:3)/4, na.rm = na.rm, names = FALSE)
c(if(mu.too) Qx[2], (Qx[3] - Qx[1]) * 0.5 * formals(mad)$constant)
}
covGK <- function(x, y, scalefn = scaleTau2, ...)
{
## Gnanadesikan-Kettenring's, based on 4*Cov(X,Y) = Var(X+Y) - Var(X-Y)
(scalefn(x + y, ...)^2 - scalefn(x - y, ...)^2) / 4
}
hard.rejection <- function(distances, p, beta = 0.9, ...)
{
d0 <- median(distances) * qchisq(beta, p) / qchisq(0.5, p)
wts <- double(length(distances))# == 0, but
wts[distances <= d0] <- 1.0
wts
}
##-- TODO "pairwise QC" ... etc
##--> ~maechler/R/MM/STATISTICS/robust/pairwise-new.R
|