1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
#### -*- mode: R; kept-new-versions: 30; kept-old-versions: 20 -*-
#### MC-adjusted Outlyingness
#### ------------------------
###
### Original code from the web site from the Antwerpen Statistics Group :
### http://www.agoras.ua.ac.be/Robustn.htm
### which has a "MC" section and for the software links to
### ftp://ftp.win.ua.ac.be/pub/software/agoras/newfiles/mc.tar.gz
### and that contains mcrsoft/adjoutlyingness.R
##_NEW_ (2014): moved from Antwerpen to Leuwen,
## ===> http://wis.kuleuven.be/stat/robust/software
## has several links to 'robustbase', and S-plus code
## http://wis.kuleuven.be/stat/robust/Programs/adjusted-boxplot/adjusted-boxplot.ssc
## (copy in ../misc/Adjusted-boxplot.ssc
## MM [ FIXME ]:
## -----------
## 1) Use *transposed* B[] and A[] (now called 'E') matrices -- DONE
## 2) use IQR() instead of quantile(., .75) - quantile(., .25)
##--> but only *after* testing original code
## ^^^^^^^^^^^^^^^^^^^^^^^^
adjOutlyingness <- function(x, ndir = 250, p.samp = p, clower=4, cupper=3,
IQRtype = 7,
alpha.cutoff = 0.75, coef = 1.5,
qr.tol = 1e-12, keep.tol = 1e-12,
only.outlyingness = FALSE, maxit.mult = max(100, p),
trace.lev = 0,
## these are all passed to mc() {when applied to the projected data}
mcReflect = n <= 100, mcScale = TRUE, mcMaxit = 2*maxit.mult,
mcEps1 = 1e-12, mcEps2 = 1e-15,
mcTrace = max(0, trace.lev-1))
## Skewness-Adjusted Outlyingness
{
x <- data.matrix(x)
n <- nrow(x)
p <- ncol(x)
stopifnot(n >= 1, p >= 1, p.samp >= p, is.numeric(x))
if (p <= n) {
B <- matrix(0, p, ndir)
E <- matrix(1, p.samp, 1)
x. <- unname(x) # for speed in subsequent subsetting and solve
maxit <- as.integer(maxit.mult * ndir)
## ^^ original code had 'Inf', i.e. no iter.count check;
## often, maxit == ndir would suffice
if(trace.lev >= 2) p10 <- 10 ^ max(0, min(6 - trace.lev, floor(log10(maxit))))
i <- 1L
it <- 0L
while (i <= ndir && (it <- it+1L) < maxit) {
## we sort to get *identical* projections instead of "almost"
P <- x.[sort(sample.int(n, p.samp)), , drop=FALSE]
if ((qrP <- qr(P, tol = qr.tol))$rank == p) {
B[,i] <- solve(qrP, E, tol = qr.tol)
## if(trace.lev >= 2) cat(" it=",it,"; found direction # ", i,"\n", sep="")
i <- i+1L
} else if(trace.lev >= 2) {
if(it %% p10 == 0)
cat(" it=",it,": rank(qr(P ..)) = ", qrP$rank, " < p = ",p,"\n", sep="")
}
}
if(it == maxit) {
rnk.x <- qr(x, tol = qr.tol)$rank
if(rnk.x < p)
stop("Matrix 'x' is not of full rank: rankM(x) = ",rnk.x," < p = ",p,
"\n Use fullRank(x) instead")
## else
stop("** direction sampling iterations were not sufficient. Maybe try increasing 'maxit.mult'")
}
Bnorm <- sqrt(colSums(B^2))
Nx <- mean(abs(x.)) ## so the comparison is scale-equivariant:
keep <- Bnorm*Nx > keep.tol
if(!all(keep)) {
if(trace.lev)
cat("keeping ", sum(keep), "(out of", length(keep),") normalized directions\n")
Bnorm <- Bnorm[ keep ]
B <- B[, keep , drop=FALSE]
} else if(trace.lev) cat("keeping *all* ",length(keep)," normalized directions\n")
B <- B / rep(Bnorm, each = nrow(B)) # normalized B {called 'A' in orig.code}
}
else {
stop('More dimensions than observations: not yet implemented')
## MM: In LIBRA(matlab) they have it implemented:
## seed=0;
## nrich1=n*(n-1)/2;
## ndirect=min(250,nrich1);
## true = (ndirect == nrich1);
## B=extradir(x,ndir,seed,true); % n*ri
## ======== % Calculates ndirect directions through
## % two random choosen data points from data
## for i=1:size(B,1)
## Bnorm(i)=norm(B(i,:),2);
## end
## Bnorm=Bnorm(Bnorm > 1.e-12); %ndirect*1
## B=B(Bnorm > 1.e-12,:); %ndirect*n
## A=diag(1./Bnorm)*B; %ndirect*n
}
## NB: colSums( B^2 ) == 1
Y <- x %*% B # (n x p) %*% (p, nd') == (n x nd');
## nd' = ndir.final := ndir - {those not in 'keep'}
## Compute and sweep out the median
med <- colMedians(Y)
if(trace.lev) {
cat("med <- colMedians(Y): ", length(med), " values; summary():\n")
print(summary(med))
}
Y <- Y - rep(med, each=n)
## central :<==> non-adjusted <==> "classical" outlyingness
central <- clower == 0 && cupper == 0
if(!central) {
## MM: mc() could be made faster if we could tell it that med(..) = 0
## vv
tmc <- apply(Y, 2L, mc, doReflect=mcReflect, doScale=mcScale,
maxit=mcMaxit, eps1=mcEps1, eps2=mcEps2, trace.lev = mcTrace)
## original Antwerpen *wrongly*: tmc <- mc(Y)
if(trace.lev) {
cat("Columnwise mc() got ", length(tmc), " values; summary():\n")
print(summary(tmc))
}
}
Q13 <- apply(Y, 2, quantile, c(.25, .75), names=FALSE, type = IQRtype)
Q1 <- Q13[1L,]; Q3 <- Q13[2L,]
IQR <- Q3 - Q1
## NOTA BENE(MM): simplified definition of tup/tlo here and below
## 2014-10-18: "flipped" sign (which Pieter Setaert (c/o Mia H) proposed, Jul.30,2014:
tup <- Q3 + coef*
(if(central) IQR else IQR*exp( cupper*tmc*(tmc >= 0) + clower*tmc*(tmc < 0)))
tlo <- Q1 - coef*
(if(central) IQR else IQR*exp(-clower*tmc*(tmc >= 0) - cupper*tmc*(tmc < 0)))
## Note: all(tlo < med & med < tup) # where med = 0
if(trace.lev >= 3) {
print( cbind(tlo, Q1, Q3, tup) )
}
## Instead of the loop:
## for (i in 1:ndir) {
## tup[i] <- max(Y[Y[,i] < tup[i], i])
## tlo[i] <- -min(Y[Y[,i] > tlo[i], i])
## ## MM: FIXED typo-bug : ^^^ this was missing!
## ## But after the fix, the function stops "working" for longley..
## ## because tlo[] becomes 0 too often, YZ[.,.] = c / 0 = Inf !
## }
Yup <- Ylo <- Y
Yup[Y >= rep(tup, each=n)] <- -Inf
Ylo[Y <= rep(tlo, each=n)] <- Inf
y.up <- apply(Yup, 2, max) # = max{ Y[i,] ; Y[i,] < tup[i] }
y.lo <- -apply(Ylo, 2, min) # = -min{ Y[i,] ; Y[i,] > tlo[i] }
if(trace.lev) {
cat(length(y.up), "lower & upper Y (:= X - med(.)) values:\n")
print(summary(y.lo))
print(summary(y.up))
}
tY <- t(Y)
## Note: column-wise medians are all 0 : "x_i > m" <==> y > 0
## Note: this loop is pretty fast
for (j in 1:n) { # when y = (X-med) = 0 ==> adjout = 0 rather than
## 0 / 0 --> NaN; e.g, in set.seed(3); adjOutlyingness(longley)
non0 <- 0 != (y <- tY[,j]); y <- y[non0]; I <- (y > 0)
D <- I*y.up[non0] + (1 - I)*y.lo[non0]
if(trace.lev >= 3) {
cat(sprintf("j=%2d: #{non0}= %2d; quantile(D)=\n", j, sum(non0)))
print(quantile(D), digits=3)
}
tY[non0, j] <- abs(y) / D
}
## We get +Inf above for "small n"; e.g. set.seed(11); adjOutlyingness(longley)
if(trace.lev) {
cat("outlyingnesses for all directions (of which max(.) will be chosen:\n")
print(quantile(tY, digits=3))
}
adjout <- apply(tY, 2, function(x) max(x[is.finite(x)]))
##---- ---
if(abs(trace.lev %% 1 - 0.7) < 1e-3) { ## really not for the end user ..
cat("Plotting outlyingnesses vs. observation i:\n")
matplot(t(tY), log="y"); axis(2, at=1); abline(h=1, lty=3)
Sys.sleep(2)
## somewhat revealing: 3 groups: very large | medium | very small (incl. 0 which are *not* plotted)
matplot(t(tY), log="y", type="b"); axis(2, at=1); abline(h=1, lty=3)
browser() ## <<<<<<<<<<<<<<<<<<<
}
if(only.outlyingness)
adjout
else {
Qadj <- quantile(adjout, probs = c(1 - alpha.cutoff, alpha.cutoff))
mcadjout <- if(cupper != 0) mc(adjout, doScale=mcScale, eps1=mcEps1, eps2=mcEps2) else 0
## ===
cutoff <- Qadj[2] + coef * (Qadj[2] - Qadj[1]) *
(if(mcadjout > 0) exp(cupper*mcadjout) else 1)
list(adjout = adjout, iter = it, ndir.final = sum(keep),
MCadjout = mcadjout, Qalph.adjout = Qadj, cutoff = cutoff,
nonOut = (adjout <= cutoff))
}
}
##' Compute a "full rank" version of matrix x,
##' by removing columns (or rows when nrow(x) < ncol(x)), using qr() and it's pivots
fullRank <- function(x, tol = 1e-7, qrx = qr(x, tol=tol)) {
d <- dim(x)
n <- d[[1L]]; p <- d[[2L]]
if(n < p)
return( t(fullRank(t(x), tol=tol)) )
## else n >= p >= rank(.)
rnk <- qrx$rank
if(rnk == p)
x
else
x[, qrx$pivot[seq_len(rnk)], drop=FALSE]
}
|