1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
### -*- mode: R ; delete-old-versions: never -*-
##' Computes the MCD estimator of a multivariate data sets in a \emph{deterministic}
##' way.
##'
##' The MCD estimator is given by the subset of h observations with smallest
##' covariance determinant. The MCD location estimate is then
##' the mean of those h points, and the MCD scatter estimate is
##' their covariance matrix. The default value of h is roughly
##' 0.75n (where n is the total number of observations), but the
##' user may choose each value between n/2 and n. Based on the
##' raw estimates, weights are assigned to the observations such
##' that outliers get zero weight. The reweighted MCD estimator
##' is then given by the mean and covariance matrix of the cases
##' with non-zero weight.
##
##' To compute an approximate MCD estimator deterministically, six initial robust h-subsets are
##' constructed based on robust transformations of variables or robust and
##' fast-to-compute estimators of multivariate location and shape. Then
##' C-steps are applied on these h-subsets until convergence. Note that the
##' resulting algorithm is not fully affine equivariant, but it is often
##' faster than the FAST-MCD algorithm which is affine equivariant
##' (see covMcd()).
##' Note that this function can not handle exact fit situations: if the
##' raw covariance matrix is singular, the program is stopped. In that
##' case, it is recommended to apply the covMcd() function.
##'
##' The MCD method is intended for continuous variables, and assumes that
##' the number of observations n is at least 5 times the number of variables p.
##' If p is too large relative to n, it would be better to first reduce
##' p by variable selection or robust principal components (see the functions
##' robust principal components in package 'rrcov').
##'
##' @title Compute the MCD estimator of multivariate data in a deterministic way
##' @references
##' Hubert, M., Rousseeuw, P.J. and Verdonck, T. (2012),
##' "A deterministic algorithm for robust location and scatter", Journal of
##' Computational and Graphical Statistics, in press.
##' @param x a numerical matrix. The columns represent variables, and rows represent observations.
##' @param h The quantile of observations whose covariance determinant will
##' be minimized. Any value between n/2 and n may be specified.
##' @param hsets.init If one gives here already a matrix with for each column an
##' ordering of the observations (first the one with smallest statistical
##' distance), then the initial shape estimates are not calculated.
##' Default value = NULL.
##' @param save.hsets
##' @param full.h
##' @param scalefn function (or "rule") to estimate the scale.
##' @param maxcsteps
##' @param warn.nonconv.csteps
##' @param warn.wrong.obj.conv
##' @param trace
##' @param names
##' @return
##' @author Valentin Todorov; many tweaks by Martin Maechler
.detmcd <- function(x, h, hsets.init=NULL,
save.hsets = missing(hsets.init), full.h = save.hsets,
scalefn, maxcsteps = 200,
warn.nonconv.csteps = getOption("robustbase:warn.nonconv.csteps", TRUE),
warn.wrong.obj.conv = getOption("robustbase:warn.wrong.obj.conv",FALSE),
trace = as.integer(trace), names = TRUE)
{
stopifnot(length(dx <- dim(x)) == 2, h == as.integer(h), h >= 1)
n <- dx[1]
p <- dx[2]
stopifnot(p >= 1, n >= 1)
scalefn <- robScalefn(scalefn, n)
## kmini <- 5 # number of sub-data sets(if we use them some day)
## # for now we use it as number of rows in the returned
## # matrix 'coeff' for exact fit (also not used currently).
## cutoff <- qchisq(0.975, p)
## chimed <- qchisq(0.5, p)
## Center and scale the data
vnms <- colnames(x) # speedup only: store and put back at end
z <- doScale(unname(x), center=median, scale=scalefn)
z.center <- z$center
z.scale <- z$scale
z <- z$x
## Assume that 'hsets.init' already contains h-subsets: the first h observations each
if(is.null(hsets.init)) {
hsets.init <- r6pack(z, h=h, full.h=full.h, scaled=TRUE, scalefn=scalefn)
dh <- dim(hsets.init)
} else { ## user specified, (even just *one* vector):
if(is.vector(hsets.init)) hsets.init <- as.matrix(hsets.init)
dh <- dim(hsets.init)
if(dh[1] < h || dh[2] < 1)
stop("'hsets.init' must be a h' x L matrix (h' >= h) of observation indices")
## TODO?: We could *extend* the sets to large h, even all n
## ====> could input the 'best' sets, also e.g. from fastmcd
if(full.h && dh[1] != n)
warning("'full.h' is true, but 'hsets.init' has less than n rows")
## stop("When 'full.h' is true, user specified 'hsets.init' must have n rows")
if(min(hsets.init) < 1 || max(hsets.init) > n)
stop("'hsets.init' must be in {1,2,...,n}; n = ", n)
}
nsets <- ncol(hsets.init)# typically 6, currently
## Some initializations.
hset.csteps <- integer(nsets)
bestobj <- Inf
for(i in 1:nsets)
{
if(trace) {
if(trace >= 2)
cat(sprintf("H-subset %d = observations c(%s):\n-----------\n",
i, pasteK(hsets.init[1:h,i])))
else
cat(sprintf("H-subset %d: ", i))
}
for(j in 1:maxcsteps)
{
if(j == 1) {
obs_in_set <- hsets.init[1:h,i] # start with the i-th initial set
} else { # now using 'svd' from last step
score <- (z - rep(svd$center, each=n)) %*% svd$loadings
mah <- mahalanobisD(score, center=FALSE, sd = sqrt(abs(svd$eigenvalues)))
obs_in_set <- sort.list(mah)[1:h] #, partial = 1:h not yet
}
## [P,T,L,r,centerX,meanvct] = classSVD(data(obs_in_set,:));
svd <- classPC(z[obs_in_set, ,drop=FALSE], signflip=FALSE)
obj <- sum(log(svd$eigenvalues))
if(svd$rank < p) { ## FIXME --> return exact fit property rather than stop() ??
stop('More than h of the observations lie on a hyperplane.')
## TODO
exactfit <- TRUE
## coeff <- ...
}
if(j >= 2 && obj == prevdet) {
## MM:: 2014-10-25: objective function check is *not* good enough:
if(identical(obs_in_set, prevobs))
break
## else :
if(warn.wrong.obj.conv)
warning(sprintf(
"original detmcd() wrongly declared c-step convergence (obj=%g, i=%d, j=%d)",
obj, i,j))
}
prevdet <- obj
prevobs <- obs_in_set
}
hset.csteps[i] <- j # how many csteps necessary to converge.
if(trace) cat(sprintf("%3d csteps, obj=log(det|.|)=%g", j, obj))
if(obj < bestobj) {
if(trace) cat(" = new optim.\n")
## bestset : the best subset for the whole data.
## bestobj : objective value for this set.
## initmean, initcov : the mean and covariance matrix of this set
bestset <- obs_in_set
bestobj <- obj
initmean <- svd$center
L <- svd$loadings
## MM speedup: was L Diag L' = L %*% diag(svd$eigenvalues) %*% t(L)
initcov <- tcrossprod(L * rep(svd$eigenvalues, each=nrow(L)), L)
## raw.initcov <- initcov
## rew.Hsubsets.Hopt <- bestset
ind.best <- i # to determine which subset gives best results.
} else if(obj == bestobj) ## store as well:
ind.best <- c(ind.best, i)
else if(trace) cat("\n")
} ## for(i in 1:nsets)
if(warn.nonconv.csteps && any(eq <- hset.csteps == maxcsteps)) {
p1 <- paste(ngettext(sum(eq), "Initial set", "Initial sets"),
pasteK(which(eq)))
warning(sprintf("%s did not converge in maxcsteps=%d concentration steps",
p1, maxcsteps), domain=NA)
}
## reweighting <- FALSE # it happens in covMcd()
## if(reweighting) {
## svd <- classPC(z[bestset, ], signflip=FALSE) # [P,T,L,r,centerX,meanvct] = classSVD(data(bestset,:));
## mah <- mahalanobisD((z - rep(svd$center, each=n)) %*% svd$loadings,
## FALSE, sqrt(abs(svd$eigenvalues)))
## sortmah <- sort(mah)
## }
## factor <- sortmah[h]/qchisq(h/n, p)
## raw.cov <- factor*initcov
## raw.cov <- initcov
## We express the results in the original units [restoring var.names]:
raw.cov <- initcov * tcrossprod(z.scale)
raw.center <- initmean * z.scale + z.center
if(names) {
dimnames(raw.cov) <- list(vnms, vnms)
names(raw.center) <- vnms
}
raw.objective <- bestobj + 2*sum(log(z.scale)) # log(det = obj.best * prod(z.scale)^2)
## raw.mah <- mahalanobis(x, raw.center, raw.cov, tol=1E-14)
## medi2 <- median(raw.mah)
list(initcovariance = raw.cov,
initmean = raw.center,
best = bestset,
mcdestimate = raw.objective, # determinant (goes to crit)
## , weights=NULL# FIXME - goes to raw.weights
iBest = ind.best,
n.csteps = hset.csteps,
initHsets = if(save.hsets) hsets.init,
exactfit = 0 # <- FIXME
## once we'd test for exact fit, we'd return:
## , coeff=matrix(rep(0, kmini*p), nrow=kmini)
## , kount=0 # FIXME
)
} ## .detmcd()
robScalefn <- function(scalefn, n) {
if(missing(scalefn) || is.null(scalefn))
scalefn <- .scalefn.default
if(is.function(scalefn))
scalefn
else
switch(scalefn,
## Hubert, Rousseeuw, Verdonck, JCGS 2012 :
"hrv2012" = if(n < 1000) Qn else scaleTau2,
## Version of 2014:
"v2014" = if(n < 5000) Qn else scaleTau2,
## otherwise
stop(gettextf("Invalid scalefn='%s': must be function or a valid string",
scalefn),
domain=NA))
}
doScale <- function (x, center, scale)
{
stopifnot(is.numeric(p <- ncol(x)))
## MM: follow standard R's scale.default() as much as possible
centerFn <- is.function(center)
doIt <- if(centerFn) {
centerName <- deparse(substitute(center)) # "median" typically
center <- apply(x, 2L, center)
TRUE
} else {
if(length(center) == p && is.numeric(center))
TRUE
else if(missing(center) || is.null(center)) {
center <- 0; FALSE
} else
stop(gettextf("'%s' must be a function, numeric vector of length p, or NULL",
"center"), domain=NA)
}
if(doIt)
x <- sweep(x, 2L, center, `-`, check.margin=FALSE)
scaleFn <- is.function(scale)
doIt <- if(scaleFn) {
scale <- apply(x, 2L, scale)
TRUE
} else {
if(length(scale) == p && is.numeric(scale))
TRUE
else if(missing(scale) || is.null(scale)) {
scale <- 1
FALSE
} else
stop(gettextf("'%s' must be a function, numeric vector of length p, or NULL",
"scale"), domain=NA)
}
if(doIt) {
if(any(is.na(scale)) || any(scale < 0))
stop("provide better scale; must be all positive")
if(any(s0 <- scale == 0)) {
## FIXME:
### Better and easier alternative (and as "FAST MCD"): return "singular cov.matrix"
### since scale 0 ==> more than 50% points are on hyperplane x[,j] == const.
## find scale if there is any variation; otherwise use s := 1
S <- if(centerFn && centerName == "median")
abs else function(.) abs(. - median(.))
non0Q <- function(u) {
alph <- c(10:19, 19.75)/20 # not all the way to '1' {=> finite qnorm()}
qq <- quantile(S(u), probs=alph, names=FALSE)
if(any(pos <- qq != 0)) { ## the first non-0 if there is one
i <- which.max(pos)
qq[i] / qnorm((alph[i] + 1)/2)
} else 1
}
scale[s0] <- apply(x[,s0, drop=FALSE], 2L, non0Q)
}
x <- sweep(x, 2L, scale, `/`, check.margin = FALSE)
}
## return
list(x=x, center=center, scale=scale)
}
##' @title Robust Distance based observation orderings based on robust "Six pack"
##' @param x n x p data matrix
##' @param h integer
##' @param full.h full (length n) ordering or only the first h?
##' @param scaled is 'x' is already scaled? otherwise, apply doScale(x, median, scalefn)
##' @param scalefn function to compute a robust univariate scale.
##' @return a h' x 6 matrix of indices from 1:n; if(full.h) h' = n else h' = h
r6pack <- function(x, h, full.h, scaled=TRUE,
scalefn = rrcov.control()$scalefn)
{
## As the considered initial estimators Sk may have very
## inaccurate eigenvalues, we try to 'improve' them by applying
## a transformation similar to that used in the OGK algorithm.
##
## After that compute the corresponding distances, order them and
## return the indices
initset <- function(data, scalefn, P, h)
{
stopifnot(length(d <- dim(data)) == 2, length(h) == 1, h >= 1)
n <- d[1]
stopifnot(h <= n)
lambda <- doScale(data %*% P, center=median, scale=scalefn)$scale
sqrtcov <- P %*% (lambda * t(P)) ## == P %*% diag(lambda) %*% t(P)
sqrtinvcov <- P %*% (t(P) / lambda) ## == P %*% diag(1/lambda) %*% t(P)
estloc <- colMedians(data %*% sqrtinvcov) %*% sqrtcov
centeredx <- (data - rep(estloc, each=n)) %*% P
sort.list(mahalanobisD(centeredx, FALSE, lambda))[1:h]# , partial = 1:h
}
##
## Compute the raw OGK estimator. For m(.) and s(.) (robust
## univariate estimators of location and scale) use the median
## and Qn for reasons of simplicity (no choice of tuning parameters)
## and to be consistent with the other components of DetMCD.
##
ogkscatter <- function(Y, scalefn, only.P = TRUE)
{
stopifnot(length(p <- ncol(Y)) == 1, p >= 1)
U <- diag(p)
for(i in seq_len(p)[-1L]) {# i = 2:p
sYi <- Y[,i]
ii <- seq_len(i - 1L)
for(j in ii) {
sYj <- Y[,j]
U[i,j] <- (scalefn(sYi + sYj)^2 - scalefn(sYi - sYj)^2) / 4
}
## also set the upper triangle
U[ii,i] <- U[i,ii]
}
## now done above: U <- lower.tri(U) * U + t(U) # U <- tril(U, -1) + t(U)
P <- eigen(U, symmetric=TRUE)$vectors
if(only.P)
return(P)
## else :
Z <- Y %*% t(P)
sigz <- apply(Z, 2, scalefn)
lambda <- diag(sigz^2)
list(P=P, lambda=lambda)
}
stopifnot(length(dx <- dim(x)) == 2)
n <- dx[1]
p <- dx[2]
## If scalefn is missing or is NULL, use Qn for smaller data sets (n < 1000)
## and tau-scale of Yohai and Zamar (1988) otherwise.
scalefn <- robScalefn(scalefn, n)
## If the data was not scaled already (scaled=FALSE), center and scale using
## the median and the provided function 'scalefn'.
if(!scaled) { ## Center and scale the data to (0, 1) - robustly
x <- doScale(x, center=median, scale=scalefn)$x
}
nsets <- 6
hsets <- matrix(integer(), h, nsets)
## Determine 6 initial estimates (ordering of obs)
## 1. Hyperbolic tangent of standardized data
y1 <- tanh(x)
R1 <- cor(y1)
P <- eigen(R1, symmetric=TRUE)$vectors
hsets[,1] <- initset(x, scalefn=scalefn, P=P, h=h)
## 2. Spearmann correlation matrix
R2 <- cor(x, method="spearman")
P <- eigen(R2, symmetric=TRUE)$vectors
hsets[,2] <- initset(x, scalefn=scalefn, P=P, h=h)
## 3. Tukey normal scores
y3 <- qnorm((apply(x, 2L, rank) - 1/3)/(n + 1/3))
R3 <- cor(y3, use = "complete.obs")
P <- eigen(R3, symmetric=TRUE)$vectors
hsets[,3] <- initset(x, scalefn=scalefn, P=P, h=h)
## 4. Spatial sign covariance matrix
znorm <- sqrt(rowSums(x^2))
ii <- znorm > .Machine$double.eps
x.nrmd <- x
x.nrmd[ii,] <- x[ii, ] / znorm[ii]
SCM <- crossprod(x.nrmd)# / (n-1) not needed for e.vectors
P <- eigen(SCM, symmetric=TRUE)$vectors
hsets[,4] <- initset(x, scalefn=scalefn, P=P, h=h)
## 5. BACON
ind5 <- order(znorm)
half <- ceiling(n/2)
Hinit <- ind5[1:half]
covx <- cov(x[Hinit, , drop=FALSE])
P <- eigen(covx, symmetric=TRUE)$vectors
hsets[,5] <- initset(x, scalefn=scalefn, P=P, h=h)
## 6. Raw OGK estimate for scatter
P <- ogkscatter(x, scalefn, only.P = TRUE)
hsets[,6] <- initset(x, scalefn=scalefn, P=P, h=h)
## Now combine the six pack :
if(full.h) hsetsN <- matrix(integer(), n, nsets)
for(k in 1:nsets) ## sort each of the h-subsets in *increasing* Mah.distances
{
xk <- x[hsets[,k], , drop=FALSE]
svd <- classPC(xk, signflip=FALSE) # [P,T,L,r,centerX,meanvct] = classSVD(xk)
if(svd$rank < p) ## FIXME: " return("exactfit") "
stop('More than half of the observations lie on a hyperplane.')
score <- (x - rep(svd$center, each=n)) %*% svd$loadings
ord <- order(mahalanobisD(score, FALSE, sqrt(abs(svd$eigenvalues))))
if(full.h)
hsetsN[,k] <- ord
else hsets[,k] <- ord[1:h]
}
## return
if(full.h) hsetsN else hsets
} ## {r6pack}
|