File: lmrob.R

package info (click to toggle)
robustbase 0.99-6-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 4,584 kB
  • sloc: fortran: 3,245; ansic: 3,243; sh: 15; makefile: 2
file content (752 lines) | stat: -rw-r--r-- 27,077 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752

### The first part of lmrob()  much cut'n'paste from lm() - on purpose!
lmrob <-
    function(formula, data, subset, weights, na.action, method = 'MM',
	     model = TRUE, x = !control$compute.rd, y = FALSE,
	     singular.ok = TRUE, contrasts = NULL, offset = NULL,
	     control = NULL, init = NULL, ...)
{
    ## to avoid problems with 'setting' argument
    ## call lmrob.control here either with or without method arg.
    if (miss.ctrl <- missing(control))
	control <- if (missing(method))
	    lmrob.control(...) else lmrob.control(method = method, ...)
    else if (length(list(...))) ## "sophisticated version" of chk.s(...)
	warning("arguments .. in ",
		sub(")$", "", sub("^list\\(", "", deparse(list(...), control = c()))),
		"  are disregarded.\n",
		"  Maybe use  lmrob(*, control=lmrob.control(....) with all these.")
    ret.x <- x
    ret.y <- y
    cl <- match.call()
    mf <- match.call(expand.dots = FALSE)
    m <- match(c("formula", "data", "subset", "weights", "na.action", "offset"),
	       names(mf), 0)
    mf <- mf[c(1, m)]
    mf$drop.unused.levels <- TRUE
    mf[[1]] <- as.name("model.frame")
    mf <- eval(mf, parent.frame())

    mt <- attr(mf, "terms") # allow model.frame to update it
    y <- model.response(mf, "numeric")
    w <- as.vector(model.weights(mf)) # NULL if unspecified in call
    if(!is.null(w) && !is.numeric(w))
	stop("'weights' must be a numeric vector")
    offset <- as.vector(model.offset(mf))
    if(!is.null(offset) && length(offset) != NROW(y))
	stop(gettextf("number of offsets is %d, should equal %d (number of observations)",
		      length(offset), NROW(y)), domain = NA)
    if (!miss.ctrl && !missing(method) && method != control$method) {
	warning("The 'method' argument is different from 'control$method'\n",
		"Using the former, method = ", method)
	control$method <- method
    }

    if (is.empty.model(mt)) {
	x <- NULL
	singular.fit <- FALSE ## to avoid problems below
	z <- list(coefficients = if(is.matrix(y)) matrix(NA_real_, 0, ncol(y))
				 else numeric(),
		  residuals = y, scale = NA, fitted.values = 0 * y,
		  cov = matrix(NA_real_,0,0), weights = w, rank = 0,
		  df.residual = if(!is.null(w)) sum(w != 0) else NROW(y),
                  converged = TRUE, iter = 0)
	if(!is.null(offset)) {
	    z$fitted.values <- offset
	    z$residuals <- y - offset
	    z$offset <- offset
	}
    }
    else {
	x <- model.matrix(mt, mf, contrasts)
	contrasts <- attr(x, "contrasts")
	assign <- attr(x, "assign")
	p <- ncol(x)
	if(!is.null(offset))
	    y <- y - offset
	if (!is.null(w)) {
	    ## checks and code copied/modified from lm.wfit
	    ny <- NCOL(y)
	    n <- nrow(x)
	    if (NROW(y) != n | length(w) != n)
		stop("incompatible dimensions")
	    if (any(w < 0 | is.na(w)))
		stop("missing or negative weights not allowed")
	    zero.weights <- any(w == 0)
	    if (zero.weights) {
		save.r <- y
		save.w <- w
		save.f <- y
		ok <- w != 0
		nok <- !ok
		w <- w[ok]
		x0 <- x[nok, , drop = FALSE]
		x  <- x[ ok, , drop = FALSE]
		n <- nrow(x)
		y0 <- if (ny > 1L) y[nok, , drop = FALSE] else y[nok]
		y  <- if (ny > 1L) y[ ok, , drop = FALSE] else y[ok]
                ## add this information to model.frame as well
                ## need it in outlierStats()
                ## ?? could also add this to na.action, then
                ##    naresid() would pad these as well.
                attr(mf, "zero.weights") <- which(nok)
	    }
	    wts <- sqrt(w)
	    save.y <- y
	    x <- wts * x
	    y <- wts * y
	}
	## check for singular fit

        z0 <- .lm.fit(x, y, tol = control$solve.tol)
        piv <- z0$pivot
	rankQR <- z0$rank
	singular.fit <- rankQR < p
	if (rankQR > 0) {
	    if (singular.fit) {
		if (!singular.ok) stop("singular fit encountered")
		pivot <- piv
		p1 <- pivot[seq_len(rankQR)]
		p2 <- pivot[(rankQR+1):p]
		## to avoid problems in the internal fitting methods,
		## split into singular and non-singular matrices,
		## can still re-add singular part later
		dn <- dimnames(x)
		x <- x[,p1]
		attr(x, "assign") <- assign[p1] ## needed for splitFrame to work
	    }
            if (is.function(control$eps.x))
                control$eps.x <- control$eps.x(max(abs(x)))
	    if (!is.null(ini <- init)) {
		if (is.character(init)) {
		    init <- switch(init,
				   "M-S" = lmrob.M.S(x, y, control, mf=mf),
				   "S"   = lmrob.S  (x, y, control),
				   stop('init must be "S", "M-S", function or list'))
		    if(ini == "M-S") { ## "M-S" sometimes reverts to "S":
			ini <- init$control$method
                        ## if(identical(ini, "M-S"))
                        ##     control$method <- paste0(ini, control$method)
                    }
		} else if (is.function(init)) {
		    init <- init(x=x, y=y, control=control, mf=mf)
		} else if (is.list(init)) {
		    ## MK: set init$weights, init$residuals here ??
		    ##	   (needed in lmrob..D..fit)
		    ##	   or disallow method = D... ? would need to fix also
		    ##	  lmrob.kappa: tuning.psi / tuning.chi choice
		    if (singular.fit) {
			## make sure the initial coefficients vector matches
			## to the reduced x
			init$coef <- na.omit(init$coef)
			if (length(init$coef) != ncol(x))
			    stop("Length of initial coefficients vector does not match rank of singular design matrix x")
		    }
		} else stop("invalid 'init' argument")
		stopifnot(is.numeric(init$coef), is.numeric(init$scale))
		## modify (default) control$method, possibly dropping first letter:
		if (control$method == "MM" || substr(control$method, 1, 1) == "S")
		    control$method <- substring(control$method, 2)
		## check for control$cov argument
		if (class(init)[1] != "lmrob.S" && control$cov == '.vcov.avar1')
		    control$cov <- ".vcov.w"
	    } # else pass on  init=NULL :
	    z <- lmrob.fit(x, y, control, init=init) #-> ./lmrob.MM.R
	    ##   ---------
            if(is.character(ini) && !grepl(paste0("^", ini), control$method))
                control$method <- paste0(ini, control$method)
	    if (singular.fit) {
		coef <- numeric(p)
		coef[p2] <- NA
		coef[p1] <- z$coefficients
		names(coef) <- dn[[2L]]
		z$coefficients <- coef
		## Update QR decomposition (z$qr)
		## pad qr and qraux with zeroes (columns that were pivoted to the right in z0)
                d.p <- p-rankQR
                n <- NROW(y)
		z$qr[c("qr","qraux","pivot")] <-
		    list(matrix(c(z$qr$qr, rep.int(0, d.p*n)), n, p,
				dimnames = list(dn[[1L]], dn[[2L]][piv])),
			 ## qraux:
			 c(z$qr$qraux, rep.int(0, d.p)),
			 ## pivot:
			 piv)
	    }
	} else { ## rank 0
	    z <- list(coefficients = if (is.matrix(y)) matrix(NA_real_,p,ncol(y))
				     else rep.int(NA_real_, p),
		      residuals = y, scale = NA, fitted.values = 0 * y,
		      cov = matrix(NA_real_,0,0), rweights = rep.int(NA_real_, NROW(y)),
		      weights = w, rank = 0, df.residual = NROW(y),
		      converged = TRUE, iter = 0, control=control)
	    if (is.matrix(y)) colnames(z$coefficients) <- colnames(x)
	    else names(z$coefficients) <- colnames(x)
	    if(!is.null(offset)) z$residuals <- y - offset
	}
	if (!is.null(w)) {
	    z$residuals <- z$residuals/wts
	    z$fitted.values <- save.y - z$residuals
	    z$weights <- w
	    if (zero.weights) { # compute residuals, fitted, wts...  also for the 0-weight obs
                coef <- z$coefficients
		coef[is.na(coef)] <- 0
		f0 <- x0 %*% coef
                ## above  ok := (w != 0);  nok := (w == 0)
		if (ny > 1) {
		    save.r[ok, ] <- z$residuals
		    save.r[nok, ] <- y0 - f0
		    save.f[ok, ] <- z$fitted.values
		    save.f[nok, ] <- f0
		}
		else {
		    save.r[ok] <- z$residuals
		    save.r[nok] <- y0 - f0
		    save.f[ok] <- z$fitted.values
		    save.f[nok] <- f0
		}
		z$residuals <- save.r
		z$fitted.values <- save.f
		z$weights <- save.w
		rw <- z$rweights
		z$rweights <- rep.int(0, length(save.w))
		z$rweights[ok] <- rw
	    }
	}
    }
    if(!is.null(offset))
	z$fitted.values <- z$fitted.values + offset

    z$na.action <- attr(mf, "na.action")
    z$offset <- offset
    z$contrasts <- contrasts
    z$xlevels <- .getXlevels(mt, mf)
    z$call <- cl
    z$terms <- mt
    z$assign <- assign
    if(control$compute.rd && !is.null(x))
	z$MD <- robMD(x, attr(mt, "intercept"), wqr=z$qr)
    if (model)
	z$model <- mf
    if (ret.x)
	z$x <- if (singular.fit || (!is.null(w) && zero.weights))
	    model.matrix(mt, mf, contrasts) else x
    if (ret.y)
	z$y <- if (!is.null(w)) model.response(mf, "numeric") else y
    class(z) <- "lmrob"
    z
}

if(getRversion() < "3.1.0") globalVariables(".lm.fit")

##' @title Warn about extraneous arguments in the "..."	 (of its caller)
##' @return
##' @author Martin Maechler, June 2012
chk.s <- function(...) {
    if(length(list(...)))
	warning("arguments  ",
		sub(")$", '', sub("^list\\(", '', deparse(list(...), control=c()))),
		"  are disregarded in\n ", deparse(sys.call(-1), control=c()),
		call. = FALSE)
}


##' Robust Mahalanobis Distances
##' internal function, used in lmrob() and plot.lmrob()
##' also "wanted" by 'robustloggamma' pkg
robMD <- function(x, intercept, wqr, ...) {
    ## NB:  'wqr' only needed when covMcd()  is not (entirely) successful
    if(intercept == 1) x <- x[, -1, drop=FALSE]
    if(ncol(x) >= 1) {
	rob <- tryCatch(covMcd(x, ...),
                        warning = function(w) structure("covMcd produced a warning",
                        class="try-error", condition = w),
                        error = function(e) structure("covMcd failed with an error",
                        class="try-error", condition = e))
	if (inherits(rob, "try-error")) {
            warning("Failed to compute robust Mahalanobis distances, reverting to robust leverages.")
	    .lmrob.hat(wqr = wqr)
	}
	else
	    sqrt( mahalanobis(x, rob$center, rob$cov) )
    } ## else NULL
}

### Method Functions for class lmrob objects ###
### ---------------------------------------- ###

## Many are just wrapper functions for the respective .lm methods

## ---- sorted *ALPHABETICALLY* ----

alias.lmrob <- function(object, ...) {
    ## Purpose: provide alias() for lmrob objects
    ## Cannot use alias.lm directly, since it requires a "clean" object$qr,
    ## i.e., without the robustness weights

    if (is.null(x <- object[["x"]]))
	x <- model.matrix(object)
    weights <- weights(object)
    if (!is.null(weights) && diff(range(weights)))
	x <- x * sqrt(weights)
    object$qr <- qr(x)
    class(object) <- "lm"
    alias(object)
}


## R (3.1.0)-devel copy of case.names.lm() ...../R/src/library/stats/R/lm.R
case.names.lmrob <- function(object, full = FALSE, ...)
{
    w <- weights(object)
    dn <- names(residuals(object))
    if(full || is.null(w)) dn else dn[w!=0]
}

## coef(<lmrob>): no own method ==> using  coef.default(OO) == OO$coefficients
## -------------

## use confint.lm instead of confint.default
## mainly to get t instead of normal quantiles
## Now imported from 'stats'  -- and S3 registered in ../NAMESPACE , too,  but
## still needed for now (R bug fixed in svn rev 84463 - for R 4.4.0)
   confint.lm <-    confint.lm
dummy.coef.lm <- dummy.coef.lm


family.lmrob <- function(object, ...) gaussian() ## == stats:::family.lm


## fitted.default works for "lmrob"

## base::kappa.lm() is "doomed"; call what kappa.lm() has been calling for years:
kappa.lmrob <- function(z, ...) kappa.qr(z$qr, ...) ## == kappa.lm(z, ...)

## instead of  stats:::qr.lm()
qrLmr <- function(x) {
    if(!is.list(r <- x$qr))
        stop("lmrob object does not have a proper 'qr' component. Rank zero?")
    r
}

## Basically the same as  stats:::labels.lm -- FIXME: rank 0 fits?
labels.lmrob <- function(object, ...) {
    tl <- attr(object$terms, "term.labels")
    asgn <- object$assign[qrLmr(object)$pivot[seq_len(object$rank)]]
    tl[unique(asgn)]
}

## Works via lm's method [which is still exported]:
model.matrix.lmrob <- model.matrix.lm

## identical to stats:::nobs.lm {but that is hidden .. and small to copy}:
nobs.lmrob <- function(object, ...)
    if (!is.null(w <- object$weights)) sum(w != 0) else NROW(object$residuals)


if(FALSE) ## now replaced with more sophsticated in ./lmrobPredict.R
## learned from MASS::rlm() : via "lm" as well
predict.lmrob <- function (object, newdata = NULL, scale = NULL, ...)
{
    class(object) <- c(class(object), "lm")
    object$qr <- qr(sqrt(object$rweights) * object$x)
    predict.lm(object, newdata = newdata, scale = object$s, ...)
}

print.summary.lmrob <-
    function (x, digits = max(3, getOption("digits") - 3),
	      symbolic.cor = x$symbolic.cor,
	      signif.stars = getOption("show.signif.stars"),
              showAlgo = TRUE, ...)
{
    cat("\nCall:\n",
	paste(deparse(x$call, width.cutoff=72), sep = "\n", collapse = "\n"),
	"\n", sep = "")
    control <- lmrob.control.minimal(x$control, nobs = nobs(x, use.fallback = TRUE))
    cat(" \\--> method = \"", control$method, '"\n', sep = "")
    ## else cat("\n")
    resid <- x$residuals
    df <- x$df
    rdf <- df[2L]
    cat(if (!is.null(x$weights) && diff(range(x$weights))) "Weighted ",
	"Residuals:\n", sep = "")
    if (rdf > 5L) {
	nam <- c("Min", "1Q", "Median", "3Q", "Max")
	rq <-
	    if (NCOL(resid) > 1)
		structure(apply(t(resid), 1, quantile),
			  dimnames = list(nam, dimnames(resid)[[2]]))
	    else setNames(quantile(resid), nam)
	print(rq, digits = digits, ...)
    }
    else print(resid, digits = digits, ...)
    ## FIXME: need to catch rdf == 0?
    if( length(x$aliased) ) {
	if( !(x$converged) ) {
	    if (x$scale == 0) {
		cat("\nExact fit detected\n\nCoefficients:\n")
	    } else {
		cat("\nAlgorithm did not converge\n")
		if (control$method == "S")
		    cat("\nCoefficients of the *initial* S-estimator:\n")
		else
		    cat(sprintf("\nCoefficients of the %s-estimator:\n",
				control$method))
	    }
	    printCoefmat(x$coef, digits = digits, signif.stars = signif.stars,
			 ...)
	} else {
	    if (nsingular <- df[3L] - df[1L])
		cat("\nCoefficients: (", nsingular,
		    " not defined because of singularities)\n", sep = "")
	    else cat("\nCoefficients:\n")
	    coefs <- x$coefficients
	    if(!is.null(aliased <- x$aliased) && any(aliased)) {
		cn <- names(aliased)
		coefs <- matrix(NA, length(aliased), 4, dimnames=list(cn, colnames(coefs)))
		coefs[!aliased, ] <- x$coefficients
	    }

	    printCoefmat(coefs, digits = digits, signif.stars = signif.stars,
			 na.print="NA", ...)
	    cat("\nRobust residual standard error:",
		format(signif(x$scale, digits)),"\n")
	    if(nzchar(mess <- naprint(x$na.action)))
		cat("  (",mess,")\n", sep = "")
            if(!is.null(x$r.squared) && x$df[1] != attr(x$terms, "intercept")) {
                cat("Multiple R-squared: ", formatC(x$r.squared, digits = digits))
                cat(",\tAdjusted R-squared: ", formatC(x$adj.r.squared, digits = digits),
                    "\n")
            }
	    correl <- x$correlation
	    if (!is.null(correl)) {
		p <- NCOL(correl)
		if (p > 1) {
		    cat("\nCorrelation of Coefficients:\n")
		    if (is.logical(symbolic.cor) && symbolic.cor) {
			print(symnum(correl), abbr.colnames = NULL)
		    }
		    else { correl <- format(round(correl, 2), nsmall = 2,
					    digits = digits)
			   correl[!lower.tri(correl)] <- ""
			   print(correl[-1, -p, drop = FALSE], quote = FALSE)
		       }
		}
	    }
	    if(is.numeric(it <- x$iter) && length(it))
                cat("Convergence in", it, "IRWLS iterations\n")
	}
	cat("\n")

	if (!is.null(rw <- x$rweights)) {
	    if (any(zero.w <- x$weights == 0))
		rw <- rw[!zero.w]
            eps.outlier <- if (is.function(EO <- control$eps.outlier))
                EO(nobs(x)) else EO
	    summarizeRobWeights(rw, digits = digits, eps = eps.outlier, ...)
	}

    } else cat("\nNo Coefficients\n")

    if (showAlgo && !is.null(control))
	printControl(control, digits = digits, drop. = "method")
    invisible(x)
}


print.lmrob <- function(x, digits = max(3, getOption("digits") - 3), ...)
{
    cat("\nCall:\n", cl <- deparse(x$call, width.cutoff=72), "\n", sep = "")
    control <- lmrob.control.minimal(x$control, nobs=nobs(x, use.fallback = TRUE))
    if(!any(grepl("method *= *['\"]", cl)))## 'method = ".."' not explicitly visible above
	cat(" \\--> method = \"", control$method, '"\n', sep = "") else cat("\n")
    if(length((cf <- coef(x)))) {
	if( x$converged )
	    cat("Coefficients:\n")
	else {
	    if (x$scale == 0) {
		cat("Exact fit detected\n\nCoefficients:\n")
	    } else {
		cat("Algorithm did not converge\n\n")
		if (control$method == "S")
		    cat("Coefficients of the *initial* S-estimator:\n")
		else
		    cat(sprintf("Coefficients of the %s-estimator:\n",
				control$method))
	    }
	}
	print(format(cf, digits = digits), print.gap = 2, quote = FALSE)
    } else cat("No coefficients\n")
    cat("\n")
    invisible(x)
}

print.lmrob.S <- function(x, digits = max(3, getOption("digits") - 3),
			  showAlgo = TRUE, ...)
{
    cat("S-estimator lmrob.S():\n")
    if(length((cf <- coef(x)))) {
	if (x$converged)
	    cat("Coefficients:\n")
	else if (x$scale == 0)
	    cat("Exact fit detected\n\nCoefficients:\n")
	else
	    cat("Algorithm did not converge\n\n")
	print(format(cf, digits = digits), print.gap = 2, quote = FALSE)
    } else cat("No coefficients\n")
    cat("scale = ",format(x$scale, digits=digits), "; ",
	if(x$converged)"converged" else "did NOT converge",
	" in ", x$k.iter, " refinement steps\n")
    if (showAlgo && !is.null(ctrl <- x$control))
	printControl(lmrob.control.minimal(ctrl, nobs = nobs(x, use.fallback = TRUE),
                                           oStats = !is.null(ctrl$ostats)),
		     digits = digits, drop. = "method")
    invisible(x)
}


## practically identical to  stats:::qr.lm :
qr.lmrob <- function (x, ...) {
    if (is.null(r <- x$qr))
	stop("lmrob object does not have a proper 'qr' component. Rank must be zero")
    r
}

residuals.lmrob <- function(object, ...) residuals.lm(object, ...)

## even simpler than residuals.default():
residuals.lmrob.S <- function(object, ...) object$residuals

summary.lmrob <- function(object, correlation = FALSE, symbolic.cor = FALSE, ...)
{
    if (is.null(object$terms))
	stop("invalid 'lmrob' object:  no terms component")
    p <- object$rank
    df <- object$df.residual #was $degree.freedom
    sigma <- object[["scale"]]
    aliased <- is.na(coef(object))
    cf.nms <- c("Estimate", "Std. Error", "t value", "Pr(>|t|)")
    if (p > 0) {
	n <- p + df
	p1 <- seq_len(p)
	se <- sqrt(if(length(object$cov) == 1L) object$cov else diag(object$cov))
	est <- object$coefficients[object$qr$pivot[p1]]
	tval <- est/se
	ans <- object[c("call", "terms", "residuals", "weights", "scale", "rweights", "na.action",
			"converged", "iter", "control")]
        ans[is.na(names(ans))] <- NULL # e.g. {"na.action", "iter"} for  method = "S"
	if (!is.null(ans$weights))
	    ans$residuals <- ans$residuals * sqrt(object$weights)
	## 'df' vector, modeled after summary.lm() : ans$df <- c(p, rdf, NCOL(Qr$qr))
	## where  p <- z$rank ; rdf <- z$df.residual ; Qr <- qr.lm(object)
	ans$df <- c(p, df, NCOL(object$qr$qr))
	ans$coefficients <-
	    if( ans$converged)
		cbind(est, se, tval, 2 * pt(abs(tval), df, lower.tail = FALSE))
	    else
		cbind(est, if(sigma <= 0) 0 else NA, NA, NA)
	dimnames(ans$coefficients) <- list(names(est), cf.nms)
        if (p != attr(ans$terms, "intercept")) {
            df.int <- if (attr(ans$terms, "intercept")) 1L else 0L
            ## This block is based on code by Olivier Renaud <Olivier.Renaud@unige.ch>
            resid <- object$residuals
            pred <- object$fitted.values
            resp <- if (is.null(object[["y"]])) pred + resid else object$y
            wgt <- object$rweights
            ## scale.rob <- object$scale
            ## correction = E[wgt(r)] / E[psi'(r)]  =  E[wgt(r)] / E[r*psi(r)]
            ctrl <- object$control
            c.psi <- ctrl$tuning.psi
            psi <- ctrl$psi
            correc <-
                if (psi == 'ggw') {
                    if      (isTRUE(all.equal(c.psi, c(-.5, 1.0, 0.95, NA)))) 1.121708
                    else if (isTRUE(all.equal(c.psi, c(-.5, 1.5, 0.95, NA)))) 1.163192
                    else if (isTRUE(all.equal(c.psi, c(-.5, 1.0, 0.85, NA)))) 1.33517
                    else if (isTRUE(all.equal(c.psi, c(-.5, 1.5, 0.85, NA)))) 1.395828
                    else lmrob.E(wgt(r), ctrl) / lmrob.E(r*psi(r), ctrl)
		} else if (any(psi == .Mpsi.R.names) &&
			   isTRUE(all.equal(c.psi, .Mpsi.tuning.default(psi)))) {
                    switch(psi,
                           bisquare = 1.207617,
                           welsh    = 1.224617, # 1.2246131
                           optimal  = 1.068939,
                           hampel   = 1.166891,
                           lqq      = 1.159232,
			   stop('unsupported psi function -- should not happen'))
                } else lmrob.E(wgt(r), ctrl) / lmrob.E(r*psi(r), ctrl)
            resp.mean <- if (df.int == 1L) sum(wgt * resp)/sum(wgt) else 0
            yMy <- sum(wgt * (resp - resp.mean)^2)
            rMr <- sum(wgt * resid^2)
            ans$r.squared <- r2correc <- (yMy - rMr) / (yMy + rMr * (correc - 1))
            ans$adj.r.squared <- 1 - (1 - r2correc) * ((n - df.int) / df)
        } else ans$r.squared <- ans$adj.r.squared <- 0
	ans$cov <- object$cov
	if(length(object$cov) > 1L)
	    dimnames(ans$cov) <- dimnames(ans$coefficients)[c(1,1)]
	if (correlation) {
	    ans$correlation <- ans$cov / outer(se, se)
	    ans$symbolic.cor <- symbolic.cor
	}
    } else { ## p = 0: "null model"
	ans <- object
	ans$df <- c(0L, df, length(aliased))
	ans$coefficients <- matrix(ans$coefficients[0L], 0L, 4L, dimnames = list(NULL, cf.nms))
        ans$r.squared <- ans$adj.r.squared <- 0
	ans$cov <- object$cov
    }
    ans$aliased <- aliased # used in print method
    ans$sigma <- sigma # 'sigma': in summary.lm() & 'fit.models' pkg
    if (is.function(epsO <- ans$control$eps.outlier)) ans$control$eps.outlier <- epsO(nobs(object))
    if (is.function(epsX <- ans$control$eps.x))
        ans$control$eps.x <- if(!is.null(o.x <- object[['x']])) epsX(max(abs(o.x))) ## else NULL
    structure(ans,
	      class = "summary.lmrob")
}


## R (3.1.0)-devel copy of variable.names.lm() ...../R/src/library/stats/R/lm.R
variable.names.lmrob <- function(object, full = FALSE, ...)
{
    if(full) dimnames(qrLmr(object)$qr)[[2L]]
    else if(object$rank) dimnames(qrLmr(object)$qr)[[2L]][seq_len(object$rank)]
    else character()
}

vcov.lmrob <- function (object, cov = object$control$cov, complete = TRUE, ...) {
    if(!is.null(object$cov) && (missing(cov) ||
				identical(cov, object$control$cov)))
	.vcov.aliased(aliased = is.na(coef(object)), object$cov,
		      complete= if(is.na(complete)) FALSE else complete)
    else {
	## cov is typically = ".vcov.w" or ".vcov.avar1", but can be *any* user func.
	lf.cov <- if (!is.function(cov)) get(cov, mode = "function") else cov
	lf.cov(object, complete=complete, ...)
    }
}

sigma.lmrob <- function(object, ...) object$scale

weights.lmrob <- function(object, type = c("prior", "robustness"), ...) {
    type <- match.arg(type)
    res <- if (type == "prior") {
	## Issue warning only if called from toplevel. Otherwise the warning pop
	## up at quite unexpected places, e.g., case.names().
	if (is.null(object[["weights"]]) && identical(parent.frame(), .GlobalEnv))
	    warning("No weights defined for this object. Use type=\"robustness\" argument to get robustness weights.")
	object[["weights"]]
    } else object[["rweights"]]
    if (is.null(object$na.action))
	res
    else naresid(object$na.action, res)
}


####  functions hidden in namespace ####

printControl <-
    function(ctrl, digits = getOption("digits"),
	     str.names = "seed", drop. = character(0),
	     header = "Algorithmic parameters:",
	     ...)
{
    ## Purpose: nicely and sensibly print a 'control' structure
    ##		currently  for lmrob(), glmrob()
    ## Author: Martin Maechler, 2006 ff
    force(ctrl) # ->> better error msg

    ## NB: unlist() drops setting=NULL  [ok]
    PR <- function(LST, ...) {
        if(length(LST)) {
            if(any(L <- !vapply(LST, function(.) is.atomic(.) || is.null(.), NA))) {
                ## treat non-{atomic|NULL}:
                LST[L] <- lapply(LST[L], str2simpLang)
            }
            print(unlist(LST), ...)
        }
    }
    ##' maybe generally useful  TODO? ---> {utils} or at least {sfsmisc} ?
    str2simpLang <-  function(x) {
        r <- if(is.null(x)) quote((NULL)) else str2lang(deparse1(x))
        if(is.call(r)) format(r) else r
    }

    cat(header,"\n")
    is.str <- (nc <- names(ctrl)) %in% str.names
    do. <- !is.str & !(nc %in% drop.)
    is.ch <- vapply(ctrl, is.character, NA)
    real.ctrl <- vapply(ctrl, function(x) # real, *not* integer-valued
			length(x) > 0 && is.numeric(x) && any(x %% 1 != 0), NA)
    PR(ctrl[do. & real.ctrl], digits = digits, ...)
    ## non-real, non-char ones (typically integers), but dropping 0-length ones
    PR(ctrl[do. & !is.ch & !real.ctrl], ...)
    ## char ones
    PR(ctrl[do. & is.ch], ...)
    if(any(is.str))
	for(n in nc[is.str]) {
	    cat(n,":")
	    str(ctrl[[n]], vec.len = 2)
	    ## 'vec.len = 2' is smaller than normal, but nice for Mersenne seed
	}
}


summarizeRobWeights <-
    function(w, digits = getOption("digits"), header = "Robustness weights:",
	     eps = 0.1 / length(w), eps1 = 1e-3, ...)
{
    ## Purpose: nicely print a "summary" of robustness weights
    stopifnot(is.numeric(w))
    cat(header,"\n")
    cat0 <- function(...) cat('', ...)
    n <- length(w)
    if(n <= 10) print(w, digits = digits, ...)
    else {
	n1 <- sum(w1 <- abs(w - 1) < eps1)
	n0 <- sum(w0 <- abs(w) < eps)
	if(any(w0 & w1))
	    warning("weights should not be both close to 0 and close to 1!\n",
		    "You should use different 'eps' and/or 'eps1'")
	if(n0 > 0 || n1 > 0) {
	    if(n0 > 0) {
		formE <- function(e) formatC(e, digits = max(2, digits-3), width=1)
		i0 <- which(w0)
		maxw <- max(w[w0])
		c3 <- paste0("with |weight| ",
                             if(maxw == 0) "= 0" else paste("<=", formE(maxw)),
			    " ( < ", formE(eps), ");")
		cat0(if(n0 > 1) {
		       cc <- sprintf("%d observations c(%s)",
				     n0, strwrap(paste(i0, collapse=",")))
		       c2 <- " are outliers"
		       paste0(cc,
			     if(nchar(cc)+ nchar(c2)+ nchar(c3) > getOption("width"))
			     "\n	", c2)
		     } else
		       sprintf("observation %d is an outlier", i0),
		     c3, "\n")
	    }
	    if(n1 > 0)
		cat0(ngettext(n1, "one weight is",
			     sprintf("%s%d weights are",
				     if(n1 == n)"All " else '', n1)), "~= 1.")
	    n.rem <- n - n0 - n1
	    if(n.rem <= 0) { # < 0 possible if w0 & w1 overlap
		if(n1 > 0) cat("\n")
		return(invisible())
	    }
	    cat0("The remaining",
		 ngettext(n.rem, "one", sprintf("%d ones", n.rem)), "are")
	    if(is.null(names(w)))
		names(w) <- as.character(seq(along = w))
	    w <- w[!w1 & !w0]
	    if(n.rem <= 10) {
		cat("\n")
		print(w, digits = digits, ...)
		return(invisible())
	    }
	    else cat(" summarized as\n")
	}
	print(summary(w, digits = digits), digits = digits, ...)
    }
}