File: ltsReg.R

package info (click to toggle)
robustbase 0.99-6-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 4,584 kB
  • sloc: fortran: 3,245; ansic: 3,243; sh: 15; makefile: 2
file content (877 lines) | stat: -rw-r--r-- 29,148 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
#### This is originally from the R package
####
####  rrcov : Scalable Robust Estimators with High Breakdown Point
####
#### by Valentin Todorov

##  I would like to thank Peter Rousseeuw and Katrien van Driessen for
##  providing the initial code of this function.

### This program is free software; you can redistribute it and/or modify
### it under the terms of the GNU General Public License as published by
### the Free Software Foundation; either version 2 of the License, or
### (at your option) any later version.
###
### This program is distributed in the hope that it will be useful,
### but WITHOUT ANY WARRANTY; without even the implied warranty of
### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
### GNU General Public License for more details.
###
### You should have received a copy of the GNU General Public License
### along with this program; if not, a copy is available at
### http://www.r-project.org/Licenses/


ltsReg <- function(x, ...) UseMethod("ltsReg")

ltsReg.formula <- function(formula, data, subset, weights, na.action,
			   model = TRUE, x.ret = FALSE, y.ret = FALSE,
                           contrasts = NULL, offset, ...)
{
    cl <- match.call()
    ##	  method <- match.arg(method)

    ## keep only the arguments which should go into the model frame
    mf <- match.call(expand.dots = FALSE)
    m <- match(c("formula", "data", "subset", "weights", "na.action",
                 "offset"), names(mf), 0)
    mf <- mf[c(1, m)]
    mf$drop.unused.levels <- TRUE
    mf[[1]] <- as.name("model.frame")
    mf <- eval.parent(mf)
    ##	  if (method == "model.frame") return(mf)

    mt <- attr(mf, "terms")
    y <- model.response(mf, "numeric") ## was model.extract(mf, "response")

    if (is.empty.model(mt)) { # "y ~ 0" : no coefficients
	x <- offset <- NULL
	fit <- list(method = "ltsReg for empty model",
		    coefficients = numeric(0), residuals = y,
		    fitted.values = 0 * y, lts.wt = 1 + 0 * y,
		    rank = 0, intercept = FALSE, df.residual = length(y))
	## alpha = alpha from "..."
	class(fit) <- "lts"
    }
    else {
        w <- model.weights(mf)
        offset <- model.offset(mf)

	x <- model.matrix(mt, mf, contrasts)

	## Check if there is an intercept in the model.
	## A formula without intercept looks like this: Y ~ . -1
	## If so, remove the corresponding column and use intercept=TRUE
	## in the call to ltsReg.default(); by default, intercept=FALSE.
	xint <- match("(Intercept)", colnames(x), nomatch = 0)
	if(xint)
	    x <- x[, -xint, drop = FALSE]
	fit <- ltsReg.default(x, y, intercept = (xint > 0), ...)
    }

    ## 3) return the na.action info
    fit$na.action <- attr(mf, "na.action")
    fit$offset <- offset

    ## 4) return the contrasts used in fitting: possibly as saved earlier.
    fit$contrasts <- attr(x, "contrasts")

    fit$xlevels <- .getXlevels(mt, mf)
    fit$call <- cl
    fit$terms <- mt

    if(model) fit$model <- mf
    if(x.ret) fit$x <- x # or? if(xint == 0) x else  x[, c(2:p,1), drop=FALSE]
    if(y.ret) fit$y <- y

    fit
}

ltsReg.default <- function (x, y, intercept = TRUE,
        alpha = control$ alpha,
        nsamp = control$ nsamp,
	adjust = control$ adjust,
	mcd = TRUE,
	qr.out = FALSE,
	yname = NULL,
        seed  = control$ seed,
        trace = control$ trace,
	use.correction = control$ use.correction,
        wgtFUN = control$ wgtFUN,
	control = rrcov.control(),
	...)
{
    ##	 Analyze and validate the input parameters ...

    ## if a control object was supplied, take the option parameters from it,
    ## but if single parameters were passed (not defaults) they will override the
    ## control object.
### MM: FIXME: this sucks ('control' may contain *some* but not all parts!):
    if(!missing(control)) {
	defCtrl <- rrcov.control()	# default control
	if(is.null(alpha) && control$alpha != defCtrl$alpha)
	    alpha <- control$alpha
	if(nsamp == defCtrl$nsamp)    nsamp <- control$nsamp
	if(identical(seed, defCtrl$seed)) seed <- control$seed

	if(use.correction == defCtrl$use.correction)
	    use.correction <- control$use.correction
	if(adjust == defCtrl$adjust)
	    adjust <- control$adjust
    } else defCtrl <- control ## == rrcov.control()
    ## For back compatibility, as some new args did not exist pre 2013-04,
    ## and callers of covMcd() may use a "too small"  'control' list:

    if(missing(wgtFUN)) getDefCtrl("wgtFUN", defCtrl)

    if(length(seed) > 0) {
	if(length(seed) < 3L || seed[1L] < 100L)
	    stop("invalid 'seed'. Must be compatible with .Random.seed !")
	if(!is.null(seed.keep <- get0(".Random.seed", envir = .GlobalEnv, inherits = FALSE)))
	    on.exit(assign(".Random.seed", seed.keep, envir = .GlobalEnv))
	assign(".Random.seed", seed, envir = .GlobalEnv)
    }

    if(alpha < 1/2 || alpha > 1)
	stop("alpha not inside [1/2, 1]")

    ## FIXME: change this analogously to covMcd()'s and covComedian()'s
    ## quantiel <- qnorm(0.9875)
    if(is.character(wgtFUN)) {
	switch(wgtFUN,
	       "01.original" = {
		   cW <- qnorm(0.9875)
		   wgtFUN <- function(r) as.numeric(abs(r) <= cW)
	       },
	       stop("unknown 'wgtFUN' specification: ", wgtFUN))
    } else if(!is.function(wgtFUN))
	stop("'wgtFUN' must be a function or a string specifying one")

    ## vt::03.02.2006 - raw.cnp2 and cnp2 are vectors of size 2 and  will
    ##	 contain the correction factors (concistency and finite sample)
    ##	 for the raw and reweighted estimates respectively. Set them initially to 1.
    ##	 If use.correction is set to FALSE (default=TRUE), the finite sample correction
    ##	 factor will not be used (neither for the raw estimates nor for the reweighted)
    raw.cnp2 <- rep(1,2)
    cnp2 <- rep(1,2)

    ##cat("++++++ Entering ltsReg() ...\n")

    y <- data.matrix(y)
    if (!is.numeric(y)) stop("y is not a numeric")
    if (dim(y)[2] != 1) stop("y is not onedimensional")

    oneD <- (missing(x) || is.null(x) || NCOL(x) == 0) ## location model - no x
    if(oneD) {
	x <- matrix(1, nrow(y), 1)
    }
    else { ## x is present
	if(is.data.frame(x))
	    x <- data.matrix(x)
	else if (!is.matrix(x))
	    x <- matrix(x, length(x), 1,
			dimnames = list(names(x), deparse(substitute(x))))
    }

    if (nrow(x) != nrow(y))
	stop("Number of observations in x and y not equal")
    na.x <- !is.finite(rowSums(x))
    na.y <- !is.finite(y)
    ok <- !(na.x | na.y)
    x <- x[ok, , drop = FALSE]
    y <- y[ok, , drop = FALSE]
    dx <- dim(x)
    n <- dx[1]
    if (n == 0)
	stop("All observations have missing values!")
    dimny <- dimnames(y)
    rownames <- dimny[[1]]
    yn <- if(!is.null(yname))
	yname else if(!is.null(dimny[[2]])) dimny[[2]]
    has.yn <- !is.null(yn)
    if(!has.yn) yn <- "Y"
    storage.mode(y) <- "double"
    storage.mode(x) <- "double"
    if (!oneD) {
	is.const <- function(x) {
	    c1 <- range(x)
	    c1[1] == c1[2]
	}
	if (any(apply(x, 2, is.const)))
	    stop("There is at least one constant column. Remove it and set intercept=TRUE")
    }

    ##cat("++++++ Prepare: Ready.\n")

    xn <- (dnx <- dimnames(x))[[2]]
    xn <- if(!is.null(xn)) xn else if (dx[2] > 1)
	paste("X", 1:dx[2], sep = "") else if (dx[2]) "X" ## else : p = 0
    dimnames(x) <- list(dnx[[1]], xn) # also works  if(is.null(dnx))
    y <- as.vector(y)

    if(all(x == 1)) { ## includes 'oneD' and empty x (p = 0)
	if(qr.out) {
	    warning("'qr.out = TRUE' for univariate location is disregarded")
	    qr.out <- FALSE
	}
	h <- h.alpha.n(alpha, n, dx[2])
	p <- 1
	if (alpha == 1) {
	    scale <- sqrt(drop(cov.wt(as.matrix(y))$cov))
	    center <- as.vector(mean(y))
	    ## xbest <- NULL
	} else {
            sh <- .fastmcd(as.matrix(y), as.integer(h), nsamp = 0, # (y *is* 1-dim.!)
			   nmini = 300, kmini = 5)
	    center <- as.double(sh$initmean)
	    qalpha <- qchisq(h/n, 1)
	    calphainvers <- pgamma(qalpha/2, 1/2 + 1)/(h/n)
	    raw.cnp2[1] <- calpha <- 1/calphainvers
	    raw.cnp2[2] <- correct <- LTScnp2(1, intercept = intercept, n, alpha)
	    if(!use.correction) # do not use finite sample correction factor
		raw.cnp2[2] <- correct <- 1.0

	    scale <- sqrt(as.double(sh$initcovariance)) * sqrt(calpha) * correct
	    ## xbest <- sort(as.vector(sh$best))  # fastmcd in the univariate case does not return inbest[]
	}
	resid <- y - center
	ans <- list(method = "Univariate location and scale estimation.",
		    best = NULL, # xbest,
		    coefficients = center,
		    alpha = alpha,
		    quan  = h,
		    raw.coefficients = center,
		    raw.resid = resid/scale,
		    raw.weights = rep.int(NA, length(na.y)))
	if(abs(scale) < 1e-07) {
	    ans$raw.weights[ok] <- weights <- as.numeric(abs(resid) < 1e-07)
	    ans$scale <- ans$raw.scale <- 0
	    ans$crit <- 0
	    ans$method <- paste(ans$method,
				"More than half of the data are equal!",sep="\n")
	}
	else {
	    ans$raw.scale <- scale
	    ans$raw.weights[ok] <- weights <- wgtFUN(resid/scale)
            sum.w <- sum(weights)
	    reweighting <- cov.wt(as.matrix(y), wt = weights)
	    ans$coefficients <- reweighting$center
	    ans$scale <- sqrt(sum.w/(sum.w - 1) * drop(reweighting$cov))
	    resid <- y - ans$coefficients
	    ans$crit <- sum(sort((y - center)^2, partial = h)[1:h])
	    if (sum.w != n) {
		qdelta.rew <- qchisq(sum.w/n, 1)
		cdeltainvers.rew <- pgamma(qdelta.rew/2, 1/2 + 1)/(sum.w/n)
		cdelta.rew <- sqrt(1/cdeltainvers.rew)
		correct.rew <-
		    if(use.correction)
			LTScnp2.rew(1, intercept = intercept, n, alpha) else 1
		cnp2 <- c(cdelta.rew, correct.rew)
		ans$scale <- ans$scale * cdelta.rew * correct.rew
	    }
	    weights <- wgtFUN(resid/ans$scale)
	}
	fitted <- ans$coefficients
	ans$resid <- resid/ans$scale
	ans$rsquared <- 0
	ans$intercept <- intercept
        if(has.yn)
            names(ans$coefficients) <- names(ans$raw.coefficients) <- yn

    } ## end {all(x == 1)} --

    else { ## ------------------ usual non-trivial case ---------------------
	if(mcd) ## need 'old x' later
	    X <- x
	if (intercept) { ## intercept must be *last* (<- fortran code) {"uahh!"}
	    x <- cbind(x, "Intercept" = 1)
	    dx <- dim(x)
	    xn <- colnames(x)
	}
	p <- dx[2]
	if (n <= 2 * p)
	    stop("Need more than twice as many observations as variables.")

	## VT:: 26.12.2004
	## Reorder the coefficients so that the intercept is at the beginning ..
	getCoef <- ## simple wrapper (because of above "intercept must be")
	    if(p > 1 && intercept)
		 function(cf) cf[c(p, 1:(p - 1))]
	    else function(cf) cf

	ans <- list(alpha = alpha, raw.weights = rep.int(NA, length(na.y)))

	if(alpha == 1) { ## alpha == 1 -----------------------
	    ## old, suboptimal: z <- lsfit(x, y, intercept = FALSE)
	    z <- lm.fit(x, y)
	    qrx <- z$qr
	    cf <- z$coef
	    names(cf) <- xn
	    ans$raw.coefficients <- getCoef(cf)

	    resid <- z$residuals
	    ans$quan <- h <- n

	    s0 <- sqrt((1/(n - p)) * sum(resid^2))

	    ##cat("++++++ B - alpha == 1... - s0=",s0,"\n")
	    if(abs(s0) < 1e-07) {
		fitted <- x %*% z$coef
		ans$raw.weights[ok] <- weights <- as.numeric(abs(resid) <= 1e-07)
		ans$scale <- ans$raw.scale <- 0
		ans$coefficients <- ans$raw.coefficients
	    }
	    else {
		ans$raw.scale <- s0
		ans$raw.resid <- resid / s0
		ans$raw.weights[ok] <- weights <- wgtFUN(ans$raw.resid)
		sum.w <- sum(weights)
		## old, suboptimal: z <- lsfit(x, y, wt = weights, intercept = FALSE)
		z <- lm.wfit(x, y, w = weights)

		ans$coefficients <- getCoef(z$coef)

		fitted <- x %*% z$coef
		ans$scale <- sqrt(sum(weights * resid^2)/(sum.w - 1))
		if (sum.w != n) {
		    qn.w <- qnorm((sum.w + n)/(2 * n))
		    cdelta.rew <- 1/sqrt(1 - (2 * n)/(sum.w/qn.w) * dnorm(qn.w))
		    ans$scale <- ans$scale * cdelta.rew
		}
		ans$resid <- resid/ans$scale
		weights <- wgtFUN(ans$resid)
	    }

	    names(ans$coefficients) <- getCoef(xn)

	    s1 <- sum(resid^2)
	    ans$crit <- s1
	    sh <- (if (intercept) y - mean(y) else y) ^ 2
	    ans$rsquared <- max(0, min(1, 1 - (s1/sh)))

	    ans$method <- "Least Squares Regression."

	} ## end {alpha == 1} : "classical"

	else { ## alpha < 1 -----------------------------------------------
	    coefs <- rep(NA, p)
	    names(coefs) <- xn
	    qrx <- if(qr.out) qr(x) else qr(x)[c("rank", "pivot")]

	    rk <- qrx$rank
	    if (rk < p)
		stop("x is singular")
	    ## else :

	    h <- h.alpha.n(alpha, n, rk)

	    z <- .fastlts(x, y, h, nsamp, intercept, adjust, trace=as.integer(trace))
	    if(z$objfct < 0)
		stop("no valid subsample found in LTS - set 'nsamp' or rather use lmrob.S()")
	    ## vt:: lm.fit.qr == lm.fit(...,method=qr,...)
	    cf <- lm.fit(x[z$inbest, , drop = FALSE], y[z$inbest])$coef
	    if(any(ic <- is.na(cf)))
		stop(gettextf("NA coefficient (at %s) from \"best\" subset",
			      paste(which(ic), collapse =",")))
	    ans$best <- sort(z$inbest)
	    fitted <- x %*% cf
	    resid <- y - fitted
	    piv <- 1:p
	    coefs[piv] <- cf ## FIXME? why construct 'coefs' so complicatedly?	use 'cf' !

	    ans$raw.coefficients <- getCoef(coefs)

	    ans$quan <- h
	    correct <- if(use.correction)
		LTScnp2(p, intercept = intercept, n, alpha) else 1
	    raw.cnp2[2] <- correct
	    s0 <- sqrt(mean(sort(resid^2, partial = h)[1:h]))
	    sh0 <- s0
	    qn.q <- qnorm((h + n)/ (2 * n))
	    s0 <- s0 / sqrt(1 - (2 * n)/(h / qn.q) * dnorm(qn.q)) * correct

	    if (abs(s0) < 1e-07) {
		ans$raw.weights[ok] <- weights <- as.numeric(abs(resid) <= 1e-07)
		ans$scale <- ans$raw.scale <- 0
		ans$coefficients <- ans$raw.coefficients
	    }
	    else {
		ans$raw.scale <- s0
		ans$raw.resid <- resid/ans$raw.scale
		ans$raw.weights[ok] <- weights <- wgtFUN(resid/s0)
		sum.w <- sum(weights)

		## old, suboptimal: z1 <- lsfit(x, y, wt = weights, intercept = FALSE)
		z1 <- lm.wfit(x, y, w = weights)

		ans$coefficients <- getCoef(z1$coef)

		fitted <- x %*% z1$coef
		resid <- z1$residuals
		ans$scale <- sqrt(sum(weights * resid^2)/(sum.w - 1))
		if (sum.w == n) {
		    cdelta.rew <- 1
		    correct.rew <- 1
		}
		else {
		    qn.w <- qnorm((sum.w + n)/(2 * n))
		    cnp2[1] <- cdelta.rew <- 1 / sqrt(1 - (2 * n)/(sum.w / qn.w) * dnorm(qn.w))
		    correct.rew <-
			if (use.correction) ## use finite sample correction
			    LTScnp2.rew(p, intercept = intercept, n, alpha)
			else 1
		    cnp2[2] <- correct.rew
		    ans$scale <- ans$scale * cdelta.rew * correct.rew
		}
		ans$resid <- resid/ans$scale
		weights <- wgtFUN(ans$resid)
	    }
	    ## unneeded: names(ans$coefficients) <- names(ans$raw.coefficients)
	    ans$crit <- z$objfct
	    if (intercept) {
                sh <- .fastmcd(as.matrix(y), as.integer(h), nsamp = 0, # (y *is* 1-dim.!)
			       nmini = 300, kmini = 5)
		y <- as.vector(y) ## < ??
		sh <- as.double(sh$adjustcov)
		iR2 <- (sh0/sh)^2
	    }
	    else {
		s1 <- sum(sort(resid^2, partial = h)[1:h])
		sh <- sum(sort(y^2,     partial = h)[1:h])
		iR2 <- s1/sh
	    }

	    ans$rsquared <- if(is.finite(iR2)) max(0, min(1, 1 - iR2)) else 0

	    attributes(resid) <- attributes(fitted) <- attributes(y)
	    ans$method <- "Least Trimmed Squares Robust Regression."
	} ## end { alpha < 1 }

	ans$intercept <- intercept
	if (abs(s0) < 1e-07)
	    ans$method <- paste(ans$method, "\nAn exact fit was found!")

	if (mcd) { ## compute robust distances {for diagnostics, eg. rdiag()plot}
	    mcd <- covMcd(X, alpha = alpha, use.correction=use.correction)
	    if ( -determinant(mcd$cov, logarithm = TRUE)$modulus > 50 * p) {
		ans$RD <- "singularity"
	    }
	    else {
		ans$RD <- rep.int(NA, length(na.y))
		ans$RD[ok] <- sqrt(mahalanobis(X, mcd$center, mcd$cov))
		names(ans$RD) <- rownames
	    }
	}

    } ## end { nontrivial 'x' }

    ans$lts.wt <- rep.int(NA, length(na.y))
    ans$lts.wt[ok] <- weights
    ans$residuals <- rep.int(NA, length(na.y))
    ans$residuals[ok] <- resid
    ans$fitted.values <- rep.int(NA, length(na.y))
    ans$fitted.values[ok] <- fitted

    names(ans$fitted.values) <- names(ans$residuals) <- names(ans$lts.wt) <-
	rownames
    if(has.yn) { ## non-sense otherwise:
	names(ans$scale) <- names(ans$raw.scale) <- yn
	names(ans$rsquared) <- names(ans$crit) <- yn
    }
    ans$Y <- y
    ans$X <- if(p > 1 && intercept) x[, c(p, 1:(p - 1))] else x
    dimnames(ans$X) <- list(rownames[ok], names(ans$coefficients))
    if (qr.out)
	ans$qr <- qrx
    ans$raw.cnp2 <- raw.cnp2
    ans$cnp2 <- cnp2
    class(ans) <- "lts"
    ans$call <- match.call()
    ans
} ## {ltsReg.default}

summary.lts <- function (object, correlation = FALSE, ...)
{
    z <- object
    r <- z$residuals
    f <- z$fitted
    int <- z$intercept
    w <- as.vector(z$lts.wt)
    n <- sum(w)

    Qr <- qr(w * z$X)# 'w * z$X': more efficient than t(t(object$X) %*% diag(w))
    p <- Qr$rank
    p1 <- seq(length = p) ## even for p = 0
    rdf <- n - p
    mss <-  if(int) {
		m <- sum(w * f /sum(w))
		sum(w * (f - m)^2)
	    } else
		sum(w * f^2)
    rss <- sum(w * r^2)

    r <- sqrt(w) * r
    resvar <- rss/rdf

    R <- if (p > 0) chol2inv(Qr$qr[p1, p1, drop = FALSE]) else matrix(NA_real_,p,p)
    ## no need to reorder R anymore, since 'X' already has "intercept first"
    se <- sqrt(diag(R) * resvar)

    est <- z$coefficients
    tval <- est/se

    ans <-
	c(z[c("call", "terms")],
	  ## not again attr(ans, "call") <- attr(z,"call")
	  list(residuals = r,
	       coefficients = {
		   cbind("Estimate" = est, "Std. Error" = se, "t value" = tval,
			 "Pr(>|t|)" = 2*pt(abs(tval), rdf, lower.tail = FALSE))
	       },
	       sigma = sqrt(resvar),
	       df = c(p, rdf, NCOL(Qr$qr))))

    df.int <- if(int) 1 else 0
    if(p - df.int > 0) {
	ans$r.squared <- mss/(mss + rss)
	ans$adj.r.squared <- 1 - (1 - ans$r.squared) * ((n - df.int)/rdf)
	ans$fstatistic <- c(value = (mss/(p - df.int))/resvar,
			    numdf = p - df.int, dendf = rdf)
    } else
	ans$r.squared <- ans$adj.r.squared <- 0

    ans$cov.unscaled <- R
    dimnames(ans$cov.unscaled) <- dimnames(ans$coefficients)[c(1,1)]

    if (correlation) {
	ans$correlation <- (R * resvar)/outer(se, se)
	dimnames(ans$correlation) <- dimnames(ans$cov.unscaled)
    }
    class(ans) <- "summary.lts"
    ans
}

print.lts <- function (x, digits = max(3, getOption("digits") - 3), ...)
{
    cat("\nCall:\n", deparse(x$call), "\n\n", sep = "")
    if (length(coef(x))) {
	cat("Coefficients:\n")
	print.default(format(coef(x), digits = digits), print.gap = 2, quote = FALSE)
	cat("\nScale estimate", format(x$scale, digits = digits) ,"\n\n")
    }
    else
	cat("No coefficients\n")

    invisible(x)
}

print.summary.lts <-
    function(x, digits = max(3, getOption("digits") - 3),
	     signif.stars = getOption("show.signif.stars"), ...)
##	     signif.stars = FALSE, ...)
##			    ^^^^^ (since they are not quite correct ?)
{
    cat("\nCall:\n",
	paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "")
    resid <- x$residuals
    df <- x$df
    rdf <- df[2]
    cat("Residuals (from reweighted LS):\n")
    ## "cut & paste" from print.summary.lm():
    if(rdf > 5) {
	nam <- c("Min", "1Q", "Median", "3Q", "Max")
	rq <-	if(length(dim(resid)) == 2)
		    structure(apply(t(resid), 1, quantile),
			      dimnames = list(nam, dimnames(resid)[[2]]))
		else
		    structure(quantile(resid), names = nam)
	print(rq, digits = digits, ...)
    }
    else if(rdf > 0) {
	print(resid, digits = digits, ...)
    } else { # rdf == 0 : perfect fit!
	cat("ALL", df[1], "residuals are 0: no residual degrees of freedom!\n")
    }

    if(NROW(x$coefficients)) {
	if (nsingular <- df[3] - df[1])
	    cat("\nCoefficients: (", nsingular,
		" not defined because of singularities)\n", sep = "")
	else
	    cat("\nCoefficients:\n")
	printCoefmat(x$coefficients, digits = digits,
		     signif.stars = signif.stars, ...)
    }
    else cat("\nNo coefficients\n")

    cat("\nResidual standard error:",
    format(signif(x$sigma, digits)), "on", rdf, "degrees of freedom\n")

    if(!is.null(x$fstatistic)) {
	cat("Multiple R-Squared:", formatC(x$r.squared, digits = digits))
	cat(",\tAdjusted R-squared:",formatC(x$adj.r.squared,digits = digits),
	    "\nF-statistic:", formatC(x$fstatistic[1], digits = digits),
	    "on", x$fstatistic[2], "and",
	    x$fstatistic[3], "DF,  p-value:",
	    format.pval(pf(x$fstatistic[1], x$fstatistic[2],
			   x$fstatistic[3], lower.tail = FALSE), digits = digits),
	    "\n")
    }

    correl <- x$correlation
    if(!is.null(correl)) {
	p <- NCOL(correl)
	if(p > 1) {
	    cat("\nCorrelation of Coefficients:\n")
	    correl <- format(round(correl, 2), nsmall = 2, digits = digits)
	    correl[!lower.tri(correl)] <- ""
	    print(correl[-1, -p, drop = FALSE], quote = FALSE)
	}
    }
    cat("\n")
    invisible(x)
}


### --- Namespace hidden (but parsed once and for all) : -------------

##' Compute Finite Sample Correction Factor for the "raw" LTSreg() scale
LTScnp2 <- function(p, intercept = intercept, n, alpha)
{
    stopifnot(0.5 <= alpha, alpha <= 1)
    if (intercept)
	p <- p - 1
    stopifnot(p == as.integer(p), p >= 0)
    if (p == 0) {
	fp.500.n <- 1 - exp( 0.262024211897096) / n^ 0.604756680630497
	fp.875.n <- 1 - exp(-0.351584646688712) / n^ 1.01646567502486
	if ((0.5 <= alpha) && (alpha <= 0.875)) {
	    fp.alpha.n <- fp.500.n + (fp.875.n - fp.500.n)/0.375 * (alpha - 0.5)
	    fp.alpha.n <- sqrt(fp.alpha.n)
	}
	if ((0.875 < alpha) && (alpha < 1)) {
	    fp.alpha.n <- fp.875.n + (1 - fp.875.n)/0.125 * (alpha - 0.875)
	    fp.alpha.n <- sqrt(fp.alpha.n)
	}
    }
    else { ## p >= 1
	if (p == 1) {
	    if (intercept) {
		fp.500.n <- 1 - exp( 0.630869217886906 ) / n^ 0.650789250442946
		fp.875.n <- 1 - exp( 0.565065391014791 ) / n^ 1.03044199012509
	    }
	    else {
		fp.500.n <- 1 - exp(-0.0181777452315321) / n^ 0.697629772271099
		fp.875.n <- 1 - exp(-0.310122738776431 ) / n^ 1.06241615923172
	    }
	} else { ## --- p > 1 ---
	    if (intercept) {
		##			     "alfaq"		"betaq"	   "qwaarden"
		coefgqpkwad875 <- matrix(c(-0.458580153984614, 1.12236071104403, 3,
					   -0.267178168108996, 1.1022478781154,	 5), ncol = 2)
		coefeqpkwad500 <- matrix(c(-0.746945886714663, 0.56264937192689,  3,
					   -0.535478048924724, 0.543323462033445, 5), ncol = 2)
	    }
	    else {
		##			     "alfaq"		"betaq"	   "qwaarden"
		coefgqpkwad875 <- matrix(c(-0.251778730491252, 0.883966931611758, 3,
					   -0.146660023184295, 0.86292940340761,  5), ncol = 2)
		coefeqpkwad500 <- matrix(c(-0.487338281979106, 0.405511279418594, 3,
					   -0.340762058011,    0.37972360544988,  5), ncol = 2)
	    }

	    y.500 <- log(- coefeqpkwad500[1, ] / p^ coefeqpkwad500[2, ])
	    y.875 <- log(- coefgqpkwad875[1, ] / p^ coefgqpkwad875[2, ])

	    A.500 <- cbind(1, - log(coefeqpkwad500[3, ] * p^2))
	    coeffic.500 <- solve(A.500, y.500)
	    A.875 <- cbind(1, - log(coefgqpkwad875[3, ] * p^2))

	    coeffic.875 <- solve(A.875, y.875)
	    fp.500.n <- 1 - exp(coeffic.500[1]) / n^ coeffic.500[2]
	    fp.875.n <- 1 - exp(coeffic.875[1]) / n^ coeffic.875[2]
	}

	if(alpha <= 0.875)
	    fp.alpha.n <- fp.500.n + (fp.875.n - fp.500.n)/0.375 * (alpha - 0.5)
	else ##	 0.875 < alpha <= 1
	    fp.alpha.n <- fp.875.n + (1 - fp.875.n)/0.125 * (alpha - 0.875)
    }## else (p >= 1)

    return(1/fp.alpha.n)
} ## LTScnp2

##' Compute Finite Sample Correction Factor for the  REWeighted LTSreg() scale
LTScnp2.rew <- function(p, intercept = intercept, n, alpha)
{
    stopifnot(0.5 <= alpha, alpha <= 1)
    if (intercept)
	p <- p - 1
    stopifnot(p == as.integer(p), p >= 0)

    if (p == 0) {
	fp.500.n <- 1 - exp( 1.11098143415027) / n^ 1.5182890270453
	fp.875.n <- 1 - exp(-0.66046776772861) / n^ 0.88939595831888

	if(alpha <= 0.875)
	    fp.alpha.n <- fp.500.n + (fp.875.n - fp.500.n)/0.375 * (alpha - 0.5)
	else ##	 0.875 < alpha <= 1
	    fp.alpha.n <- fp.875.n + (1 - fp.875.n)/0.125 * (alpha - 0.875)
	## MM: sqrt() {below} is ''different logic'' than below.. (??)
	fp.alpha.n <- sqrt(fp.alpha.n)
    }
    else {
	if (p == 1) {
	    if (intercept) {
		fp.500.n <- 1 - exp(1.58609654199605 ) / n^ 1.46340162526468
		fp.875.n <- 1 - exp(0.391653958727332) / n^ 1.03167487483316
	    }
	    else {
		fp.500.n <- 1 - exp( 0.6329852387657)	/ n^ 1.40361879788014
		fp.875.n <- 1 - exp(-0.642240988645469) / n^ 0.926325452943084
	    }
	}
	else { ##  --- p > 1 ---
	    if (intercept) {
		##			     "alfaq"		"betaq"	   "qwaarden"
		coefqpkwad875 <- matrix(c(-0.474174840843602, 1.39681715704956, 3,
					  -0.276640353112907, 1.42543242287677, 5), ncol = 2)
		coefqpkwad500 <- matrix(c(-0.773365715932083, 2.02013996406346, 3,
					  -0.337571678986723, 2.02037467454833, 5), ncol = 2)
	    }
	    else {
		##			     "alfaq"		"betaq"	   "qwaarden"
		coefqpkwad875 <- matrix(c(-0.267522855927958, 1.17559984533974, 3,
					  -0.161200683014406, 1.21675019853961, 5), ncol = 2)
		coefqpkwad500 <- matrix(c(-0.417574780492848, 1.83958876341367, 3,
					  -0.175753709374146, 1.8313809497999, 5), ncol = 2)
	    }
	    y.500 <- log( - coefqpkwad500[1, ] / p^ coefqpkwad500[2, ])
	    y.875 <- log( - coefqpkwad875[1, ] / p^ coefqpkwad875[2, ])
	    A.500 <- cbind(1, - log(coefqpkwad500[3, ] * p^2))
	    coeffic.500 <- solve(A.500, y.500)
	    A.875 <- cbind(1, - log(coefqpkwad875[3, ] * p^2))
	    coeffic.875 <- solve(A.875, y.875)
	    fp.500.n <- 1 - exp(coeffic.500[1]) / n^ coeffic.500[2]
	    fp.875.n <- 1 - exp(coeffic.875[1]) / n^ coeffic.875[2]
	}

	if(alpha <= 0.875)
	    fp.alpha.n <- fp.500.n + (fp.875.n - fp.500.n)/0.375 * (alpha - 0.5)
	else ##	 0.875 < alpha <= 1
	    fp.alpha.n <- fp.875.n + (1 - fp.875.n)/0.125 * (alpha - 0.875)

    }## else (p >= 1)

    return(1/fp.alpha.n)
} ## LTScnp2.rew

.fastlts <- function(x, y, h.alph, nsamp, intercept, adjust, trace = 0)
{
    dx <- dim(x)
    n <- dx[1]
    p <- dx[2]

    ## Parameters for partitioning --- *IDENTICAL* to those in ../src/rfltsreg.[fc]
    kmini <- 5
    nmini <- 300
    km10 <- 10*kmini
    nmaxi <- nmini*kmini

    ##	 vt::03.02.2006 - added options "best" and "exact" for nsamp
    if(!missing(nsamp)) {
	if(trace) cat("non-missing nsamp = ", nsamp, "\n")
	if(is.numeric(nsamp) && nsamp <= 0) {
	    warning("Invalid number of trials nsamp=",nsamp,"! Using default.\n")
	    nsamp <- -1
	} else if(nsamp == "exact" || nsamp == "best") {
	    myk <- p
	    if(n > 2*nmini-1) {
		warning("'nsamp' options 'best' and 'exact' not allowed for n greater than ",
                        2*nmini-1,". Will use default.\n")
		nsamp <- -1
	    }
            else { ## FIXME: Add a test case for this !
		nall <- choose(n, myk)
		if(nall > 5000 && nsamp == "best") {
		    nsamp <- 5000
		    warning("Maximum 5000 subsets allowed for option 'best'.\n",
                            "Computing 5000 subsets of size ",myk," out of ",n,"\n")
		} else {
		    nsamp <- 0		#all subsamples
		    if(nall > 5000)
			cat("Computing all ",nall," subsets of size ", myk,
                            " out of ",n,
                            "\n This may take a very long time!\n")
		}
	    }
        }
	if(nsamp == -1) { ## still not defined - set it to the default
	    nsamp <- rrcov.control()$nsamp
	}
    }
    nsamp <- as.integer(nsamp)

    ## y <- as.matrix(y)
    ## xy <- matrix(0, ncol = p + 1, nrow = n)
    xy <- cbind(x, y)
    storage.mode(xy) <- "double" # {keeping dim(.)}
    storage.mode(n) <- "integer"
    storage.mode(p) <- "integer" ; p1 <- p+1L # integer
    storage.mode(h.alph) <- "integer"

    ##	 Allocate temporary storage for the fortran implementation

    temp <- index1 <- index2 <- integer(n)

    weights <- aw2 <- aw <- residu <- yy <-
	nmahad <- ndist <- am <- am2 <- slutn <- double(n)

    .Fortran(rfltsreg, ## -> ../src/rfltsreg.f
	     xy = xy,
	     n,
	     p,
	     h.alph, # = nhalff
	     nsamp,  # = krep

	     inbest = integer(h.alph),
	     objfct = -1.,# double, if remains at -1 : have *nothing* found

	     intercept = as.integer(intercept),
	     intadjust = as.integer(adjust),
	     nvad = as.integer(p1),
	     datt = matrix(0., ncol = p1, nrow = n),
	     weights,
	     temp,
	     index1,
	     index2,
	     aw2,
	     aw,
	     residu,
	     yy,
	     nmahad,
	     ndist,
	     am, am2,
	     slutn,
             jmiss = integer(p1),	##	 integer jmiss(nvad)	  --> p+1
             xmed = double(p1),		##	 double	 xmed(nvad)	  --> p+1
             xmad = double(p1),		##	 double	 xmad(nvad)
             a	 = double(p1),		##	 double	    a(nvad)
             da	 = double(p1),		##	 double	   da(nvad)

             h = matrix(0., p, p1),	##	 double	 h(nvar,nvad)		p*(p+1)
             hvec = double(p*(p1)),	##	 double	 hvec(nvar*nvad)	p*(p+1)
             c = matrix(0., p, p1),	##	 double	 c(nvar,nvad)		p*(p+1)

             cstock = matrix(0., 10, p*p),##	 double	 cstock(10,nvar*nvar)	10*p*p
             mstock = matrix(0., 10, p), ##	 double	 mstock(10,nvar)	10*p
             c1stock =matrix(0., km10, p*p),##	 double	 c1stock(km10,nvar*nvar)  km10*p*p
             m1stock =matrix(0., km10, p),##	 double	 m1stock(km10,nvar)	km10*p

             dath  = matrix(0., nmaxi, p1),##	 double	 dath(nmaxi,nvad)	nmaxi*(p+1)
             sd    = double(p),		##	 double	 sd(nvar)		p
             means = double(p),		##	 double	 means(nvar)		p
             bmeans= double(p),		##	 double	 means(nvar)		p

         i.trace= as.integer(trace))[ c("inbest", "objfct") ]
}