1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
|
#### This is originally from the R package
####
#### rrcov : Scalable Robust Estimators with High Breakdown Point
####
#### by Valentin Todorov
## I would like to thank Peter Rousseeuw and Katrien van Driessen for
## providing the initial code of this function.
### This program is free software; you can redistribute it and/or modify
### it under the terms of the GNU General Public License as published by
### the Free Software Foundation; either version 2 of the License, or
### (at your option) any later version.
###
### This program is distributed in the hope that it will be useful,
### but WITHOUT ANY WARRANTY; without even the implied warranty of
### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
### GNU General Public License for more details.
###
### You should have received a copy of the GNU General Public License
### along with this program; if not, a copy is available at
### http://www.r-project.org/Licenses/
ltsReg <- function(x, ...) UseMethod("ltsReg")
ltsReg.formula <- function(formula, data, subset, weights, na.action,
model = TRUE, x.ret = FALSE, y.ret = FALSE,
contrasts = NULL, offset, ...)
{
cl <- match.call()
## method <- match.arg(method)
## keep only the arguments which should go into the model frame
mf <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "weights", "na.action",
"offset"), names(mf), 0)
mf <- mf[c(1, m)]
mf$drop.unused.levels <- TRUE
mf[[1]] <- as.name("model.frame")
mf <- eval.parent(mf)
## if (method == "model.frame") return(mf)
mt <- attr(mf, "terms")
y <- model.response(mf, "numeric") ## was model.extract(mf, "response")
if (is.empty.model(mt)) { # "y ~ 0" : no coefficients
x <- offset <- NULL
fit <- list(method = "ltsReg for empty model",
coefficients = numeric(0), residuals = y,
fitted.values = 0 * y, lts.wt = 1 + 0 * y,
rank = 0, intercept = FALSE, df.residual = length(y))
## alpha = alpha from "..."
class(fit) <- "lts"
}
else {
w <- model.weights(mf)
offset <- model.offset(mf)
x <- model.matrix(mt, mf, contrasts)
## Check if there is an intercept in the model.
## A formula without intercept looks like this: Y ~ . -1
## If so, remove the corresponding column and use intercept=TRUE
## in the call to ltsReg.default(); by default, intercept=FALSE.
xint <- match("(Intercept)", colnames(x), nomatch = 0)
if(xint)
x <- x[, -xint, drop = FALSE]
fit <- ltsReg.default(x, y, intercept = (xint > 0), ...)
}
## 3) return the na.action info
fit$na.action <- attr(mf, "na.action")
fit$offset <- offset
## 4) return the contrasts used in fitting: possibly as saved earlier.
fit$contrasts <- attr(x, "contrasts")
fit$xlevels <- .getXlevels(mt, mf)
fit$call <- cl
fit$terms <- mt
if(model) fit$model <- mf
if(x.ret) fit$x <- x # or? if(xint == 0) x else x[, c(2:p,1), drop=FALSE]
if(y.ret) fit$y <- y
fit
}
ltsReg.default <- function (x, y, intercept = TRUE,
alpha = control$ alpha,
nsamp = control$ nsamp,
adjust = control$ adjust,
mcd = TRUE,
qr.out = FALSE,
yname = NULL,
seed = control$ seed,
trace = control$ trace,
use.correction = control$ use.correction,
wgtFUN = control$ wgtFUN,
control = rrcov.control(),
...)
{
## Analyze and validate the input parameters ...
## if a control object was supplied, take the option parameters from it,
## but if single parameters were passed (not defaults) they will override the
## control object.
### MM: FIXME: this sucks ('control' may contain *some* but not all parts!):
if(!missing(control)) {
defCtrl <- rrcov.control() # default control
if(is.null(alpha) && control$alpha != defCtrl$alpha)
alpha <- control$alpha
if(nsamp == defCtrl$nsamp) nsamp <- control$nsamp
if(identical(seed, defCtrl$seed)) seed <- control$seed
if(use.correction == defCtrl$use.correction)
use.correction <- control$use.correction
if(adjust == defCtrl$adjust)
adjust <- control$adjust
} else defCtrl <- control ## == rrcov.control()
## For back compatibility, as some new args did not exist pre 2013-04,
## and callers of covMcd() may use a "too small" 'control' list:
if(missing(wgtFUN)) getDefCtrl("wgtFUN", defCtrl)
if(length(seed) > 0) {
if(length(seed) < 3L || seed[1L] < 100L)
stop("invalid 'seed'. Must be compatible with .Random.seed !")
if(!is.null(seed.keep <- get0(".Random.seed", envir = .GlobalEnv, inherits = FALSE)))
on.exit(assign(".Random.seed", seed.keep, envir = .GlobalEnv))
assign(".Random.seed", seed, envir = .GlobalEnv)
}
if(alpha < 1/2 || alpha > 1)
stop("alpha not inside [1/2, 1]")
## FIXME: change this analogously to covMcd()'s and covComedian()'s
## quantiel <- qnorm(0.9875)
if(is.character(wgtFUN)) {
switch(wgtFUN,
"01.original" = {
cW <- qnorm(0.9875)
wgtFUN <- function(r) as.numeric(abs(r) <= cW)
},
stop("unknown 'wgtFUN' specification: ", wgtFUN))
} else if(!is.function(wgtFUN))
stop("'wgtFUN' must be a function or a string specifying one")
## vt::03.02.2006 - raw.cnp2 and cnp2 are vectors of size 2 and will
## contain the correction factors (concistency and finite sample)
## for the raw and reweighted estimates respectively. Set them initially to 1.
## If use.correction is set to FALSE (default=TRUE), the finite sample correction
## factor will not be used (neither for the raw estimates nor for the reweighted)
raw.cnp2 <- rep(1,2)
cnp2 <- rep(1,2)
##cat("++++++ Entering ltsReg() ...\n")
y <- data.matrix(y)
if (!is.numeric(y)) stop("y is not a numeric")
if (dim(y)[2] != 1) stop("y is not onedimensional")
oneD <- (missing(x) || is.null(x) || NCOL(x) == 0) ## location model - no x
if(oneD) {
x <- matrix(1, nrow(y), 1)
}
else { ## x is present
if(is.data.frame(x))
x <- data.matrix(x)
else if (!is.matrix(x))
x <- matrix(x, length(x), 1,
dimnames = list(names(x), deparse(substitute(x))))
}
if (nrow(x) != nrow(y))
stop("Number of observations in x and y not equal")
na.x <- !is.finite(rowSums(x))
na.y <- !is.finite(y)
ok <- !(na.x | na.y)
x <- x[ok, , drop = FALSE]
y <- y[ok, , drop = FALSE]
dx <- dim(x)
n <- dx[1]
if (n == 0)
stop("All observations have missing values!")
dimny <- dimnames(y)
rownames <- dimny[[1]]
yn <- if(!is.null(yname))
yname else if(!is.null(dimny[[2]])) dimny[[2]]
has.yn <- !is.null(yn)
if(!has.yn) yn <- "Y"
storage.mode(y) <- "double"
storage.mode(x) <- "double"
if (!oneD) {
is.const <- function(x) {
c1 <- range(x)
c1[1] == c1[2]
}
if (any(apply(x, 2, is.const)))
stop("There is at least one constant column. Remove it and set intercept=TRUE")
}
##cat("++++++ Prepare: Ready.\n")
xn <- (dnx <- dimnames(x))[[2]]
xn <- if(!is.null(xn)) xn else if (dx[2] > 1)
paste("X", 1:dx[2], sep = "") else if (dx[2]) "X" ## else : p = 0
dimnames(x) <- list(dnx[[1]], xn) # also works if(is.null(dnx))
y <- as.vector(y)
if(all(x == 1)) { ## includes 'oneD' and empty x (p = 0)
if(qr.out) {
warning("'qr.out = TRUE' for univariate location is disregarded")
qr.out <- FALSE
}
h <- h.alpha.n(alpha, n, dx[2])
p <- 1
if (alpha == 1) {
scale <- sqrt(drop(cov.wt(as.matrix(y))$cov))
center <- as.vector(mean(y))
## xbest <- NULL
} else {
sh <- .fastmcd(as.matrix(y), as.integer(h), nsamp = 0, # (y *is* 1-dim.!)
nmini = 300, kmini = 5)
center <- as.double(sh$initmean)
qalpha <- qchisq(h/n, 1)
calphainvers <- pgamma(qalpha/2, 1/2 + 1)/(h/n)
raw.cnp2[1] <- calpha <- 1/calphainvers
raw.cnp2[2] <- correct <- LTScnp2(1, intercept = intercept, n, alpha)
if(!use.correction) # do not use finite sample correction factor
raw.cnp2[2] <- correct <- 1.0
scale <- sqrt(as.double(sh$initcovariance)) * sqrt(calpha) * correct
## xbest <- sort(as.vector(sh$best)) # fastmcd in the univariate case does not return inbest[]
}
resid <- y - center
ans <- list(method = "Univariate location and scale estimation.",
best = NULL, # xbest,
coefficients = center,
alpha = alpha,
quan = h,
raw.coefficients = center,
raw.resid = resid/scale,
raw.weights = rep.int(NA, length(na.y)))
if(abs(scale) < 1e-07) {
ans$raw.weights[ok] <- weights <- as.numeric(abs(resid) < 1e-07)
ans$scale <- ans$raw.scale <- 0
ans$crit <- 0
ans$method <- paste(ans$method,
"More than half of the data are equal!",sep="\n")
}
else {
ans$raw.scale <- scale
ans$raw.weights[ok] <- weights <- wgtFUN(resid/scale)
sum.w <- sum(weights)
reweighting <- cov.wt(as.matrix(y), wt = weights)
ans$coefficients <- reweighting$center
ans$scale <- sqrt(sum.w/(sum.w - 1) * drop(reweighting$cov))
resid <- y - ans$coefficients
ans$crit <- sum(sort((y - center)^2, partial = h)[1:h])
if (sum.w != n) {
qdelta.rew <- qchisq(sum.w/n, 1)
cdeltainvers.rew <- pgamma(qdelta.rew/2, 1/2 + 1)/(sum.w/n)
cdelta.rew <- sqrt(1/cdeltainvers.rew)
correct.rew <-
if(use.correction)
LTScnp2.rew(1, intercept = intercept, n, alpha) else 1
cnp2 <- c(cdelta.rew, correct.rew)
ans$scale <- ans$scale * cdelta.rew * correct.rew
}
weights <- wgtFUN(resid/ans$scale)
}
fitted <- ans$coefficients
ans$resid <- resid/ans$scale
ans$rsquared <- 0
ans$intercept <- intercept
if(has.yn)
names(ans$coefficients) <- names(ans$raw.coefficients) <- yn
} ## end {all(x == 1)} --
else { ## ------------------ usual non-trivial case ---------------------
if(mcd) ## need 'old x' later
X <- x
if (intercept) { ## intercept must be *last* (<- fortran code) {"uahh!"}
x <- cbind(x, "Intercept" = 1)
dx <- dim(x)
xn <- colnames(x)
}
p <- dx[2]
if (n <= 2 * p)
stop("Need more than twice as many observations as variables.")
## VT:: 26.12.2004
## Reorder the coefficients so that the intercept is at the beginning ..
getCoef <- ## simple wrapper (because of above "intercept must be")
if(p > 1 && intercept)
function(cf) cf[c(p, 1:(p - 1))]
else function(cf) cf
ans <- list(alpha = alpha, raw.weights = rep.int(NA, length(na.y)))
if(alpha == 1) { ## alpha == 1 -----------------------
## old, suboptimal: z <- lsfit(x, y, intercept = FALSE)
z <- lm.fit(x, y)
qrx <- z$qr
cf <- z$coef
names(cf) <- xn
ans$raw.coefficients <- getCoef(cf)
resid <- z$residuals
ans$quan <- h <- n
s0 <- sqrt((1/(n - p)) * sum(resid^2))
##cat("++++++ B - alpha == 1... - s0=",s0,"\n")
if(abs(s0) < 1e-07) {
fitted <- x %*% z$coef
ans$raw.weights[ok] <- weights <- as.numeric(abs(resid) <= 1e-07)
ans$scale <- ans$raw.scale <- 0
ans$coefficients <- ans$raw.coefficients
}
else {
ans$raw.scale <- s0
ans$raw.resid <- resid / s0
ans$raw.weights[ok] <- weights <- wgtFUN(ans$raw.resid)
sum.w <- sum(weights)
## old, suboptimal: z <- lsfit(x, y, wt = weights, intercept = FALSE)
z <- lm.wfit(x, y, w = weights)
ans$coefficients <- getCoef(z$coef)
fitted <- x %*% z$coef
ans$scale <- sqrt(sum(weights * resid^2)/(sum.w - 1))
if (sum.w != n) {
qn.w <- qnorm((sum.w + n)/(2 * n))
cdelta.rew <- 1/sqrt(1 - (2 * n)/(sum.w/qn.w) * dnorm(qn.w))
ans$scale <- ans$scale * cdelta.rew
}
ans$resid <- resid/ans$scale
weights <- wgtFUN(ans$resid)
}
names(ans$coefficients) <- getCoef(xn)
s1 <- sum(resid^2)
ans$crit <- s1
sh <- (if (intercept) y - mean(y) else y) ^ 2
ans$rsquared <- max(0, min(1, 1 - (s1/sh)))
ans$method <- "Least Squares Regression."
} ## end {alpha == 1} : "classical"
else { ## alpha < 1 -----------------------------------------------
coefs <- rep(NA, p)
names(coefs) <- xn
qrx <- if(qr.out) qr(x) else qr(x)[c("rank", "pivot")]
rk <- qrx$rank
if (rk < p)
stop("x is singular")
## else :
h <- h.alpha.n(alpha, n, rk)
z <- .fastlts(x, y, h, nsamp, intercept, adjust, trace=as.integer(trace))
if(z$objfct < 0)
stop("no valid subsample found in LTS - set 'nsamp' or rather use lmrob.S()")
## vt:: lm.fit.qr == lm.fit(...,method=qr,...)
cf <- lm.fit(x[z$inbest, , drop = FALSE], y[z$inbest])$coef
if(any(ic <- is.na(cf)))
stop(gettextf("NA coefficient (at %s) from \"best\" subset",
paste(which(ic), collapse =",")))
ans$best <- sort(z$inbest)
fitted <- x %*% cf
resid <- y - fitted
piv <- 1:p
coefs[piv] <- cf ## FIXME? why construct 'coefs' so complicatedly? use 'cf' !
ans$raw.coefficients <- getCoef(coefs)
ans$quan <- h
correct <- if(use.correction)
LTScnp2(p, intercept = intercept, n, alpha) else 1
raw.cnp2[2] <- correct
s0 <- sqrt(mean(sort(resid^2, partial = h)[1:h]))
sh0 <- s0
qn.q <- qnorm((h + n)/ (2 * n))
s0 <- s0 / sqrt(1 - (2 * n)/(h / qn.q) * dnorm(qn.q)) * correct
if (abs(s0) < 1e-07) {
ans$raw.weights[ok] <- weights <- as.numeric(abs(resid) <= 1e-07)
ans$scale <- ans$raw.scale <- 0
ans$coefficients <- ans$raw.coefficients
}
else {
ans$raw.scale <- s0
ans$raw.resid <- resid/ans$raw.scale
ans$raw.weights[ok] <- weights <- wgtFUN(resid/s0)
sum.w <- sum(weights)
## old, suboptimal: z1 <- lsfit(x, y, wt = weights, intercept = FALSE)
z1 <- lm.wfit(x, y, w = weights)
ans$coefficients <- getCoef(z1$coef)
fitted <- x %*% z1$coef
resid <- z1$residuals
ans$scale <- sqrt(sum(weights * resid^2)/(sum.w - 1))
if (sum.w == n) {
cdelta.rew <- 1
correct.rew <- 1
}
else {
qn.w <- qnorm((sum.w + n)/(2 * n))
cnp2[1] <- cdelta.rew <- 1 / sqrt(1 - (2 * n)/(sum.w / qn.w) * dnorm(qn.w))
correct.rew <-
if (use.correction) ## use finite sample correction
LTScnp2.rew(p, intercept = intercept, n, alpha)
else 1
cnp2[2] <- correct.rew
ans$scale <- ans$scale * cdelta.rew * correct.rew
}
ans$resid <- resid/ans$scale
weights <- wgtFUN(ans$resid)
}
## unneeded: names(ans$coefficients) <- names(ans$raw.coefficients)
ans$crit <- z$objfct
if (intercept) {
sh <- .fastmcd(as.matrix(y), as.integer(h), nsamp = 0, # (y *is* 1-dim.!)
nmini = 300, kmini = 5)
y <- as.vector(y) ## < ??
sh <- as.double(sh$adjustcov)
iR2 <- (sh0/sh)^2
}
else {
s1 <- sum(sort(resid^2, partial = h)[1:h])
sh <- sum(sort(y^2, partial = h)[1:h])
iR2 <- s1/sh
}
ans$rsquared <- if(is.finite(iR2)) max(0, min(1, 1 - iR2)) else 0
attributes(resid) <- attributes(fitted) <- attributes(y)
ans$method <- "Least Trimmed Squares Robust Regression."
} ## end { alpha < 1 }
ans$intercept <- intercept
if (abs(s0) < 1e-07)
ans$method <- paste(ans$method, "\nAn exact fit was found!")
if (mcd) { ## compute robust distances {for diagnostics, eg. rdiag()plot}
mcd <- covMcd(X, alpha = alpha, use.correction=use.correction)
if ( -determinant(mcd$cov, logarithm = TRUE)$modulus > 50 * p) {
ans$RD <- "singularity"
}
else {
ans$RD <- rep.int(NA, length(na.y))
ans$RD[ok] <- sqrt(mahalanobis(X, mcd$center, mcd$cov))
names(ans$RD) <- rownames
}
}
} ## end { nontrivial 'x' }
ans$lts.wt <- rep.int(NA, length(na.y))
ans$lts.wt[ok] <- weights
ans$residuals <- rep.int(NA, length(na.y))
ans$residuals[ok] <- resid
ans$fitted.values <- rep.int(NA, length(na.y))
ans$fitted.values[ok] <- fitted
names(ans$fitted.values) <- names(ans$residuals) <- names(ans$lts.wt) <-
rownames
if(has.yn) { ## non-sense otherwise:
names(ans$scale) <- names(ans$raw.scale) <- yn
names(ans$rsquared) <- names(ans$crit) <- yn
}
ans$Y <- y
ans$X <- if(p > 1 && intercept) x[, c(p, 1:(p - 1))] else x
dimnames(ans$X) <- list(rownames[ok], names(ans$coefficients))
if (qr.out)
ans$qr <- qrx
ans$raw.cnp2 <- raw.cnp2
ans$cnp2 <- cnp2
class(ans) <- "lts"
ans$call <- match.call()
ans
} ## {ltsReg.default}
summary.lts <- function (object, correlation = FALSE, ...)
{
z <- object
r <- z$residuals
f <- z$fitted
int <- z$intercept
w <- as.vector(z$lts.wt)
n <- sum(w)
Qr <- qr(w * z$X)# 'w * z$X': more efficient than t(t(object$X) %*% diag(w))
p <- Qr$rank
p1 <- seq(length = p) ## even for p = 0
rdf <- n - p
mss <- if(int) {
m <- sum(w * f /sum(w))
sum(w * (f - m)^2)
} else
sum(w * f^2)
rss <- sum(w * r^2)
r <- sqrt(w) * r
resvar <- rss/rdf
R <- if (p > 0) chol2inv(Qr$qr[p1, p1, drop = FALSE]) else matrix(NA_real_,p,p)
## no need to reorder R anymore, since 'X' already has "intercept first"
se <- sqrt(diag(R) * resvar)
est <- z$coefficients
tval <- est/se
ans <-
c(z[c("call", "terms")],
## not again attr(ans, "call") <- attr(z,"call")
list(residuals = r,
coefficients = {
cbind("Estimate" = est, "Std. Error" = se, "t value" = tval,
"Pr(>|t|)" = 2*pt(abs(tval), rdf, lower.tail = FALSE))
},
sigma = sqrt(resvar),
df = c(p, rdf, NCOL(Qr$qr))))
df.int <- if(int) 1 else 0
if(p - df.int > 0) {
ans$r.squared <- mss/(mss + rss)
ans$adj.r.squared <- 1 - (1 - ans$r.squared) * ((n - df.int)/rdf)
ans$fstatistic <- c(value = (mss/(p - df.int))/resvar,
numdf = p - df.int, dendf = rdf)
} else
ans$r.squared <- ans$adj.r.squared <- 0
ans$cov.unscaled <- R
dimnames(ans$cov.unscaled) <- dimnames(ans$coefficients)[c(1,1)]
if (correlation) {
ans$correlation <- (R * resvar)/outer(se, se)
dimnames(ans$correlation) <- dimnames(ans$cov.unscaled)
}
class(ans) <- "summary.lts"
ans
}
print.lts <- function (x, digits = max(3, getOption("digits") - 3), ...)
{
cat("\nCall:\n", deparse(x$call), "\n\n", sep = "")
if (length(coef(x))) {
cat("Coefficients:\n")
print.default(format(coef(x), digits = digits), print.gap = 2, quote = FALSE)
cat("\nScale estimate", format(x$scale, digits = digits) ,"\n\n")
}
else
cat("No coefficients\n")
invisible(x)
}
print.summary.lts <-
function(x, digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"), ...)
## signif.stars = FALSE, ...)
## ^^^^^ (since they are not quite correct ?)
{
cat("\nCall:\n",
paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "")
resid <- x$residuals
df <- x$df
rdf <- df[2]
cat("Residuals (from reweighted LS):\n")
## "cut & paste" from print.summary.lm():
if(rdf > 5) {
nam <- c("Min", "1Q", "Median", "3Q", "Max")
rq <- if(length(dim(resid)) == 2)
structure(apply(t(resid), 1, quantile),
dimnames = list(nam, dimnames(resid)[[2]]))
else
structure(quantile(resid), names = nam)
print(rq, digits = digits, ...)
}
else if(rdf > 0) {
print(resid, digits = digits, ...)
} else { # rdf == 0 : perfect fit!
cat("ALL", df[1], "residuals are 0: no residual degrees of freedom!\n")
}
if(NROW(x$coefficients)) {
if (nsingular <- df[3] - df[1])
cat("\nCoefficients: (", nsingular,
" not defined because of singularities)\n", sep = "")
else
cat("\nCoefficients:\n")
printCoefmat(x$coefficients, digits = digits,
signif.stars = signif.stars, ...)
}
else cat("\nNo coefficients\n")
cat("\nResidual standard error:",
format(signif(x$sigma, digits)), "on", rdf, "degrees of freedom\n")
if(!is.null(x$fstatistic)) {
cat("Multiple R-Squared:", formatC(x$r.squared, digits = digits))
cat(",\tAdjusted R-squared:",formatC(x$adj.r.squared,digits = digits),
"\nF-statistic:", formatC(x$fstatistic[1], digits = digits),
"on", x$fstatistic[2], "and",
x$fstatistic[3], "DF, p-value:",
format.pval(pf(x$fstatistic[1], x$fstatistic[2],
x$fstatistic[3], lower.tail = FALSE), digits = digits),
"\n")
}
correl <- x$correlation
if(!is.null(correl)) {
p <- NCOL(correl)
if(p > 1) {
cat("\nCorrelation of Coefficients:\n")
correl <- format(round(correl, 2), nsmall = 2, digits = digits)
correl[!lower.tri(correl)] <- ""
print(correl[-1, -p, drop = FALSE], quote = FALSE)
}
}
cat("\n")
invisible(x)
}
### --- Namespace hidden (but parsed once and for all) : -------------
##' Compute Finite Sample Correction Factor for the "raw" LTSreg() scale
LTScnp2 <- function(p, intercept = intercept, n, alpha)
{
stopifnot(0.5 <= alpha, alpha <= 1)
if (intercept)
p <- p - 1
stopifnot(p == as.integer(p), p >= 0)
if (p == 0) {
fp.500.n <- 1 - exp( 0.262024211897096) / n^ 0.604756680630497
fp.875.n <- 1 - exp(-0.351584646688712) / n^ 1.01646567502486
if ((0.5 <= alpha) && (alpha <= 0.875)) {
fp.alpha.n <- fp.500.n + (fp.875.n - fp.500.n)/0.375 * (alpha - 0.5)
fp.alpha.n <- sqrt(fp.alpha.n)
}
if ((0.875 < alpha) && (alpha < 1)) {
fp.alpha.n <- fp.875.n + (1 - fp.875.n)/0.125 * (alpha - 0.875)
fp.alpha.n <- sqrt(fp.alpha.n)
}
}
else { ## p >= 1
if (p == 1) {
if (intercept) {
fp.500.n <- 1 - exp( 0.630869217886906 ) / n^ 0.650789250442946
fp.875.n <- 1 - exp( 0.565065391014791 ) / n^ 1.03044199012509
}
else {
fp.500.n <- 1 - exp(-0.0181777452315321) / n^ 0.697629772271099
fp.875.n <- 1 - exp(-0.310122738776431 ) / n^ 1.06241615923172
}
} else { ## --- p > 1 ---
if (intercept) {
## "alfaq" "betaq" "qwaarden"
coefgqpkwad875 <- matrix(c(-0.458580153984614, 1.12236071104403, 3,
-0.267178168108996, 1.1022478781154, 5), ncol = 2)
coefeqpkwad500 <- matrix(c(-0.746945886714663, 0.56264937192689, 3,
-0.535478048924724, 0.543323462033445, 5), ncol = 2)
}
else {
## "alfaq" "betaq" "qwaarden"
coefgqpkwad875 <- matrix(c(-0.251778730491252, 0.883966931611758, 3,
-0.146660023184295, 0.86292940340761, 5), ncol = 2)
coefeqpkwad500 <- matrix(c(-0.487338281979106, 0.405511279418594, 3,
-0.340762058011, 0.37972360544988, 5), ncol = 2)
}
y.500 <- log(- coefeqpkwad500[1, ] / p^ coefeqpkwad500[2, ])
y.875 <- log(- coefgqpkwad875[1, ] / p^ coefgqpkwad875[2, ])
A.500 <- cbind(1, - log(coefeqpkwad500[3, ] * p^2))
coeffic.500 <- solve(A.500, y.500)
A.875 <- cbind(1, - log(coefgqpkwad875[3, ] * p^2))
coeffic.875 <- solve(A.875, y.875)
fp.500.n <- 1 - exp(coeffic.500[1]) / n^ coeffic.500[2]
fp.875.n <- 1 - exp(coeffic.875[1]) / n^ coeffic.875[2]
}
if(alpha <= 0.875)
fp.alpha.n <- fp.500.n + (fp.875.n - fp.500.n)/0.375 * (alpha - 0.5)
else ## 0.875 < alpha <= 1
fp.alpha.n <- fp.875.n + (1 - fp.875.n)/0.125 * (alpha - 0.875)
}## else (p >= 1)
return(1/fp.alpha.n)
} ## LTScnp2
##' Compute Finite Sample Correction Factor for the REWeighted LTSreg() scale
LTScnp2.rew <- function(p, intercept = intercept, n, alpha)
{
stopifnot(0.5 <= alpha, alpha <= 1)
if (intercept)
p <- p - 1
stopifnot(p == as.integer(p), p >= 0)
if (p == 0) {
fp.500.n <- 1 - exp( 1.11098143415027) / n^ 1.5182890270453
fp.875.n <- 1 - exp(-0.66046776772861) / n^ 0.88939595831888
if(alpha <= 0.875)
fp.alpha.n <- fp.500.n + (fp.875.n - fp.500.n)/0.375 * (alpha - 0.5)
else ## 0.875 < alpha <= 1
fp.alpha.n <- fp.875.n + (1 - fp.875.n)/0.125 * (alpha - 0.875)
## MM: sqrt() {below} is ''different logic'' than below.. (??)
fp.alpha.n <- sqrt(fp.alpha.n)
}
else {
if (p == 1) {
if (intercept) {
fp.500.n <- 1 - exp(1.58609654199605 ) / n^ 1.46340162526468
fp.875.n <- 1 - exp(0.391653958727332) / n^ 1.03167487483316
}
else {
fp.500.n <- 1 - exp( 0.6329852387657) / n^ 1.40361879788014
fp.875.n <- 1 - exp(-0.642240988645469) / n^ 0.926325452943084
}
}
else { ## --- p > 1 ---
if (intercept) {
## "alfaq" "betaq" "qwaarden"
coefqpkwad875 <- matrix(c(-0.474174840843602, 1.39681715704956, 3,
-0.276640353112907, 1.42543242287677, 5), ncol = 2)
coefqpkwad500 <- matrix(c(-0.773365715932083, 2.02013996406346, 3,
-0.337571678986723, 2.02037467454833, 5), ncol = 2)
}
else {
## "alfaq" "betaq" "qwaarden"
coefqpkwad875 <- matrix(c(-0.267522855927958, 1.17559984533974, 3,
-0.161200683014406, 1.21675019853961, 5), ncol = 2)
coefqpkwad500 <- matrix(c(-0.417574780492848, 1.83958876341367, 3,
-0.175753709374146, 1.8313809497999, 5), ncol = 2)
}
y.500 <- log( - coefqpkwad500[1, ] / p^ coefqpkwad500[2, ])
y.875 <- log( - coefqpkwad875[1, ] / p^ coefqpkwad875[2, ])
A.500 <- cbind(1, - log(coefqpkwad500[3, ] * p^2))
coeffic.500 <- solve(A.500, y.500)
A.875 <- cbind(1, - log(coefqpkwad875[3, ] * p^2))
coeffic.875 <- solve(A.875, y.875)
fp.500.n <- 1 - exp(coeffic.500[1]) / n^ coeffic.500[2]
fp.875.n <- 1 - exp(coeffic.875[1]) / n^ coeffic.875[2]
}
if(alpha <= 0.875)
fp.alpha.n <- fp.500.n + (fp.875.n - fp.500.n)/0.375 * (alpha - 0.5)
else ## 0.875 < alpha <= 1
fp.alpha.n <- fp.875.n + (1 - fp.875.n)/0.125 * (alpha - 0.875)
}## else (p >= 1)
return(1/fp.alpha.n)
} ## LTScnp2.rew
.fastlts <- function(x, y, h.alph, nsamp, intercept, adjust, trace = 0)
{
dx <- dim(x)
n <- dx[1]
p <- dx[2]
## Parameters for partitioning --- *IDENTICAL* to those in ../src/rfltsreg.[fc]
kmini <- 5
nmini <- 300
km10 <- 10*kmini
nmaxi <- nmini*kmini
## vt::03.02.2006 - added options "best" and "exact" for nsamp
if(!missing(nsamp)) {
if(trace) cat("non-missing nsamp = ", nsamp, "\n")
if(is.numeric(nsamp) && nsamp <= 0) {
warning("Invalid number of trials nsamp=",nsamp,"! Using default.\n")
nsamp <- -1
} else if(nsamp == "exact" || nsamp == "best") {
myk <- p
if(n > 2*nmini-1) {
warning("'nsamp' options 'best' and 'exact' not allowed for n greater than ",
2*nmini-1,". Will use default.\n")
nsamp <- -1
}
else { ## FIXME: Add a test case for this !
nall <- choose(n, myk)
if(nall > 5000 && nsamp == "best") {
nsamp <- 5000
warning("Maximum 5000 subsets allowed for option 'best'.\n",
"Computing 5000 subsets of size ",myk," out of ",n,"\n")
} else {
nsamp <- 0 #all subsamples
if(nall > 5000)
cat("Computing all ",nall," subsets of size ", myk,
" out of ",n,
"\n This may take a very long time!\n")
}
}
}
if(nsamp == -1) { ## still not defined - set it to the default
nsamp <- rrcov.control()$nsamp
}
}
nsamp <- as.integer(nsamp)
## y <- as.matrix(y)
## xy <- matrix(0, ncol = p + 1, nrow = n)
xy <- cbind(x, y)
storage.mode(xy) <- "double" # {keeping dim(.)}
storage.mode(n) <- "integer"
storage.mode(p) <- "integer" ; p1 <- p+1L # integer
storage.mode(h.alph) <- "integer"
## Allocate temporary storage for the fortran implementation
temp <- index1 <- index2 <- integer(n)
weights <- aw2 <- aw <- residu <- yy <-
nmahad <- ndist <- am <- am2 <- slutn <- double(n)
.Fortran(rfltsreg, ## -> ../src/rfltsreg.f
xy = xy,
n,
p,
h.alph, # = nhalff
nsamp, # = krep
inbest = integer(h.alph),
objfct = -1.,# double, if remains at -1 : have *nothing* found
intercept = as.integer(intercept),
intadjust = as.integer(adjust),
nvad = as.integer(p1),
datt = matrix(0., ncol = p1, nrow = n),
weights,
temp,
index1,
index2,
aw2,
aw,
residu,
yy,
nmahad,
ndist,
am, am2,
slutn,
jmiss = integer(p1), ## integer jmiss(nvad) --> p+1
xmed = double(p1), ## double xmed(nvad) --> p+1
xmad = double(p1), ## double xmad(nvad)
a = double(p1), ## double a(nvad)
da = double(p1), ## double da(nvad)
h = matrix(0., p, p1), ## double h(nvar,nvad) p*(p+1)
hvec = double(p*(p1)), ## double hvec(nvar*nvad) p*(p+1)
c = matrix(0., p, p1), ## double c(nvar,nvad) p*(p+1)
cstock = matrix(0., 10, p*p),## double cstock(10,nvar*nvar) 10*p*p
mstock = matrix(0., 10, p), ## double mstock(10,nvar) 10*p
c1stock =matrix(0., km10, p*p),## double c1stock(km10,nvar*nvar) km10*p*p
m1stock =matrix(0., km10, p),## double m1stock(km10,nvar) km10*p
dath = matrix(0., nmaxi, p1),## double dath(nmaxi,nvad) nmaxi*(p+1)
sd = double(p), ## double sd(nvar) p
means = double(p), ## double means(nvar) p
bmeans= double(p), ## double means(nvar) p
i.trace= as.integer(trace))[ c("inbest", "objfct") ]
}
|