File: nlrob.R

package info (click to toggle)
robustbase 0.99-6-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 4,584 kB
  • sloc: fortran: 3,245; ansic: 3,243; sh: 15; makefile: 2
file content (540 lines) | stat: -rw-r--r-- 19,963 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
## Directly use nls()-internals, i.e., its 'm', to get a next 'start' (coef-like list):
## (In principle useful also outside robustbase)
.nls.get.start <- function(nls.m) {
    ## stopifnot(is.list(nls.m), is.function(gg <- nls.m$getPars),
    ##           is.environment(em <- environment(gg)))
    stopifnot(is.list(nls.m), is.environment(em <- environment(nls.m$getPars)))
    mget(names(em$ind), em$env)
}

nlrob <-
    function (formula, data, start, lower, upper,
              weights = NULL, na.action = na.fail,
	      method = c("M", "MM", "tau", "CM", "mtl"),
	      psi = .Mwgt.psi1("huber", cc=1.345), scale = NULL,
	      test.vec = c("resid", "coef", "w"),
	      maxit = 20, tol = 1e-06, acc,
	      algorithm = "default", doCov = FALSE, model = FALSE,
	      control = if(method == "M") nls.control() else
			nlrob.control(method, optArgs = list(trace=trace), ...),
              trace = FALSE, ...)
{
    ## Purpose:
    ##	Robust fitting of nonlinear regression models. The fitting is
    ##	done by iterated reweighted least squares (IWLS) as in rlm() of
    ##	the package MASS. In addition, see also 'nls'.
    ##
    ## --> see the help file,  ?nlrob  (or ../man/nlrob.Rd in the source)
    ## -------------------------------------------------------------------------

    ##- some checks
    mf <- call <- match.call() # << and more as in nls()
    formula <- as.formula(formula)
    if (length(formula) != 3)
	stop("'formula' should be a formula of the type 'y ~ f(x, alpha)'")
    ## Had 'acc'; now use 'tol' which is more universal; 'acc' should work for a while
    if(!missing(acc) && is.numeric(acc)) {
        if(!missing(tol)) stop("specifying both 'acc' and 'tol' is invalid")
        tol <- acc
        message("The argument 'acc' has been renamed to 'tol'; do adapt your code.")
    }
    method <- match.arg(method)
    dataName <- substitute(data)
    hasWgts <- !missing(weights) # not eval()ing !

    ## we don't really need 'start' for non-"M" methods, but for the following logic,
    ## Want 'dataClasses' -> need 'mf' --> 'varNames' -> 'pnames' -> 'start' :
    varNames <- all.vars(formula)
    var.nms <- c(varNames, if(method %in% c("CM", "mtl")) "sigma") # <--> "sigma" part of 'pnames'
    ## FIXME:  nls() allows  a missing 'start'; we allow *iff* lower | upper has names:
    if(missing(start) && (!missing(lower) || !missing(upper)))
        pnames <- .fixupArgs(lower, upper, var.nms)
    else if(length(pnames <- names(start)) != length(start))
        stop("'start' or 'lower' or 'upper' must be fully named (list or numeric vector)")
    else if(any(is.na(match(pnames, var.nms)))) # check also in .fixupArgs()
	stop("parameter names must appear in 'formula'")
    ## If it is a parameter it is not a variable
    varNames <- varNames[is.na(match(varNames, pnames))]

    ## do now: need 'dataClasses', hence the model.frame 'mf' for all 'method' cases
    obsNames <- rownames(data <- as.data.frame(data))
    ## From nls: using model.weights() e.g. when formula 'weights = sqrt(<var>)'
    mf$formula <-  # replace by one-sided linear model formula
	as.formula(paste("~", paste(varNames, collapse = "+")),
		   env = environment(formula))
    mf[c("start", "lower", "upper", "method", "psi", "scale", "test.vec",
	 "maxit", "tol", "acc", "algorithm", "doCov", "model", "control", "trace")] <- NULL
    mf[[1L]] <- quote(stats::model.frame)
    mf <- eval.parent(mf)
    dataCl <- attr(attr(mf, "terms"), "dataClasses")
    ## mf <- as.list(mf)

    if(method != "M") {
      if(hasWgts) ## FIXME .. should not be hard, e.g. for MM
          stop("specifying 'weights' is not yet supported for method ", method)
      if(!missing(psi))
	  warning(gettextf("For method = \"%s\", currently 'psi' must be specified via 'control'",
			   method), domain=NA)
      ## lifted from Martin's 'sfsmisc' package :
      missingCh <- function(x, envir = parent.frame()) {
          eval(substitute(missing(VAR), list(VAR=as.name(x))), envir = envir)
      }
      aNms <- c("start", "na.action", "test.vec", "maxit", "algorithm", "doCov")
      not.missA <- !vapply(aNms, missingCh, NA, envir=environment())
      if(any(not.missA)) {
	  warning(sprintf(ngettext(sum(not.missA),
				   "For method = \"%s\", argument %s is not made use of",
				   "For method = \"%s\", arguments %s are not made use of"),
			  method, pasteK(sQuote(aNms[not.missA]))),
		  domain=NA)
      }
      force(control)

      fixAns <- function(mod) {
          mod$call <- call # replace the nlrob.<foo>() one
          mod$data <- dataName # (ditto)
          ctrl <- mod$ctrl
          if(is.character(psi <- ctrl$psi) && is.numeric(cc <- ctrl$tuning.psi.M)) {# MM:
              psi <- .Mwgt.psi1(psi, cc=cc)
              res.sc <- with(mod, residuals/Scale)
              mod$psi <- psi
              mod$w <- # as we have no 'weights' yet
              mod$rweights <- psi(res.sc)
          } ## else mod$rweights <- mod$psi <- NULL
          mod$dataClasses <- dataCl
          if(model) mod$model <- mf
          mod
      } ## {fixAns}
      ##
      switch(method, ## source for these is all in >>> nlregrob.R <<<
	     "MM" = {
		 return(fixAns(nlrob.MM (formula, data, lower=lower, upper=upper,
					 tol=tol, ctrl= control)))
	     },
	     "tau" = {
		 return(fixAns(nlrob.tau(formula, data, lower=lower, upper=upper,
					 tol=tol, ctrl= control)))
	     },
	     "CM" = {
		 return(fixAns(nlrob.CM (formula, data, lower=lower, upper=upper,
					 tol=tol, ctrl= control)))
	     },
	     "mtl" = {
		 return(fixAns(nlrob.mtl(formula, data, lower=lower, upper=upper,
					 tol=tol, ctrl= control)))
	     })
    } ## {non-"M" methods}
    ##
    ## else: method == "M", original method, the only one based on 'nls' :
    env <- environment(formula)
    if (is.null(env)) env <- parent.frame()
    if (!((is.list(start) && all(sapply(start, is.numeric))) ||
	  (is.vector(start) && is.numeric(start))))
	stop("'start' must be a named list or numeric vector")

    test.vec <- match.arg(test.vec)
    if(missing(lower)) lower <- -Inf
    if(missing(upper)) upper <- +Inf
    updateScale <- is.null(scale)
    if(!updateScale) { ## keep initial scale fixed through iterations (e.g. for "MM")
	if(is.1num(scale) && scale > 0)
            Scale <- scale
        else
            stop("'scale' must be NULL or a positive number")
    }
    nm <- "._nlrob.w"
    if (nm %in% c(varNames, pnames, names(data)))
	stop(gettextf("Do not use '%s' as a variable name or as a parameter name",
		      nm), domain=NA)

    data <- as.list(data)# to be used as such
    ## 'mf' now defined before "dispatch" to method !
    nobs <- nrow(mf)
    if (hasWgts)
	hasWgts <- !is.null(weights <- model.weights(mf))
    if (hasWgts && any(weights < 0 | is.na(weights)))
	stop("'weights' must be nonnegative and not contain NAs")
    ## initialize testvec etc
    fit <- eval(formula[[3]], c(data, start), env)
    y <- eval(formula[[2]], data, env)
    coef <- unlist(start)
    if(anyNA(data) && (identical(na.action, na.omit) || na.action == "na.omit"))
	 warning("NA's present in data; consider using 'na.action = na.exclude'")
    resid <- naresid(na.action, y - fit)

    irls.delta <- function(old, new) sqrt(sum((old - new)^2, na.rm = TRUE)/
					  max(1e-20, sum(old^2, na.rm = TRUE)))
    ## Robust loop -- IWLS / IRLS iterations
    converged <- FALSE
    status <- "converged"
    method.exit <- FALSE
    for (iiter in seq_len(maxit)) {
	if (trace)
	    cat("robust iteration", iiter, "\n")
	previous <- get(test.vec)
	if(updateScale)
            Scale <- median(abs(resid), na.rm = TRUE)/0.6745
	if (Scale == 0) {
	    convi <- 0
	    method.exit <- TRUE
	    warning(status <- "could not compute scale of residuals")
	    ## FIXME : rather use a "better" Scale in this case, e.g.,
	    ## -----   Scale <- min(abs(resid)[resid != 0])
	}
	else {
	    w <- psi(resid/Scale)
	    if (hasWgts)
		w <- w * weights
	    data$._nlrob.w <- w ## use a variable name the user "will not" use
	    ._nlrob.w <- NULL # workaround for codetools "bug"
###            ## Case distinction against "wrong warning" as long as
###            ## we don't require R > 3.0.2:
            out <-

###              if(identical(lower, -Inf) && identical(upper, Inf))
###                 nls(formula, data = data, start = start,
###                     algorithm = algorithm, trace = trace,
###                     weights = ._nlrob.w,
###                     na.action = na.action, control = control)
###              else
                    nls(formula, data = data, start = start,
                        algorithm = algorithm, trace = trace,
                        lower=lower, upper=upper,
                        weights = ._nlrob.w,
                        na.action = na.action, control = control)

            coef <- unlist(start <- .nls.get.start(out$m))
	    ## same sequence as in start! Ok for test.vec:
            resid <- if (!is.null(na.action))
                         naresid(na.action, residuals(out))
                     else residuals(out)
	    convi <- irls.delta(previous, get(test.vec))
	}
	converged <- convi <= tol
	if (converged)
	    break
	else if (trace)
	    cat(sprintf(" --> irls.delta(previous, %s) = %g -- *not* converged\n",
                        test.vec, convi))
    }## for( iiter ...)

    if(!converged || method.exit) {
	warning(st <- paste("failed to converge in", maxit, "steps"))
        status <- if(method.exit) {
            converged <- FALSE; paste(status, st, sep="; ") } else st
    }

    if(hasWgts) { ## or just   out$weights  ??
	tmp <- weights != 0
	w[tmp] <- w[tmp]/weights[tmp]
    }

    ## --- Estimated asymptotic covariance of the robust estimator
    rw <- psi(res.sc <- resid/Scale)
    asCov <- if(!converged || !doCov) NA else {
        ## a version of  .vcov.m(.) below
	AtWAinv <- chol2inv(out$m$Rmat())
	dimnames(AtWAinv) <- list(names(coef), names(coef))
	tau <- mean(rw^2) / mean(psi(res.sc, d=TRUE))^2
	AtWAinv * Scale^2 * tau
    }
    if(is.null(call$algorithm)) call$algorithm <- algorithm
    ## returned object:	 ==  out$m$fitted()  [FIXME?]
    fit <- setNames(eval(formula[[3]], c(data, start)), obsNames)
    structure(class = c("nlrob", "nls"),
	      list(m = out$m, call = call, formula = formula,
		   new.formula = formula, nobs = nobs,
		   coefficients = coef,
		   working.residuals = as.vector(resid),
		   fitted.values = fit, residuals = y - fit,
		   Scale=Scale, w=w, rweights = rw,
		   cov = asCov, test.vec=test.vec, status=status, iter=iiter,
		   psi=psi, data = dataName, dataClasses = dataCl,
		   model = if(model) mf,
		   control = control))
}

##' @title The nlrob() method used
##' @param obj an \code{"nlrob"} object
##' @return characer string
.method.nlrob <- function(obj) if(inherits(obj, "nls")) "M" else obj$ctrl$method

.vcov.m <- function(object, Scale, resid.sc) {
    if(.method.nlrob(object) == "M") {
	AtWAinv <- chol2inv(object$m$Rmat())
	stopifnot(length(Scale) == 1, Scale >= 0,
		  is.numeric(resid.sc), length(resid.sc) == nobs(object),
		  is.character(nms.coef <- names(coef(object))),
		  length(nms.coef) == nrow(AtWAinv),
		  is.function(psi <- object$psi))

	dimnames(AtWAinv) <- list(nms.coef, nms.coef)
	tau <- mean(psi(resid.sc)^2) / mean(psi(resid.sc, d=TRUE))^2
	AtWAinv * Scale^2 * tau
    }
    else if(is.function(psi <- object$psi)) {
	form <- object$formula
	## call method="M", with fixed Scale
	mM <- nlrob(form, data = eval(object$data, environment(form)),
		    method = "M", start = coef(object),
		    psi = psi, scale = Scale, doCov=TRUE)
	mM$cov
	## stop(".vcov.m() not yet implemented for nlrob.MM objects")
	## using 'chol(<Hessian>): --- is wrong, unfortunately
	## AtWAinv <- chol2inv(chol(object$hessian))
    } else {
	NA ## instead of error
    }
}


## The 'nls' method is *not* correct
formula.nlrob <- function(x, ...) x$formula

sigma.nlrob <- function(object, ...)
    if(!is.null(s <- object$Scale)) s else object$coefficients[["sigma"]]

estimethod <- function(object, ...) UseMethod("estimethod")
estimethod.nlrob <- function(object, ...)
    if(is.list(object$m) && inherits(object, "nls")) "M" else object$ctrl$method

fitted.nlrob <- function (object, ...)
{
    val <- as.vector(object$fitted.values)
    if (!is.null(object$na.action))
	val <- napredict(object$na.action, val)
    ##MM: attr(val, "label") <- "Fitted values"
    val
}


## formula() works "by default"

predict.nlrob <- function (object, newdata, ...)
{
    if (missing(newdata))
	return(as.vector(fitted(object)))
    if (!is.null(cl <- object$dataClasses))
	.checkMFClasses(cl, newdata)
    if(estimethod(object) == "M") # also for start = list(..)
	object$m$predict(newdata)
    else
	eval(formula(object)[[3]], c(as.list(newdata), coef(object)))
}


print.nlrob <- function (x, ...)
{
    cat("Robustly fitted nonlinear regression model",
	if((meth <- .method.nlrob(x)) != "M") paste0(" (method ", meth, ")"),
	"\n", sep="")
    cat("  model: ", deparse(formula(x)), "\n")
    cat("   data: ", deparse(x$data), "\n")
    print(coef(x), ...)
    cat(" status: ", x$status, "\n")
    invisible(x)
}


residuals.nlrob <- function (object, type = c("response", "working", "pearson"), ...)
{
    type <- match.arg(type)
    R <- switch(type,
                "pearson"=
            {
                stop("type 'pearson' is not yet implemented")
                ## as.vector(object$working.residuals)
            },
                "working"=
            {   ## FIXME(?): from nls, these used to *contain* weights, but no longer
                object$working.residuals
            },
                "response"=
            {
                object$residuals
            },
                stop("invalid 'type'"))# ==> programming error, as we use match.arg()
    if (!is.null(object$na.action))
        R <- naresid(object$na.action, R)
    ## FIXME: add 'names'!
    ##MM no labels; residuals.glm() does neither: attr(val, "label") <- "Residuals"
    R
}


vcov.nlrob <- function (object, ...) {
    if(is.numeric(cv <- object$cov)) cv
    else {
        sc <- object$Scale
        .vcov.m(object, Scale = sc, resid.sc = as.vector(object$residuals) / sc)
    }
}

summary.nlrob <- function (object, correlation = FALSE, symbolic.cor = FALSE, ...)
{
    w <- object$w ## weights * rweights, scaled such that sum(w)=1
    n <- sum(w > 0)
    param <- coef(object)
    p <- length(param)
    rdf <- n - p
    no <- names(object)
    no <- no[match(c("formula", "residuals", "Scale", "w", "rweights", "cov",
                     "call", "status", "counts", "iter", "control", "ctrl"), no, 0L)]
    ans <- object[no]
    conv <- ans$status == "converged"
    if(is.null(sc <- ans$Scale))
	ans$Scale <- sc <- sigma(object)
    if(conv && !is.matrix(ans$cov))
	ans$cov <- .vcov.m(object, Scale = sc,
			   resid.sc = as.vector(object$residuals) / sc)
    if((ok.cov <- is.matrix(ans$cov)))
        if(!all(dim(ans$cov) == p)) stop("'cov' must be a p x p matrix")
    ans$df <- c(p, rdf)
    cf <-
	if(ok.cov) {
	    se <- sqrt(diag(ans$cov))
	    tval <- param/se
	    cbind(param, se, tval, 2 * pt(abs(tval), rdf, lower.tail = FALSE))
	} else cbind(param, NA, NA, NA)
    dimnames(cf) <- list(names(param),
			 c("Estimate", "Std. Error", "t value", "Pr(>|t|)"))
    ans$coefficients <- cf
    if(correlation && ok.cov && rdf > 0) {
	ans$correlation <- ans$cov / outer(se, se)
	ans$symbolic.cor <- symbolic.cor
    }
    class(ans) <- "summary.nlrob"
    ans
}

print.summary.nlrob <-
    function (x, digits = max(3, getOption("digits") - 3),
            symbolic.cor = x$symbolic.cor,
            signif.stars = getOption("show.signif.stars"), ...)
{
    cat("\nCall:\n")
    cat(paste(deparse(x$call), sep = "\n", collapse = "\n"),
	"\n\n", sep = "")
    ## cat("\nFormula: ")
    ## cat(paste(deparse(x$formula), sep = "\n", collapse = "\n"), "\n", sep = "")
    if(is.null(ctrl <- x$ctrl))
        meth <- "M"
    else {
	meth <- ctrl$method
	cat("Method \"", meth,
	    if(!is.null(cc <- ctrl$init)) paste0("\", init = \"", cc),
	    if(!is.null(ps <- ctrl$psi )) paste0("\", psi = \"", ps),
	    "\"\n", sep="")
    }
    resid <- x$residuals
    df <- x$df
    rdf <- df[2L]
    cat(if (!is.null(x$weights) && diff(range(x$weights))) "Weighted ",
	"Residuals:\n", sep = "")
    if (rdf > 5L) {
	nam <- c("Min", "1Q", "Median", "3Q", "Max")
	rq <-
	    if (NCOL(resid) > 1)
		structure(apply(t(resid), 1, quantile),
			  dimnames = list(nam, dimnames(resid)[[2]]))
	    else setNames(quantile(resid), nam)
	print(rq, digits = digits, ...)
    }
    else print(resid, digits = digits, ...)
    cat("\nParameters:\n")
    printCoefmat(x$coefficients, digits = digits, signif.stars = signif.stars,
		 ...)
    if(x$status == "converged") {
	cat("\nRobust residual standard error:",
	    format(signif(x$Scale, digits)), "\n")
	correl <- x$correlation
	if (!is.null(correl)) {
	    p <- NCOL(correl)
	    if (p > 1) {
		cat("\nCorrelation of Parameter Estimates:\n")
		if(is.logical(symbolic.cor) && symbolic.cor) {
		    print(symnum(correl, abbr.colnames = NULL))
		} else {
		    correl <- format(round(correl, 2), nsmall = 2, digits = digits)
		    correl[!lower.tri(correl)] <- ""
		    print(correl[-1, -p, drop=FALSE], quote = FALSE)
		}
	    }
	}
	if(is.null(ctrl))
	    cat("Convergence in", x$iter, "IRWLS iterations\n\n")
	else {
	    if(length(it <- ctrl$iter) == 1)
		cat("Convergence in", it, "iterations\n\n")
	    else if(length(cnts <- x$counts) > 0)
		cat("Convergence after", cnts[["function"]],
		    "function and", cnts[["gradient"]],"gradient evaluations\n\n")
	    else ## length(it) >= 2 :
		cat("Convergence\n\n")
	}
	if(!is.null(x$rweights))
	    summarizeRobWeights(x$rweights, digits = digits, ...)
    }
    else if(meth == "M")
	cat("** IRWLS iterations did *not* converge!\n\n")
    else
	cat("** Iterations did *not* converge!\n\n")
    invisible(x)
}

## Confint(): ideally built on profile, the same as stats:::confint.nls()
## --------   which eventually calls stats:::profile.nls

## Also, do emulate (to some extent)

## str(lme4:::confint.merMod)
## function (object, parm, level = 0.95, method = c("profile", "Wald", "boot"),
##     zeta, nsim = 500, boot.type = c("perc", "basic", "norm"), quiet = FALSE,
##     oldNames = TRUE, ...)

confint.nlrob <-
    function(object, parm, level = 0.95,
	     method = c("profile", "Wald", "boot"),
	     zeta, nsim = 500, boot.type = c("perc", "basic", "norm"),
	     quiet = FALSE, oldNames = TRUE, ...)
{
    method <- match.arg(method)
    boot.type <- match.arg(boot.type)
    if (!missing(parm) && !is.numeric(parm) &&
	method %in% c("profile", "boot"))
	stop("for method='", method, "', 'parm' must be specified as an integer")
    switch(method, profile = {
	stop("profile() method not yet implemented for \"nlrob\" objects.
 Use  method = \"Wald\".")
	## hence unused for now :
	if (!quiet) message("Computing profile confidence intervals ...")
	utils::flush.console()
	pp <- if (missing(parm)) {
	    profile(object, signames = oldNames, ...)
	} else {
	    profile(object, which = parm, signames = oldNames,
		...)
	}
	confint(pp, level = level, zeta = zeta)
    }, Wald = {
	cf <- coef(object)
	pnames <- names(cf)
	if (missing(parm)) parm <- pnames
	else if (is.numeric(parm)) parm <- pnames[parm]
	a <- (1 - level)/2
	a <- c(a, 1 - a)
	## for now, a short version of R's formatting in quantile.default():
	format_perc <- function(x, digits = max(2L, getOption("digits")))
	    paste0(formatC(x, format = "fg", width = 1, digits = digits))
	pct <- format_perc(a, 3)
	fac <- qnorm(a)
	ci <- array(NA, dim = c(length(parm), 2L), dimnames = list(parm, pct))
	sdiag <- function(x) if (length(x) == 1) c(x) else diag(x)
	ses <- sqrt(sdiag(vcov(object)[parm, parm]))
	ci[] <- cf[parm] + ses %o% fac
	ci
    }, boot = {
	stop("\"boot\" method not yet implemented for \"nlrob\" objects.
 Use confint(*, method = \"Wald\").")
    })
}