File: simulation.functions.R

package info (click to toggle)
robustbase 0.99-6-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 4,584 kB
  • sloc: fortran: 3,245; ansic: 3,243; sh: 15; makefile: 2
file content (1347 lines) | stat: -rw-r--r-- 53,102 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
## Called from ./lmrob_simulation.Rnw
##              ~~~~~~~~~~~~~~~~~~~~~

###########################################################################
## 1. simulation helper functions
###########################################################################

f.estname <- function(est = 'lmrob')
  ## Purpose: translate between 'estname' and actual function name,
  ##          defaults to 'lmrob'
  ##          f.lmRob is just a wrapper for lmRob, since there are some
  ##          problems with the weight and weights arguments
  ## ----------------------------------------------------------------------
  ## Arguments: est: name of estimator
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  6 Oct 2009, 13:36
  switch(est,
         lm.rbase = 'lmrob', lm.robust = 'f.lmRob', rlm = 'rlm', lm = 'lm',
         est)

f.errname <- function(err, prefix = 'r')
  ## Purpose: translate between natural name of distribution and
  ##          R (r,p,q,d)-name
  ## ----------------------------------------------------------------------
  ## Arguments: err: name of distribution
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  6 Oct 2009, 13:36
  paste(prefix,
        switch(err,normal="norm", t="t", cauchy="cauchy",cnormal="cnorm",
               err),sep = '')

f.requires.envir <- function(estname)
  ## Purpose: returns indicator on whether estname requires envir argument
  ## ----------------------------------------------------------------------
  ## Arguments: estname: name of estimating function
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  7 Oct 2009, 09:34
  switch(estname,
         f.lmrob.local = TRUE,
         FALSE)

f..paste..list <- function(lst)
  if (length(lst) == 0) return("") else
  paste(names(lst),lst,sep='=',collapse=', ')

f..split..str <- function(str) {
  litems <- strsplit(str,', ')
  lst <- lapply(litems, function(str) strsplit(str,'='))
  rlst <- list()
  for (llst in lst) {
    lv <- vector()
    for (litem in llst) lv[litem[1]] <- litem[2]
    rlst <- c(rlst, list(lv))
  }
  rlst
}

f.list2str <- function(lst, idx)
  ## Purpose: convert a list into a string that identifies the
  ##          function and parameter configuration
  ## ----------------------------------------------------------------------
  ## Arguments: lst: list or list of lists
  ##            idx: only take the elements in idx
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  7 Oct 2009, 10:03
  f..paste..list(if(missing(idx)) unlist(lst) else unlist(lst)[idx])

f.as.numeric <- function(val)
{
  ## Purpose: convert value to numeric if possible
  ## ----------------------------------------------------------------------
  ## Arguments: vec: value to convert
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date: 26 Oct 2009, 12:10

  r <- suppressWarnings(as.numeric(val))
  if (is.na(r)) {
    ## is character, try to convert to TRUE and FALSE
    return(switch(casefold(val),
           "true" = TRUE,
           "false" = FALSE,
           val))
  } else return(r)
}
f.as.numeric.vectorized <- function(val) sapply(val, f.as.numeric)

f.as.integer <- function(val)
{
  ## Purpose: convert value to numeric if possible
  ## ----------------------------------------------------------------------
  ## Arguments: vec: value to convert
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date: 26 Oct 2009, 12:10

  r <- suppressWarnings(as.integer(val))
  if (is.na(r)) {
    ## is character, try to convert to TRUE and FALSE
    return(switch(casefold(val),
           "true" = TRUE,
           "false" = FALSE,
           val))
  } else return(r)
}

f.str2list <- function(str, splitchar = '\\.')
{
  ## Purpose: inverse of f.list2str
  ## ----------------------------------------------------------------------
  ## Arguments: str: string or list of strings produced with f.list2str
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  8 Oct 2009, 14:20

  ## split input string or strings into a list of vectors
  lst <- f..split..str(as.character(str))
  rlst <- list()
  ## walk list
  for (lv in lst) {
    lrlst <- list()
    ## for each element of the vector
    for (ln in names(lv)) {
      ## split
      lnames <- strsplit(ln, splitchar)[[1]]
      ## set either directly
      if (length(lnames) == 1) lrlst[ln] <- f.as.numeric(lv[ln])
      ## or, if it contains a dot, as a sublist
      else {
        if (is.null(lrlst[[lnames[1]]])) lrlst[[lnames[1]]] <- list()
        lrlst[[lnames[1]]][paste(lnames[-1],collapse='.')] <- f.as.numeric(lv[ln])
      }
    }
    rlst <- c(rlst, list(lrlst))
  }
  rlst
}

f.round.numeric <- function(num, digits = 0) { ## round only numeric values in list
  idx <- sapply(num, is.numeric)
  ret <- num
  ret[idx] <- lapply(num[idx],round,digits=digits)
  ret
}

f.errs2str <- function(errs)
{
  ## Purpose: convert list of errors into pretty strings
  ## ----------------------------------------------------------------------
  ## Arguments: errs: estlist element errs
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  8 Oct 2009, 14:51

  rv <- vector()
  for (lerr in errs) {
    rv <- c(rv,
              switch(lerr$err,
                     normal = paste("N(",lerr$args$mean,",",
                       lerr$args$sd,")", sep=""),
                     set =,
                     t = paste("t",lerr$args$df,sep=""),
                     paste(lerr$err,"(",paste(f.round.numeric(lerr$args,2),
                                              collapse=","),")",sep="")))
  }
  rv
}

f.procedures2str <- function(procs)
{
  ## Purpose: convert procedures element in estlist to pretty data.frame
  ## ----------------------------------------------------------------------
  ## Arguments: proc: estlist element procedures
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  8 Oct 2009, 14:57

  rdf <- rep(" ",7)

  for (lproc in procs) {
    method <- if(is.null(lproc$args$method))
      switch(lproc$estname,
             lm = 'lsq',
             "SM") else lproc$args$method
    cov <- switch(lproc$estname, ## lm.robust, rlm, lmrob: set default arguments
                  lm.robust = list(cov = 'Default',
                    cov.corrfact = 'empirical',
                    cov.xwx = TRUE,
                    cov.resid = 'trick',
                    cov.hubercorr = TRUE,
                    cov.dfcorr = 1),
                  rlm = list(cov = 'Default',
                    cov.corrfact = 'empirical',
                    cov.xwx = FALSE,
                    cov.resid = 'final',
                    cov.hubercorr = TRUE,
                    cov.dfcorr = 1),
                  ## lmrob = list(cov = 'f.avar1', ## method .vcov.MM equals f.avar1
                  ##   cov.resid = 'final'),
                  lmrob = do.call('lmrob.control', ## get default arguments from lmrob.control
                    lproc$args)[c('cov', 'cov.corrfact', 'cov.xwx',
                                  'cov.resid', 'cov.hubercorr', 'cov.dfcorr')],
                  if (is.null(lproc$args)) list(cov = 'Default') else lproc$args)
    if (is.null(lproc$args$psi)) {
      psi <- switch(lproc$estname,
                    rlm =,
                    lmrob = 'bisquare',
                    lm.robust = {
                      if (is.null(lproc$args$weight)) {
                        if (is.null(lproc$args$weight2)) 'optimal'
                        else lproc$args$weight2
                      } else lproc$args$weight[2] },
                    "NA")
    } else {
      psi <- lproc$args$psi
      ## test if tuning.psi is the default one
      if (!is.null(lproc$args$tuning.psi) &&
	  isTRUE(all.equal(lproc$args$tuning.psi, .Mpsi.tuning.default(psi))))
	psi <- paste(psi, lproc$args$tuning.psi)
    }
    D.type <- switch(lproc$estname,
                     lmrob.u =,
                     lmrob = if (is.null(lproc$args$method) ||
                       lproc$args$method %in% c('SM', 'MM')) 'S' else 'D',
                     lmrob.mar = if (is.null(lproc$args$type)) 'qE' else lproc$args$type,
                     rlm = 'rlm',
                     lm.robust = 'rob',
                     lm = 'lm',
                     'NA')
    rdf <- rbind(rdf,c(lproc$estname, method, f.args2str(lproc$args),
                       cov$cov, f.cov2str(cov), psi, D.type))
  }
  colnames(rdf) <- c("Function", "Method", "Tuning", "Cov", "Cov.Tuning", "Psi", "D.type")
  if (NROW(rdf) == 2) t(rdf[-1,]) else rdf[-1,]
}

f.chop <- function(str,l=1)
  ## Purpose: chop string by l characters
  ## ----------------------------------------------------------------------
  ## Arguments: str: string to chop
  ##            l: number of characters to chop
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  8 Oct 2009, 15:19
  substr(str,1,nchar(str)-l)

fMpsi2str <- function(psi)
{
  ## Purpose: make pretty M.psi and D.chi, etc.
  ## ----------------------------------------------------------------------
  ## Arguments: M.psi: M.psi argument
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  8 Oct 2009, 15:28

  if (is.null(psi)) psi
  else if (psi == "tukeyPsi1" || psi == "tukeyChi") "bisquare"
  else if (grepl("Psi1$",psi)) f.chop(psi,4)
  else if (grepl("Chi$",psi)) f.chop(psi,3)
  else psi
}

f.c.psi2str <- function(c.psi)
{
  ## Purpose: make pretty tuning.psi and D.tuning.chi, etc.
  ## ----------------------------------------------------------------------
  ## Arguments: c.psi: tuning.psi argument
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  8 Oct 2009, 15:34

  if (is.null(c.psi)) return(NULL)

  round(as.numeric(c.psi),2)
}

f.args2str <- function(args)
{
  ## Purpose: convert args element in procedures element of estlist
  ##          to a pretty string
  ## ----------------------------------------------------------------------
  ## Arguments: args: args element in procedures element of estlist
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  8 Oct 2009, 15:11

  lst <- list()
  lst$psi <- if (!is.null(args$weight)) args$weight[2]
             else if (!is.null(args$weight2)) args$weight2
             else args$psi

  lst$c.psi <- if (!is.null(args$efficiency))
                   round(f.eff2c.psi(args$efficiency, lst$psi),2)
               else f.c.psi2str(args$tuning.psi)

  if (!is.null(args$method) && grepl("D",args$method)) {
    lst$D <- args$D.type # possibly  NULL
    lst$tau <- args$tau
  }

  f..paste..list(lst)
}

f.cov2str <- function(args)
{
  ## Purpose: convert cov part in args element in procedures element of
  ##          estlist to a pretty string
  ## ----------------------------------------------------------------------
  ## Arguments: args: args element in procedures element of estlist
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  8 Oct 2009, 15:39

  lst <- list()

  if (!is.null(args$cov) && !args$cov %in% c('Default','f.avarwh'))
    lst$cov <- sub('^f\\.', '', args$cov)
  else {
    lst$hc <- args$cov.hubercorr
    lst$dfc <- args$cov.dfcorr
    lst$r <- args$cov.resid
    lst$rtau <- args$cov.corrfact
    lst$xwx <- args$cov.xwx
  }
  ## convert logical to numeric
  lst <- lapply(lst, function(x) if (is.logical(x)) as.numeric(x) else x)

  f..paste..list(lst)
}

f.procstr2id <- function(procstrs, fact = TRUE)
{
  ## Purpose: create short identifiers of procstrs
  ## ----------------------------------------------------------------------
  ## Arguments: procstrs: vector of procstrs
  ##            fact: convert to factor or not
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  3 Nov 2009, 08:58

  lst0 <- f.str2list(procstrs)
  r <- sapply(lst0, function(x) {
    paste(c(x$estname,
            if (is.null(x$args$method)) NULL else x$args$method,
            substr(c(x$args$psi,x$args$weight2, x$args$weight[2]), 1, 3)),
            collapse = '.')
  })
  if (fact) ru <- unique(r)
  if (fact) factor(r, levels = ru, labels = ru) else r
}

f.splitstrs <- function(strs, split = '_', ...)
{
  ## Purpose: split vector of strings by split and convert the list into
  ##          a data.frame with columns type and id
  ## ----------------------------------------------------------------------
  ## Arguments: strs: vector of strings
  ##            split: character vector to use for splitting
  ##            ...: arguments to strsplit, see ?strsplit
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date: 19 Oct 2009, 08:46

  lstr <- strsplit(strs, split, ...)
  ldf <- t(as.data.frame(lstr))
  rownames(ldf) <- NULL
  as.data.frame(ldf, stringsAsFactors = FALSE)
}

f.abind <- function(arr1,arr2, along = ndim)
{
  ## Purpose: like abind, but less powerful
  ## ----------------------------------------------------------------------
  ## Arguments: arr1, arr2: arrays to bind
  ##            along: dimension along to bind to,
  ##                   defaults to last dimension
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date: 20 Oct 2009, 11:33
  ## if along =! last dimension: permutate array
  ndim <- length(dim(arr1))
  if (along != ndim) {
    arr1 <- aperm(arr1, perm = c((1:ndim)[-along],along))
    arr2 <- aperm(arr2, perm = c((1:ndim)[-along],along))
  }
  ldmn1 <- dimnames(arr1)
  ldmn2 <- dimnames(arr2)
  ld1 <- dim(arr1)
  ld2 <- dim(arr2)
  if (length(ld1) != length(ld2))
    stop('f.abind: Dimensions must be identical')
  if (!identical(ldmn1[-ndim],ldmn2[-ndim]))
    stop('f.abind: Dimnames other than in the along dimension must match exactly')
  if (any(ldmn1[[ndim]] %in% ldmn2[[ndim]]))
    stop('f.abind: Dimnames in along dimension must be unique')
  ldmn3 <- ldmn1
  ldmn3[[ndim]] <- c(ldmn1[[ndim]], ldmn2[[ndim]])
  ld3 <- ld1
  ld3[ndim] <- ld1[ndim] + ld2[ndim]
  ## build array
  arr3 <- array(c(arr1, arr2), dim = ld3, dimnames = ldmn3)
  ## permutate dimensions back
  if (along != ndim) {
    lperm <- 1:ndim
    lperm[along] <- ndim
    lperm[(along+1):ndim] <- along:(ndim-1)
    arr3 <- aperm(arr3, perm = lperm)
  }
  arr3
}

f.abind.3 <- function(...) f.abind(..., along = 3)

f.rename.level <- function(factor, from, to) {
  ## Purpose: rename level in a factor
  ## ----------------------------------------------------------------------
  ## Arguments: factor: factor variable
  ##            from: level to be changed
  ##            to: value
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date: 18 Aug 2010, 14:45
  levels(factor)[levels(factor) == from] <- to
  factor
}



###########################################################################
## 2. main simulation functions
###########################################################################

f.sim <- function(estlist,
                  .combine = 'f.abind',
                  .combine.2 = 'f.abind.3', ## hack for foreach
                  silent = TRUE)
{
  ## Purpose: perform simulation according to estlist entry ec
  ## ----------------------------------------------------------------------
  ## Arguments: ec: estlist, list consisting of:
  ##                - design: data frame of design
  ##                - nrep: number of repetitions
  ##                - errs: list of error distributions including arguments
  ##                    - err: name of error distribution
  ##                    - args: list of arguments (to be passed to do.call()
  ##                - procedures: list of parameter configurations and
  ##                    procedures to call
  ##                    - estname: name of estimation procedure
  ##                    - args: arguments that define the call
  ##            silent: silent argument to try
  ## ----------------------------------------------------------------------
  ## Author: Werner Stahel / Manuel Koller, Date: 21 Aug 2008, 07:55

  ## get designs
  ldd <- estlist$design
  use.intercept <- if(is.null(estlist$use.intercept)) TRUE
  else estlist$use.intercept
  nobs <- NROW(ldd)
  npar <- NCOL(ldd) + use.intercept
  nrep <- estlist$nrep
  nlerrs <- nobs*nrep
  ## initialize:
  lestlist <- estlist
  ## 'evaluate' estlist$procedure list
  lprocs <- c()
  for (i in seq_len(estlist$procedures)) {
    ## generate lprocstr (identification string)
    lprocs[i] <- estlist[['procedures']][[i]][['lprocstr']] <-
      f.list2str(estlist[['procedures']][[i]])
  }
  ## find all error distributions
  lerrs <- unique(sapply(lestlist$errs, f.list2str))
  ## walk estlist$output to create output column names vector
  ## store result into lnames, it is used in f.sim.process
  lnames <- c()
  for (i in seq_len(estlist$output)) {
    llnames <- estlist[['output']][[i]][['lnames']] <-
      eval(estlist[['output']][[i]][['names']])
    lnames <- c(lnames, llnames)
  }

  ## get different psi functions
  lpsifuns <- unlist(unique(lt <- sapply(estlist$procedures, function(x) x$args$psi)))
  ## get entries without psi argument
  lrest <- sapply(lt, is.null)
  if (sum(lrest) > 0) lpsifuns <- c(lpsifuns, '__rest__')

  ## Walk error distributions
  res <- foreach(lerrlst = estlist$errs, .combine = .combine) %:%
    foreach(lpsifun = lpsifuns, .combine = .combine.2) %dopar% {
      ## filter for psi functions
      lidx <- if (lpsifun == '__rest__') lrest else
      unlist(sapply(estlist$procedures,
                    function(x) !is.null(x$args$psi) && x$args$psi == lpsifun))
      cat(f.errs2str(list(lerrlst)), lpsifun, " ")
      ## get function name and parameters
      lerrfun <- f.errname(lerrlst$err)
      lerrpar <- lerrlst$args
      lerrstr <- f.list2str(lerrlst)

      ## --- initialize array
      lres <- array(NA, dim=c(nrep, ## data dimension
                          length(lnames), ## output type dimension
                          sum(lidx), ## estimation functions and arguments dimension
                          1), ## error distributions dimension
                    dimnames = list(Data = NULL,
                      Type = lnames, Procstr = lprocs[lidx], Errstr = lerrstr))
      ## set seed
      set.seed(estlist$seed)
      ## generate errors: seperately for each repetition
      lerrs <- c(sapply(1:nrep, function(x) do.call(lerrfun, c(n = nobs, lerrpar))))

      ## if estlist$design has an attribute 'gen'
      ## then this function gen will generate designs
      ## and takes arguments: n, p, rep
      ## and returns the designs in a list
      if (is.function(attr(ldd, 'gen'))) {
        ldds <- attr(ldd, 'gen')(nobs, npar - use.intercept, nrep, lerrlst)
      }

      ## Walk repetitions
      for (lrep in 1:nrep) {
        if (lrep%%100 == 0) cat(" ", lrep)
        lerr <- lerrs[(1:nobs)+(lrep-1)*nobs]
        if (exists('ldds')) {
          ldd <- ldds[[lrep]]
          ## f.sim.reset.envirs()
        }
        ## Walk estimator configurations
        for (lproc in estlist$procedures[lidx]) {
          ## call estimating procedure
          lrr <- tryCatch(do.call(f.estname(lproc$estname),
                                  c(if(use.intercept)
                                    list(lerr ~ .    , data = ldd) else
                                    list(lerr ~ . - 1, data = ldd), lproc$args)),
                          error=function(e)e)
          ERR <- inherits(lrr, 'error')
          if (ERR && !silent) {
            print(lproc$lprocstr)
            print(lrr)
          }
          if (!silent && !converged(lrr)) {
            print(lproc$lprocstr)
            browser() ## <<<
          }
          ## check class: if procedure failed:
          if (ERR) next
          ## check convergence of estimator
          if (!converged(lrr)) next
          ## process output
          for (lov in estlist$output) {
            llnames <- lov$lnames
	    ret <- tryCatch(lres[lrep,llnames,lproc$lprocstr,lerrstr] <- eval(lov$fun),
			    error= function(e)e)
	    if (!silent && inherits(ret, 'error')) {
	      cat('Error', dQuote(ret$message), 'in repetition',lrep,
		  '\n for:',llnames,'procstr:',lproc$lprocstr,'\n')
              browser() ## <<<
              print(lov$fun)
              print(try(eval(lov$fun)))
            }
          }
        }
      }
      ## print debug information if requested
      if (!silent) str(lres)
      lres
  }
  ## restore original order of lprocs
  res <- res[,,match(lprocs, dimnames(res)[[3]]),,drop=FALSE]
  ## set attributes
  attr(res, 'estlist') <- lestlist
  cat("\n")
  res
}

###########################################################################
## build estlist
###########################################################################

f.combine <- function(..., keep.list = FALSE) {
  ## Purpose: creates a list of all combinations of elements given as
  ##          arguments, similar to expand.grid.
  ##          Arguments can be named.
  ##          If an argument is a list, then its elements are considered
  ##          as fixed objects that should not be recombined.
  ##          if keep.list = TRUE, these elements are combined
  ##          as a list with argument.
  ## ----------------------------------------------------------------------
  ## Arguments: collection of lists or vectors with argument names
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  7 Oct 2009, 11:13
  ## convert arguments into a big list
  args <- list(...)
  ## if more than two arguments, call recursively
  if (length(args) > 2)
    lst <- do.call("f.combine", c(args[-1], list(keep.list=keep.list)))
  else {
    ## if just two arguments, create list of second argument
    ## if this is a list, then there's nothing to do
    if (!keep.list && is.list(args[[2]])) lst <- args[[2]]
    ## else convert to a list of one-elements lists with proper name
    else {
      lst <- list()
      for (lelem in args[[2]]) {
        llst <- list(lelem)
        if (!is.null(names(args)[2])) names(llst)[1] <- names(args)[2]
        lst <- c(lst, list(llst))
      }
    }
  }
  ## ok, now we can add the first element to all elements of lst
  lst2 <- list()
  if (keep.list && is.list(args[[1]])) args[[1]] <- lapply(args[[1]], list)
  for (lelem in args[[1]]) {
    for (relem in lst) {
      llst <- c(lelem, relem)
      if (nchar(names(llst)[1]) == 0 && nchar(names(args)[1])>0)
        names(llst)[1] <- names(args)[1]
      lst2 <- c(lst2, list(llst))
    }
  }
  lst2
}

## some fragments to build estlist
## errors
.errs.normal.1 <- list(err = 'normal',
                       args = list(mean = 0, sd = 1))
.errs.normal.2 <- list(err = 'normal',
                       args = list(mean = 0, sd = 2))
.errs.t.13 <- list(err = 't',
                  args = list(df = 13))
.errs.t.11 <- list(err = 't',
                  args = list(df = 11))
.errs.t.10 <- list(err = 't',
                  args = list(df = 10))
.errs.t.9 <- list(err = 't',
                  args = list(df = 9))
.errs.t.8 <- list(err = 't',
                  args = list(df = 8))
.errs.t.7 <- list(err = 't',
                  args = list(df = 7))
.errs.t.5 <- list(err = 't',
                  args = list(df = 5))
.errs.t.3 <- list(err = 't',
                  args = list(df = 3))
.errs.t.1 <- list(err = 't',
                  args = list(df = 1))

## skewed t distribution
.errs.skt.Inf.2 <- list(err = 'cskt',
                         args = list(df = Inf, gamma = 2))
.errs.skt.5.2 <- list(err = 'cskt',
                       args = list(df = 5, gamma = 2))
## log normal distribution
.errs.lnrm <- list(err = 'lnorm',
                   args = list(meanlog = 0, sdlog = 0.6936944))
## laplace distribution
.errs.laplace <- list(err = 'laplace',
                      args = list(location = 0, scale = 1/sqrt(2)))

## contaminated normal
.errs.cnorm..1.0.10 <- list(err = 'cnorm',
                            args = list(epsilon = 0.1, meanc = 0, sdc = sqrt(10)))

.errs.cnorm..1.4.1 <- list(err = 'cnorm',
                           args = list(epsilon = 0.1, meanc = 4, sdc = 1))

.errs.test <- list(.errs.normal.1
                   ,.errs.t.5
                   ,.errs.t.3
                   ,.errs.t.1
                   )

## arguments
.args.final <- f.combine(psi = c('optimal', 'bisquare', 'lqq', 'hampel'),
                         seed = 0,
                         max.it = 500,
                         k.max = 2000,
                         c(list(list(method = 'MM', cov = '.vcov.avar1')),
                           list(list(method = 'MM', cov = '.vcov.w',
                                     start = 'lrr')),
                           f.combine(method = c('SMD', 'SMDM'),
                                     cov = '.vcov.w',
                                     start = 'lrr')))

## use fixInNamespace("lmrob.fit", "robustbase")
## insert:
## N = {
## tmp <- lmrob..M..fit(x = x/init$tau, y = y/init$tau, obj =
## init)
## tmp$qr <- NULL
## tmp
## },

## .args.final <- f.combine(psi = c('optimal', 'bisquare', 'ggw', 'lqq'),
##                          seed = 0,
##                          max.it = 500,
##                          k.max = 2000,
##                          c(list(list(method = "SMDM", cov = '.vcov.w')),
##                            list(list(method = "SMDN", cov = '.vcov.w',
##                                      start = 'lrr'))))


## standard for lmRob
.args.bisquare.lmRob.0 <- list(## initial.alg = 'random',
                               efficiency = 0.95
                               ,weight = c('bisquare', 'bisquare'),
                               trace = FALSE
                               )

.args.optimal.lmRob.0 <- list(## initial.alg = 'random',
                              efficiency = 0.95
                              ,weight = c('optimal', 'optimal'),
                              trace = FALSE)

.procedures.final <- c(list(list(estname = 'lm')),
                       f.combine(estname = 'lmrob.u', args = .args.final,
                                 keep.list = TRUE),
                       f.combine(estname = 'lmrob.mar',
                                 args = f.combine(psi = 'bisquare',
                                   seed = 0, max.it = 500, k.max = 2000,
                                   cov = '.vcov.w', type = c('qT', 'qE')),
                                 keep.list = TRUE),
                       f.combine(estname = 'lm.robust',
                                 args = list(.args.bisquare.lmRob.0,
                                   .args.optimal.lmRob.0), keep.list = TRUE))

## output
.output.sigma <- list(sigma = list(
                        names = quote("sigma"),
                        fun = quote(sigma(lrr))))
.output.beta <- list(beta = list(
                       names = quote(paste('beta',1:npar,sep='_')),
                       fun = quote(coef(lrr))))
.output.se <- list(se = list(
                     names = quote(paste('se',1:npar,sep='_')),
                     fun = quote(sqrt(diag(covariance.matrix(lrr))))))
.output.sumw <- list(sumw = list(
                       names = quote("sumw"),
                       fun = quote(sum(robustness.weights(lrr)))))
.output.nnz <- list(nnz = list(
                      names = quote("nnz"),
                      fun = quote(sum(robustness.weights(lrr) < 1e-3))))

###########################################################################
## simulation results processing functions
###########################################################################

## use apply to aggregate data
## use matplot(t(result)) to plot aggregated data

f.apply <- function(res, items = dimnames(res)[[2]],
                    FUN, ..., swap = FALSE)
{
  ## Purpose: similar to apply, return data not as matrix, but
  ##          as data.frame
  ## ----------------------------------------------------------------------
  ## Arguments: res: simulation results array
  ##            items: items to use in apply
  ##            FUN: function to apply
  ##            ...: additional arguments to FUN
  ##            swap: if TRUE: swap first two columns
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  8 Oct 2009, 13:39

  ## aggregate data
  lz <- apply(res[,items,,,drop=FALSE], 2:4, FUN, ...)
  ## if return object has four dimensions (multidim output of FUN)
  ## rotate first three dimensions
  if (length(dim(lz)) == 4 && swap) aperm(lz, perm=c(2,1,3,4)) else lz
}

f.dimnames2df <- function(arr, dm = dimnames(arr),
                          page = TRUE, err.on.same.page = TRUE,
                          value.col = ndim - 2,
                          procstr.col = ndim - 1,
                          errstr.col = ndim,
                          procstr.id = TRUE,
                          split = '_')
{
  ## Purpose: create data frame from dimnames:
  ##          len_1 .. len_100, cpr_1 .. cpr_100
  ##          will yield a data frame with column id from 1 .. 100
  ##          column type with cpr and len and columns procstr and errstr
  ##          It is assumed, that the max number (100) is the same for all
  ##          output value types
  ## ----------------------------------------------------------------------
  ## Arguments: arr: 3 or more dim array (optional)
  ##            dm: dimnames to be used
  ##            page: add a column page to simplify plots
  ##            err.on.same.page: whether all errs should be on the same
  ##                              page
  ##            value.col: index of value column (set to NULL for none)
  ##                       the values in this column are split name_id
  ##                       and put into two columns in the data frame
  ##            procstr.col: index of procedure column
  ##                         (both: or NULL for not to be converted)
  ##            errstr.col: index of error string column
  ##            procstr.id: create procstr id
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date: 19 Oct 2009, 08:41

  if (!is.list(dm)) stop('f.dimnames2df: dm must be a list')
  ## remove 'NULL' dimensions
  dm <- dm[!sapply(dm,is.null)]
  ndim <- length(dm)
  if (ndim == 0) stop('f.dimnames2df: dimnames all null')
  ldims <- sapply(dm, length)
  ## split and convert types into data.frame
  if (!is.null(value.col)) {
    ldf <- f.splitstrs(dm[[value.col]], split = split)
    lid <- NCOL(ldf) == 2
    if (lid) lids <- unique(as.numeric(ldf[,2])) ## convert ids into numeric
    ## we do not need to repeat over different types of values, only ids
    ldims[value.col] <- ldims[value.col] / length(unique(ldf[,1]))
  }
  ## merge into one large data.frame: for each distribution
  rdf <- list()
  for (ld in 1:ndim) {
    lname <- if (is.null(lname <- names(dm)[ld])) length(rdf)+1 else lname
    ltimes <- if (ld == ndim) 1 else prod(ldims[(ld+1):ndim])
    leach <- if (ld == 1) 1 else prod(ldims[1:(ld-1)])
    if (!is.null(value.col) && ld == value.col) {
      if (lid) rdf[[paste(lname,'Id')]] <-
        rep(lids,times=ltimes,each=leach) ## value ids
      ## no else: the values will be added in the a2df procedures
    } else if (!is.null(procstr.col) && ld == procstr.col) {
      ## convert procstrs to data.frame with pretty names
      lprdf <- data.frame(f.procedures2str(f.str2list(dm[[ld]])),
                          Procstr = factor(dm[[ld]], levels = dm[[ld]],
                            labels = dm[[ld]]))
      if (procstr.id) lprdf$PId <- f.procstr2id(dm[[ld]])
      ## repeat
      lprdf <- if (ltimes == 1 && leach == 1)
        lprdf else apply(lprdf,2,rep,times=ltimes,each=leach)
      lprdf <- as.data.frame(lprdf, stringsAsFactors=FALSE)
      ## convert all into nice factors (with the original ordering)
      for (lk in colnames(lprdf)) {
        luniq <- unique(lprdf[[lk]])
        lprdf[[lk]] <- factor(lprdf[[lk]], levels = luniq, labels = luniq)
      }
      rdf <- c(rdf, lprdf)
    } else if (!is.null(errstr.col) && ld == errstr.col) {
      ## convert errstrs to data.frame with pretty names
      ledf <- f.errs2str(f.str2list(dm[[ld]]))
      ## repeat and convert to factor with correct ordering
      rdf[[lname]] <- factor(rep(dm[[ld]],times=ltimes,each=leach),
                             levels = dm[[ld]], labels = dm[[ld]])
      rdf[['Error']] <- factor(rep(ledf,times=ltimes,each=leach),
                               levels = ledf, labels = ledf)
    } else {
      ## no conversion necessary
      rdf[[lname]] <- rep(dm[[ld]],times=ltimes,each=leach)
    }
  }
  ## add page argument
  if (page && !is.null(procstr.col)) {
    ltpf <- if (!is.null(errstr.col) && !err.on.same.page)
      interaction(rdf[['Procstr']],rdf[['Error']])
    else interaction(rdf[['Procstr']])
    rdf[['Page']] <- as.numeric(factor(ltpf, unique(ltpf)))
  }
  rdf <- as.data.frame(rdf)
  if (!is.null(value.col))
    attr(rdf, 'Types') <- unique(ldf[,1])
  rdf
}

f.a2df.2 <- function(arr, dm = dimnames(arr), err.on.same.page = FALSE, ...)
{
  ## Purpose: convert arr to data.frame
  ##          uses f.dimnames2df and adds a column to contain the values
  ##          if ndim == 4 and dimnames NULL: assumes first dimension is
  ##          data dimension which is ignored by f.dimnames2df
  ##          add counter
  ## ----------------------------------------------------------------------
  ## Arguments: arr: array to convert
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date: 23 Oct 2009, 12:29

  ## ndim == 2 ??
  ndim <- length(dim(arr))
  ## if ndim == 4: check if dimnames of dim 1 are NULL
  if (ndim == 4 && is.null(dm[[1]]))
      dm[[1]] <- 1:dim(arr)[1]
  rdf <- f.dimnames2df(dm=dm, ...)
  ## just add values for all 'Types', possibly including Type.ID
  if (ndim > 2)
    for (lvt in attr(rdf, 'Types')) {
      llvt <- if (is.null(rdf$Type.Id)) lvt else paste(lvt,unique(rdf$Type.Id),sep='_')
      rdf[[lvt]] <- as.vector(switch(ndim,
                                     stop('wrong number of dimensions'), ## 1
                                     arr, ## 2
                                     arr[llvt,,], ## 3
                                     arr[,llvt,,])) ## 4
    }
  else
    rdf$values <- as.vector(arr)
  rdf
}


f.dimnames2pc.df <- function(arr, dm = dimnames(arr),
                             npcs = NCOL(estlist$design.predict), ...)
{
  ## Purpose: create data frame to be used in plotting of pc components
  ##          calls f.dimnames2df and adds an additional column for
  ##          identifying the principal components
  ## ----------------------------------------------------------------------
  ## Arguments: arr, dm: see f.dimnames.df
  ##            npcs: number of principal components
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date: 23 Oct 2009, 11:51

  if (missing(npcs) && !is.null(attr(estlist$design.predict, 'npcs')))
    npcs <- attr(estlist$design.predict, 'npcs')

  ## convert into data.frame
  rdf <- f.dimnames2df(dm = dm, ...)
  ## calculate number of points per principal component
  npts <- (length(unique(rdf$Type.Id)) - 1) / npcs
  ## add new column pc
  rdf$PC <- 1
  if (npcs > 1)
    for (li in 2:npcs) {
      lids <- (1:npts + npts*(li-1) + 1)
      rdf$PC[rdf$Type.Id %in% lids] <- li ## fixme: center is not repeated
    }
  rdf$PC <- factor(rdf$PC, levels = 1:npcs, labels = paste('PC',1:npcs,sep=' '))
  rdf
}

f.a2pc.df <- function(arr, ...)
{
  ## Purpose: convert arr to data.frame
  ##          uses f.dimnames2pc.df and adds a column to contain the values
  ## ----------------------------------------------------------------------
  ## Arguments: arr: array to convert
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date: 23 Oct 2009, 12:29

  ## convert dimnames
  rdf <- f.dimnames2pc.df(arr, err.on.same.page = FALSE,...)
  ## add values
  for (lvt in attr(rdf, 'Types'))
    rdf[[lvt]] <- as.vector(arr[paste(lvt,unique(rdf$Type.Id),sep='_'),,])
  ## repeat values: only PC_1 has center value, add it for other PCs
  ## build index
  idx <- 1:NROW(rdf)
  rpc <- as.character(rdf$PC)
  for (lerr in levels(rdf$Error)) {
    for (lprc in levels(rdf$Procstr)) {
      for (lpc in levels(rdf$PC)) {
        if (lpc == 'PC 1') next
        ## get first entry of this PC
        lmin <- min(which(rdf$Error == lerr & rdf$Procstr == lprc & rdf$PC == lpc))
        ## where is this in idx?
        lwm <- min(which(lmin == idx))
        ## get first entry of PC_1
        lmin1 <- min(which(rdf$Error == lerr & rdf$Procstr == lprc & rdf$PC == 'PC 1'))
        ## update idx
        idx <- c(idx[1:(lwm-1)], lmin1, idx[lwm:length(idx)])
        ## update PC column of result
        rpc <- c(rpc[1:(lwm-1)], lpc, rpc[lwm:length(rpc)])
      }
    }
  }
  ## repeat centers
  rdf <- rdf[idx,]
  ## update PC column
  rdf$PC <- factor(rpc)
  ## return
  rdf
}

f.calculate <- function(expr,arr,dimname = as.character(expr))
{
  ## Purpose: calculate formula and return as conformable array
  ## ----------------------------------------------------------------------
  ## Arguments: expr: expression to calculate (string is also ok)
  ##            arr: array (from f.sim)
  ##            dimname: name of the calculated dimension
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  9 Oct 2009, 10:15

  if (!is.expression(expr)) expr <- as.expression(expr)

  lnams <- dimnames(arr)[[2]]
  lst <- list()
  for (lnam in lnams)
    expr <- gsub(paste(lnam,'\\b',sep=''),
                 paste("arr[,",lnam,",,,drop=FALSE]",sep='"'), expr)

  r <- eval(parse(text = expr))
  dimnames(r)[[2]] <- dimname
  r

  ## maybe use abind to merge the two arrays?
}

f.calculate.many <- function(expr, arr, dimname = dims, dims)
{
  ## Purpose: calculate formula and abind into array
  ##          supply expr as string with # symbols to be replaced
  ##          dimname can also contain # symbols
  ## ----------------------------------------------------------------------
  ## Arguments: same as f.calculate and
  ##            dims: vector of items to replace # with
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date: 14 Oct 2009, 10:11

  for (i in seq_len(dims)) {
    lexpr <- gsub("#",dims[i],expr)
    ldimname <-
      if (length(dimname) > 1) dimname[i] else gsub("#",dims[i],dimname)
    if (i == 1)
      rarr <- f.calculate(lexpr,arr,ldimname)
    else
      rarr <- abind(rarr, f.calculate(lexpr,arr,ldimname), along=2)
  }

  rarr
}

f.errs <- function(estlist, err, rep, gen = NULL, nobs, npar)
{
  ## Purpose: generate and return errors of specified repetition
  ##          or, if missing, all errors as a matrix
  ## ----------------------------------------------------------------------
  ## Arguments: estlist: estlist
  ##            err: error distribution (estlist$errs[1] for example)
  ##            rep: desired repetition (optional)
  ##            gen: function to generate designs (optional)
  ##            nobs: nr. rows, npap: nr. predictors (both optional)
  ## ---------------------------------------------------------------------
  ## Author: Manuel Koller, Date: 13 Oct 2009, 11:21

  nobs <- NROW(estlist$design)
  nrep <- estlist$nrep
  nlerrs <- nobs*nrep
  npred <- NROW(estlist$design.predict)

  ## get function name and parameters
  lerrfun <- f.errname(err$err)
  lerrpar <- err$args
  lerrstr <- f.list2str(err)
  ## set seed
  set.seed(estlist$seed)
  ## generate errors: seperately for each repetition
  lerrs <- c(sapply(1:nrep, function(x) do.call(lerrfun, c(n = nobs, lerrpar))))
  ## lerrs <- do.call(lerrfun, c(n = nlerrs, lerrpar))
  ## to get to the same seed state as f.sim(.default)
  ## generate also the additional errors
  ## calculate additional number of errors
  for (i in seq_len(estlist$output)) {
    if (!is.null(estlist[['output']][[i]][['nlerrs']]))
      nlerrs <- nlerrs + eval(estlist[['output']][[i]][['nlerrs']])
  }
  if (length(lerrs) < nlerrs)
    nowhere <- do.call(lerrfun, c(n = nlerrs - length(lerrs), lerrpar))
  ## generate designs
  if (!is.null(gen) && is.function(gen)) {
    ldds <- gen(nobs, npar, nrep, err)
  }
  ## return errors
  ret <- if (!missing(rep)) lerrs[1:nobs+(rep-1)*nobs] else matrix(lerrs, nobs)
  if (exists('ldds')) attr(ret, 'designs') <- if (!missing(rep)) ldds[[i]] else ldds
  ret
}

f.selection <- function(procstrs = dimnames(r.test)[[3]],
                        what = c('estname', 'args.method', 'args.psi', 'args.tuning.psi',
                          'args.type', 'args.weight2', 'args.efficiency'),
                        restr = '')
{
  ## Purpose: get selection of results: first one of the specified estimates
  ## ----------------------------------------------------------------------
  ## Arguments: procstrs: what is the selection
  ##            what: named vector to use in grep
  ##            restr: do not select estimators with procstr
  ##                   that match this regexp parameters
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  2 Nov 2009, 09:06

  ## match restrictions
  lrestr <- -(lall <- 1:length(procstrs)) ## no restrictions
  if (!missing(restr)) {
    lrestr <- grep(restr, procstrs)
    if (length(lrestr) == 0) lrestr <- -lall
    procstrs <- procstrs[-lrestr]
  }
  ## procstr2list, but do not split into sublists
  lproclst <- f.str2list(procstrs, splitchar='_____')
  ## helper function: select only items that occur what
  tfun <- function(x) x[what]
  lproclst <- lapply(lproclst, tfun)
  ## convert back to string
  lprocstr <- sapply(lproclst, f.list2str)
  ## get all unique combinations and the first positions
  lidx <- match(unique(lprocstr), lprocstr)
  r <- procstrs[lidx]
  attr(r, 'idx') <- lall[-lrestr][lidx]
  r
}

f.get.current.dimnames <- function(i,dn,margin)
{
  ## Purpose: get current dimnames in the margins of array
  ##          we're applying on
  ## ----------------------------------------------------------------------
  ## Arguments: i:  counter
  ##            dn: dimnames
  ##            margin: margin argument to apply
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date: 16 Apr 2010, 10:44

  ## pos <- integer(0)
  lcdn <- character(0)

  for (lm in margin) {
    ## get length of current margin
    llen <- length(dn[[lm]])
    ## i modulo llen gives the current position in this dimension
    lpos <- (if (i > 0) i-1 else 0) %% llen + 1
    ## update pos
    ## pos <- c(pos, lpos)
    ## update lcdn
    lcdn <- c(lcdn, dn[[lm]][lpos])
    ## update i: subtract lpos and divide by llen
    i <- (i - lpos) / llen + 1
  }
  lcdn
}

f.n <- Vectorize(function(design)
{
  ## Purpose: get n obs of design
  ## ----------------------------------------------------------------------
  ## Arguments: design: design to get n of
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date: 19 Apr 2010, 11:19

  NROW(get(design))
})

f.p <- Vectorize(function(design)
{
  ## Purpose: get p par of design
  ## ----------------------------------------------------------------------
  ## Arguments: design: design to get p of
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date: 19 Apr 2010, 11:19

  NCOL(get(design)) + 1
})

f.which.min <- function(x, nr = 1) {
  ## Purpose: get the indices of the minimal nr of observations
  ## ----------------------------------------------------------------------
  ## Arguments: x: vector of values
  ##            nr: number of indices to return
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  4 May 2010, 12:18
  match(sort(x)[1:nr], x)
}

f.which.max <- function(x, nr = 1) f.which.min(-x, nr)

## f.get.scale <- function(procstr, proclst = f.str2list(procstr))
## {
##   ## Purpose: get scale estimate used for procstrs
##   ## ----------------------------------------------------------------------
##   ## Arguments: procstr: procstrs (dimnames(r.test)[[3]]) as output by
##   ##                     f.list2str()
##   ##            proclst: list of procedures, as in estlist$procedures
##   ## ----------------------------------------------------------------------
##   ## Author: Manuel Koller, Date:  9 Sep 2010, 13:52

##   ret <- list()

##   for (lproc in proclst) {
##     if (lproc$estname == 'lm') {
##       ## least squares
##       ret <- c(ret, list(list(fun='f.lsq')))
##     } else {
##       ## default (S-scale):
##       fun <- 'lmrob.mscale'
##       lidx <- names(lproc$args)[na.omit(match(c('psi', 'tuning.chi', 'seed'),
##                                               names(lproc$args)))]

##       if (!is.null(lproc$args$method) &&
##                substr(lproc$args$method,1,3) == 'SMD') {
##         ## D-scale
##         fun <- 'lmrob.dscale'
##         lidx <- names(lproc$args)[na.omit(match(c('psi', 'tuning.psi'),
##                                               names(lproc$args)))]
##       } else if (lproc$estname == 'lmrob.mar' ### continue here
##       ret <- c(ret, list(list(fun=fun, args=lproc$args[lidx])))
##     }

## })



###########################################################################
## functions related to prediction
###########################################################################

f.prediction.points <- function(design, type = c('pc', 'grid'),
                                length.out = 4*NCOL(design), f = 0.5,
                                direction = +1, max.pc = 5)
{
  ## Purpose: generate prediction points for design
  ##          generate four points along the second principal component
  ##          in the center, 2 intermediate distances and long distance
  ##          (from the center)
  ## ----------------------------------------------------------------------
  ## Arguments: design: design matrix
  ##            type: type of prediction points: grid / principal components
  ##            length.out: approximate number of prediction points
  ##            f: extend range by f (like extendrange())
  ##            direction: +1 or -1: which direction to go from the center
  ##            max.pc: maximum number of principal components to use
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  9 Oct 2009, 16:48

  ## match type argument
  type = match.arg(type)
  ## get ranges
  lrange <- apply(design, 2, range)
  ## extend range by f
  lrange <- data.frame(apply(lrange, 2, extendrange, f = f))

  switch(type,
         pc = {
           ## calculate robust covariance matrix
           rob <- covMcd(design)
           ## and use it to calculate the principal components
           rpc <- princomp(covmat = rob$cov)
           ## get corner with maximum distance from rob$center
           lidx <- apply(abs(lrange - rob$center),2,which.max)
           lcr <- diag(as.matrix(lrange[lidx,]))
           ## create grid points:
           rdf <- rob$center
           ## for each principal component
           for (id in 1:min(NCOL(rpc$loadings),max.pc)) {
             ## calculate factor to reach each boundary
             lfct <- (lcr - rob$center) / rpc$loadings[,id]
             ## calculate distances to boundaries and take the minimal one
             lmin <- which.min(sapply(lfct, function(x) sum((rpc$loadings[,id] * x)^2)))
             ## create sequence of multiplicands
             lmult <- seq(0,lfct[lmin], length.out=length.out/NCOL(rpc$loadings))
             rdf <- rbind(rdf, rep(rob$center,each=length(lmult)-1) +
                          direction*lmult[-1] %*% t(rpc$loadings[,id]))
           }
         },
         grid = {
           ## generate sequences for every dimension
           lval <- as.data.frame(apply(lrange, 2L, f.seq,
                                       length.out = round(length.out^(1/NCOL(design))) ))
           ## return if 1 dimension, otherwise create all combinations
           rdf <- if (NCOL(design) > 1)
             t(as.data.frame(do.call('f.combine', lval))) else lval

         })
  rdf <- as.data.frame(rdf)
  rownames(rdf) <- NULL
  colnames(rdf) <- colnames(design)
  if (type == 'pc') attr(rdf, 'npcs') <- id
  rdf
}

## ## plot with
## require(rgl)
## plot3d(design)
## points3d(f.prediction.points(design), col = 2)

## d.data <- data.frame(y = rnorm(10), x = 1:10)
## pred <- f.prediction.points(d.data[,-1,drop=FALSE])
## obj <- f.lmrob.local(y ~ x, d.data)
## f.predict(obj, pred, interval = 'prediction')
## as.vector(t(cbind(rnorm(4), f.predict(obj, pred, interval = 'prediction'))))

## estlist for prediction:
## start with .output.test
## we only need sigma
.output.prediction <- c(.output.sigma,.output.beta,.output.se,.output.sumw,.output.nnz)
.output.prediction$predict <-
  list(names = quote({
    npred <- NROW(estlist$design.predict)
    paste(c('fit', 'lwr', 'upr', 'se.fit', 'cpr'),
          rep(1:npred,each = 5), sep = '_')}),
       fun = quote({
         lpr <- f.predict(lrr, estlist$design.predict, interval = 'prediction',
                          se.fit = TRUE) ##, df = 16)
         lpr <- cbind(lpr$fit, lpr$se.fit)
         lqf <- f.errname(lerrlst$err, 'p')
         lcpr <- do.call(lqf, c(list(lpr[,'upr']), lerrpar)) -
           do.call(lqf, c(list(lpr[,'lwr']), lerrpar))
         as.vector(t(cbind(lpr,lcpr)))}))

.estlist.prediction <- list(design = dd,
                            nrep = 200,
                            errs = .errs.test,
                            seed = 0,
                            procedures = .procedures.final,
                            design.predict = f.prediction.points(dd),
                            output = .output.prediction,
                            use.intercept = TRUE)

## predict confidence intervals instead of prediction intervals
.estlist.confint <- .estlist.prediction
.estlist.confint$output$predict$fun <-
  parse(text=gsub('prediction', 'confidence', deparse(.output.prediction$predict$fun)))

###########################################################################
## Generate designs - function
###########################################################################

f.gen <- function(n, p, rep, err) {
  ## get function name and parameters
  lerrfun <- f.errname(err$err)
  lerrpar <- err$args
  ## generate random predictors
  ret <- lapply(1:rep, function(...)
                data.frame(matrix(do.call(lerrfun, c(n = n*p, lerrpar)), n, p)))
  attr(ret[[1]], 'gen') <- f.gen
  ret
}

.output.sigmaE <- list(sigmaE = list(
                     names = quote("sigmaE"),
                     fun = quote({
                       ## estimate scale using current scale estimate.
                       ## this amounts to recalculating the estimate
                       ## with just an intercept
                       llargs <- lproc$args
                       llestname <- lproc$estname
                       ## save time and just calculate S-estimate and no covariance matrix
                       if (grepl('^lmrob', llestname)) {
                         llestname <- 'lmrob'
                         llargs$cov <- 'none'
                         llargs$envir <- NULL ## drop envir argument
                         if (llargs$method %in% c('MM', 'SM')) llargs$method <- 'S'
                         if (grepl('M$', llargs$method))
                           llargs$method <- f.chop(llargs$method)
                       } else if (lproc$estname == 'lm.robust') {
                         llargs$estim <- 'Initial'
                       }
                       llrr <- tryCatch(do.call(f.estname(lproc$estname),
                                                c(list(lerr ~ 1), llargs)),
                                        error = function(e)e)
                       ## check class: if procedure failed: class == 'try-error'
                       if (inherits(llrr, 'error')) NA
                       ## check convergence of estimator
                       else if (lproc$estname != 'lm.robust' && !converged(llrr)) NA
                       else sigma(llrr)
                     })))