File: glmrob-1.R

package info (click to toggle)
robustbase 0.99-6-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 4,584 kB
  • sloc: fortran: 3,245; ansic: 3,243; sh: 15; makefile: 2
file content (197 lines) | stat: -rw-r--r-- 7,600 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
library(robustbase)

## instead of relying on  system.file("test-tools-1.R", package="Matrix"):
source(system.file("xtraR/test-tools.R", package = "robustbase"))

###>> 1 ------------------- family = poisson ------------------------------------

### very simple model [with outliers]
set.seed(113)
y <- rpois(17, lambda = 4) ## -> target:  beta_0 = log(E[Y]) = log(4) = 1.386294

y[1:2] <- 99:100 # outliers
y
rm1 <- glmrob(y ~ 1, family = poisson, trace = TRUE,
              acc = 1e-13) # default is just 1e-4
## and check the robustness weights:
assert.EQ(c(0.0287933850640724, 0.0284930623638766,
		      0.950239140568007, 0.874115394740014),
		    local({w <- rm1$w.r; w[ w != 1 ] }), tol = 1e-14)
assert.EQ(coef(rm1), c("(Intercept)" = 1.41710946076738),tol = 1e-14)

cm1 <- glm   (y ~ 1, family = poisson, trace = TRUE)

rmMT <- glmrob(y ~ 1, family = poisson, trace = TRUE, method="MT")
(sMT <- summary(rmMT))

if(FALSE) # for manual digging:
debug(robustbase:::glmrobMqle)

allresid <- function(obj, types = c("deviance", "pearson", "working", "response"))
{
    sapply(types, residuals, object = obj)
}

okFit <- function(obj, check.attr=FALSE, ...) {
  all.equal(obj$y, obj$fitted.values + residuals(obj, "response"),
            check.attributes=check.attr, ...)
}

## check validity of several methods simultaneously:
y. <- model.response(model.frame(rm1))
stopifnot(okFit(cm1), okFit(rm1), y. == y)

alr.c <- allresid(cm1)
alr.r <- allresid(rm1)

## MM --- just for now --
plot(resid(cm1),                resid(rm1), asp=1); abline(0,1, col=2)
plot(resid(cm1,type="pearson"), resid(rm1, type="pearson"), asp=1); abline(0,1, col=2)
plot(resid(cm1,type="working"), resid(rm1, type="working"), asp=1); abline(0,1, col=2)

## leave away the outliers --
cm0 <- glm   (y ~ 1, family = poisson, trace = TRUE, subset = -(1:2))
plot(resid(cm0),                resid(rm1)[-(1:2)], asp=1); abline(0,1, col=2)
plot(resid(cm0,type="pearson"), resid(rm1, type="pearson")[-(1:2)], asp=1); abline(0,1, col=2)
plot(resid(cm0,type="working"), resid(rm1, type="working")[-(1:2)], asp=1); abline(0,1, col=2)
plot(resid(cm0,type="response"), resid(rm1, type="response")[-(1:2)], asp=1); abline(0,1, col=2)


## Use weights (slow convergence !)
w2 <- c(rep(1,8), rep(10,9))
rm2 <- glmrob(y ~ 1, family = poisson, trace = TRUE,
              weights = w2, maxit = 500, acc = 1e-10) # default is just 1e-4
## slow convergence
stopifnot(okFit(rm2))


###>> 2 ------------------- family = binomial -----------------------------------

## Using  *factor*  y ...
x <- seq(0,5, length = 120)
summary(px <- plogis(-5 + 2*x))
set.seed(7)
(f <- factor(rbinom(length(x), 1, prob=px)))

summary(m.c0 <- glm   (f ~ x, family = binomial))
summary(m.r0 <- glmrob(f ~ x, family = binomial))

## add outliers --- in y:
f. <- f
f.[i1 <- 2:3] <- 1
f.[i0 <- 110+c(1,7)] <- 0
        m.c1 <- glm   (f. ~ x, family = binomial)
summary(m.r1 <- glmrob(f. ~ x, family = binomial)) ## hmm, not so robust?
stopifnot(m.r1$w.r[c(i0,i1)] < 1/3, # well, at least down weighted
	  ## and coefficients change less :
	  (coef(m.r1) - coef(m.c0)) / (coef(m.c1) - coef(m.c0)) < 1)
assert.EQ(c("(Intercept)" = -3.10817337603974, x = 1.31618564057790),
	  coef(m.r1), tol= 1e-14, giveRE=TRUE)

y <- as.numeric(as.character(f.))
m.r2  <- BYlogreg(x0=x, y=y, trace=TRUE, maxhalf= 10)
m.r2A <- BYlogreg(x0=x, y=y, trace= 2  , maxhalf= 15)
## different.. but not so much:
iB <- 1:5
assert.EQ(m.r2A[iB], m.r2[iB], tol = .003, giveRE=TRUE)


assert.EQ(c("Intercept" = -2.9554950286, x = 1.2574679132),
          ## 32-bit{ada-5}  -2.95549502890363   1.25746791332613
	  m.r2$coef, tol=8e-10, giveRE=TRUE)# seen 5.316e-10   for --disable-long-double
assert.EQ( c(0.685919891749065, 0.256419206157062),
          ## 32-bit{ada-5}:
          ## 0.685919891858219, 0.256419206203016)
	  m.r2$sterror, tol=4e-9)# seen 1.025e-9   for --disable-long-double

data(foodstamp)
str(foodstamp)
## Model with 'income' instead of log(income+1)  is "interesting"
## because BYlogreg() needs  maxhalf > 10 for convergence!
m.fs0   <- glm   (participation ~ ., family=binomial, data=foodstamp)
m.fs0QL <- glmrob(participation ~ ., family=binomial, data=foodstamp)
y.fs <- foodstamp[,"participation"]
X.fs0 <- model.matrix(m.fs0)
head(X.fs0)
## (former default) maxhalf = 10  leads to too early convergence:
m.fsWBY. <- BYlogreg(x0=X.fs0, y=y.fs,
                     addIntercept=FALSE, trace=TRUE, maxhalf=10)
m.fs.BY. <- BYlogreg(x0=X.fs0, y=y.fs, initwml=FALSE,
                     addIntercept=FALSE, trace=TRUE, maxhalf=10)
m.fsWBY <- BYlogreg(x0=X.fs0, y=y.fs,
		    addIntercept=FALSE, trace=TRUE, maxhalf=18)
m.fs.BY <- BYlogreg(x0=X.fs0, y=y.fs, initwml=FALSE,
		    addIntercept=FALSE, trace=TRUE, maxhalf=18)

assert.EQ(m.fsWBY.[iB], m.fsWBY[iB], tol= 0.07)## almost 7% different
assert.EQ(m.fs.BY.[iB], m.fs.BY[iB], tol= 0.08)

foodSt <- within(foodstamp, { logInc <- log(1 + income) ; rm(income) })

m.fsML <- glm   (participation ~ ., family=binomial, data=foodSt)
m.fsQL <- glmrob(participation ~ ., family=binomial, data=foodSt)
X.fs <- model.matrix(m.fsML)
stopifnot(dim(X.fs) == c(150, 4)) # including intercept!
try(## FIXME -- Mahalanobis fails with singular matrix, here:
m.fsWBY <- BYlogreg(x0=X.fs, y=y.fs,
		    addIntercept=FALSE, trace=TRUE, maxhalf=18)
)
## maxhalf=18 is too much --> no convergence (in 1000 steps)
m.fs.BY <- BYlogreg(x0=X.fs, y=y.fs, initwml=FALSE,
		    addIntercept=FALSE, trace=TRUE, maxhalf=18)
signif(
    rbind(ML = coef(m.fsML),   QL =coef(m.fsQL),
          WBY0=coef(m.fsWBY.), BY0=coef(m.fs.BY.),
          WBY =coef(m.fsWBY ), BY =coef(m.fs.BY)
          )
    , 4)


if(FALSE) {
## *scaling* of X (  ?? <==> ??   'sigma1' ) ------------------

## no "W" (Mahalanobis fail because of *singular* X):
m.fs.BY100 <- BYlogreg(x0=100*X.fs, initwml=FALSE,
                       y=y.fs,
                       addIntercept=FALSE, trace=TRUE, maxhalf=18)
## ==> no convergence

X1c <- cbind(1, 100*X.fs[,-1])
m.fsWBY1c <- BYlogreg(x0=X1c, y=y.fs,
                      addIntercept=FALSE, trace=TRUE, maxhalf=18)
## ==> illegal singularity$kind

}## not yet

###-------- Gamma ------------

## Realistic "data" {from help(glmrob)}:
mu <- c(122.131, 53.0979, 39.9039, 33.9232, 28.007,
        24.923, 21.5747, 19.6971, 18.4516)
ns.resid <- c(-0.0338228, 0.0923228, 0.0525284, 0.0317426, -0.035954,
              0.00308925, -0.026637, -0.0353932, -0.0244761)
Vmu <- c(14915.9, 2819.38, 1592.32, 1150.78, 784.39,
         621.156, 465.467, 387.978, 340.462)
Hp2  <- robustbase:::Huberprop2
## Hp2. <- robustbase:::Huberprop2.

## was: phis <- 2^(-70:-1)  -- but that was *not* reliable (on 32-bit e.g.)
phis <- 2^(-42:-1)
H1 <- sapply(phis, function(phi)
    Hp2(phi, ns.resid=ns.resid, mu=mu, Vmu=Vmu, tcc = 1.345))
## H2 <- sapply(phis, function(phi)
##     Hp2.(phi, ns.resid=ns.resid, mu=mu, Vmu=Vmu, tcc = 1.345))
dput(signif(H1))
H2 <- c(9.91741,
        9.88674, 9.89438, 9.88674, 9.88961, 9.88961, 9.88961, 9.88984,
        9.88973, 9.88964, 9.8897, 9.88975, 9.88976, 9.88975, 9.88974,
        9.88974, 9.88974, 9.88974, 9.88974, 9.88974, 9.88974, 9.88974,
        9.88975, 9.88975, 9.88975, 9.33161, 8.70618, 8.39347, 8.23714,
        8.15902, 8.12006, 7.16275, 3.38703, -0.0879886, -2.3322, -4.16929,
        -5.26821, -5.80526, -6.04822, -6.11538, -6.02613, -5.66718)
          all.equal(H1,H2, tolerance = 0) # -> see 8.869e-7
stopifnot(all.equal(H1,H2, tolerance = 1e-5))

if(dev.interactive(TRUE)) # shows that phi < 1e-12 is doubtful
  matplot(phis, cbind(H1,H2), log="x", ylim = rrange(H1), type="o")