1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
library(robustbase)
## instead of relying on system.file("test-tools-1.R", package="Matrix"):
source(system.file("xtraR/test-tools.R", package = "robustbase"))
###>> 1 ------------------- family = poisson ------------------------------------
### very simple model [with outliers]
set.seed(113)
y <- rpois(17, lambda = 4) ## -> target: beta_0 = log(E[Y]) = log(4) = 1.386294
y[1:2] <- 99:100 # outliers
y
rm1 <- glmrob(y ~ 1, family = poisson, trace = TRUE,
acc = 1e-13) # default is just 1e-4
## and check the robustness weights:
assert.EQ(c(0.0287933850640724, 0.0284930623638766,
0.950239140568007, 0.874115394740014),
local({w <- rm1$w.r; w[ w != 1 ] }), tol = 1e-14)
assert.EQ(coef(rm1), c("(Intercept)" = 1.41710946076738),tol = 1e-14)
cm1 <- glm (y ~ 1, family = poisson, trace = TRUE)
rmMT <- glmrob(y ~ 1, family = poisson, trace = TRUE, method="MT")
(sMT <- summary(rmMT))
if(FALSE) # for manual digging:
debug(robustbase:::glmrobMqle)
allresid <- function(obj, types = c("deviance", "pearson", "working", "response"))
{
sapply(types, residuals, object = obj)
}
okFit <- function(obj, check.attr=FALSE, ...) {
all.equal(obj$y, obj$fitted.values + residuals(obj, "response"),
check.attributes=check.attr, ...)
}
## check validity of several methods simultaneously:
y. <- model.response(model.frame(rm1))
stopifnot(okFit(cm1), okFit(rm1), y. == y)
alr.c <- allresid(cm1)
alr.r <- allresid(rm1)
## MM --- just for now --
plot(resid(cm1), resid(rm1), asp=1); abline(0,1, col=2)
plot(resid(cm1,type="pearson"), resid(rm1, type="pearson"), asp=1); abline(0,1, col=2)
plot(resid(cm1,type="working"), resid(rm1, type="working"), asp=1); abline(0,1, col=2)
## leave away the outliers --
cm0 <- glm (y ~ 1, family = poisson, trace = TRUE, subset = -(1:2))
plot(resid(cm0), resid(rm1)[-(1:2)], asp=1); abline(0,1, col=2)
plot(resid(cm0,type="pearson"), resid(rm1, type="pearson")[-(1:2)], asp=1); abline(0,1, col=2)
plot(resid(cm0,type="working"), resid(rm1, type="working")[-(1:2)], asp=1); abline(0,1, col=2)
plot(resid(cm0,type="response"), resid(rm1, type="response")[-(1:2)], asp=1); abline(0,1, col=2)
## Use weights (slow convergence !)
w2 <- c(rep(1,8), rep(10,9))
rm2 <- glmrob(y ~ 1, family = poisson, trace = TRUE,
weights = w2, maxit = 500, acc = 1e-10) # default is just 1e-4
## slow convergence
stopifnot(okFit(rm2))
###>> 2 ------------------- family = binomial -----------------------------------
## Using *factor* y ...
x <- seq(0,5, length = 120)
summary(px <- plogis(-5 + 2*x))
set.seed(7)
(f <- factor(rbinom(length(x), 1, prob=px)))
summary(m.c0 <- glm (f ~ x, family = binomial))
summary(m.r0 <- glmrob(f ~ x, family = binomial))
## add outliers --- in y:
f. <- f
f.[i1 <- 2:3] <- 1
f.[i0 <- 110+c(1,7)] <- 0
m.c1 <- glm (f. ~ x, family = binomial)
summary(m.r1 <- glmrob(f. ~ x, family = binomial)) ## hmm, not so robust?
stopifnot(m.r1$w.r[c(i0,i1)] < 1/3, # well, at least down weighted
## and coefficients change less :
(coef(m.r1) - coef(m.c0)) / (coef(m.c1) - coef(m.c0)) < 1)
assert.EQ(c("(Intercept)" = -3.10817337603974, x = 1.31618564057790),
coef(m.r1), tol= 1e-14, giveRE=TRUE)
y <- as.numeric(as.character(f.))
m.r2 <- BYlogreg(x0=x, y=y, trace=TRUE, maxhalf= 10)
m.r2A <- BYlogreg(x0=x, y=y, trace= 2 , maxhalf= 15)
## different.. but not so much:
iB <- 1:5
assert.EQ(m.r2A[iB], m.r2[iB], tol = .003, giveRE=TRUE)
assert.EQ(c("Intercept" = -2.9554950286, x = 1.2574679132),
## 32-bit{ada-5} -2.95549502890363 1.25746791332613
m.r2$coef, tol=8e-10, giveRE=TRUE)# seen 5.316e-10 for --disable-long-double
assert.EQ( c(0.685919891749065, 0.256419206157062),
## 32-bit{ada-5}:
## 0.685919891858219, 0.256419206203016)
m.r2$sterror, tol=4e-9)# seen 1.025e-9 for --disable-long-double
data(foodstamp)
str(foodstamp)
## Model with 'income' instead of log(income+1) is "interesting"
## because BYlogreg() needs maxhalf > 10 for convergence!
m.fs0 <- glm (participation ~ ., family=binomial, data=foodstamp)
m.fs0QL <- glmrob(participation ~ ., family=binomial, data=foodstamp)
y.fs <- foodstamp[,"participation"]
X.fs0 <- model.matrix(m.fs0)
head(X.fs0)
## (former default) maxhalf = 10 leads to too early convergence:
m.fsWBY. <- BYlogreg(x0=X.fs0, y=y.fs,
addIntercept=FALSE, trace=TRUE, maxhalf=10)
m.fs.BY. <- BYlogreg(x0=X.fs0, y=y.fs, initwml=FALSE,
addIntercept=FALSE, trace=TRUE, maxhalf=10)
m.fsWBY <- BYlogreg(x0=X.fs0, y=y.fs,
addIntercept=FALSE, trace=TRUE, maxhalf=18)
m.fs.BY <- BYlogreg(x0=X.fs0, y=y.fs, initwml=FALSE,
addIntercept=FALSE, trace=TRUE, maxhalf=18)
assert.EQ(m.fsWBY.[iB], m.fsWBY[iB], tol= 0.07)## almost 7% different
assert.EQ(m.fs.BY.[iB], m.fs.BY[iB], tol= 0.08)
foodSt <- within(foodstamp, { logInc <- log(1 + income) ; rm(income) })
m.fsML <- glm (participation ~ ., family=binomial, data=foodSt)
m.fsQL <- glmrob(participation ~ ., family=binomial, data=foodSt)
X.fs <- model.matrix(m.fsML)
stopifnot(dim(X.fs) == c(150, 4)) # including intercept!
try(## FIXME -- Mahalanobis fails with singular matrix, here:
m.fsWBY <- BYlogreg(x0=X.fs, y=y.fs,
addIntercept=FALSE, trace=TRUE, maxhalf=18)
)
## maxhalf=18 is too much --> no convergence (in 1000 steps)
m.fs.BY <- BYlogreg(x0=X.fs, y=y.fs, initwml=FALSE,
addIntercept=FALSE, trace=TRUE, maxhalf=18)
signif(
rbind(ML = coef(m.fsML), QL =coef(m.fsQL),
WBY0=coef(m.fsWBY.), BY0=coef(m.fs.BY.),
WBY =coef(m.fsWBY ), BY =coef(m.fs.BY)
)
, 4)
if(FALSE) {
## *scaling* of X ( ?? <==> ?? 'sigma1' ) ------------------
## no "W" (Mahalanobis fail because of *singular* X):
m.fs.BY100 <- BYlogreg(x0=100*X.fs, initwml=FALSE,
y=y.fs,
addIntercept=FALSE, trace=TRUE, maxhalf=18)
## ==> no convergence
X1c <- cbind(1, 100*X.fs[,-1])
m.fsWBY1c <- BYlogreg(x0=X1c, y=y.fs,
addIntercept=FALSE, trace=TRUE, maxhalf=18)
## ==> illegal singularity$kind
}## not yet
###-------- Gamma ------------
## Realistic "data" {from help(glmrob)}:
mu <- c(122.131, 53.0979, 39.9039, 33.9232, 28.007,
24.923, 21.5747, 19.6971, 18.4516)
ns.resid <- c(-0.0338228, 0.0923228, 0.0525284, 0.0317426, -0.035954,
0.00308925, -0.026637, -0.0353932, -0.0244761)
Vmu <- c(14915.9, 2819.38, 1592.32, 1150.78, 784.39,
621.156, 465.467, 387.978, 340.462)
Hp2 <- robustbase:::Huberprop2
## Hp2. <- robustbase:::Huberprop2.
## was: phis <- 2^(-70:-1) -- but that was *not* reliable (on 32-bit e.g.)
phis <- 2^(-42:-1)
H1 <- sapply(phis, function(phi)
Hp2(phi, ns.resid=ns.resid, mu=mu, Vmu=Vmu, tcc = 1.345))
## H2 <- sapply(phis, function(phi)
## Hp2.(phi, ns.resid=ns.resid, mu=mu, Vmu=Vmu, tcc = 1.345))
dput(signif(H1))
H2 <- c(9.91741,
9.88674, 9.89438, 9.88674, 9.88961, 9.88961, 9.88961, 9.88984,
9.88973, 9.88964, 9.8897, 9.88975, 9.88976, 9.88975, 9.88974,
9.88974, 9.88974, 9.88974, 9.88974, 9.88974, 9.88974, 9.88974,
9.88975, 9.88975, 9.88975, 9.33161, 8.70618, 8.39347, 8.23714,
8.15902, 8.12006, 7.16275, 3.38703, -0.0879886, -2.3322, -4.16929,
-5.26821, -5.80526, -6.04822, -6.11538, -6.02613, -5.66718)
all.equal(H1,H2, tolerance = 0) # -> see 8.869e-7
stopifnot(all.equal(H1,H2, tolerance = 1e-5))
if(dev.interactive(TRUE)) # shows that phi < 1e-12 is doubtful
matplot(phis, cbind(H1,H2), log="x", ylim = rrange(H1), type="o")
|