1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
#### Testing medcouple mc() and related functions
### here, we do "strict tests" -- hence no *.Rout.save
### hence, can also produce non-reproducible output such as timing
library(robustbase)
for(f in system.file("xtraR", c("mcnaive.R", # -> mcNaive()
"styleData.R", # -> smallD list of small datasets
"platform-sessionInfo.R"), # -> moreSessionInfo()
package = "robustbase", mustWork=TRUE)) {
cat("source(",f,"):\n", sep="")
source(f)
}
## instead of relying on system.file("test-tools-1.R", package="Matrix"):
source(system.file("xtraR/test-tools.R", package = "robustbase")) # assert.EQ() etc
assertEQm12 <- function(x,y, giveRE=TRUE, ...)
assert.EQ(x,y, tol = 1e-12, giveRE=giveRE, ...)
## ^^ shows *any* difference ("tol = 0") unless there is no difference at all
##
c.time <- function(...) cat('Time elapsed: ', ..., '\n')
S.time <- function(expr) c.time(system.time(expr))
DO <- function(...) S.time(stopifnot(...))
## from {sfsmisc}:
lseq <- function(from, to, length) exp(seq(log(from), log(to), length.out = length))
mS <- moreSessionInfo(print.=TRUE)
(doExtras <- robustbase:::doExtras())# TRUE if interactive() or activated by envvar
if(!dev.interactive(orNone=TRUE)) pdf("mc-strict.pdf")
tools::assertCondition(mc(1:11), "message") # change of default to doScale=FALSE
smlMC <- vapply(smallD, mc, pi)
smlMCo <- vapply(smallD, mc, pi, doScale=TRUE, c.huberize=Inf)
yI <- c("yI", "yI."); notI <- setdiff(names(smallD), yI)
yI2 <- c(yI, "x3I"); notI2 <- setdiff(names(smallD), yI2)
assert.EQ(smlMC [notI],
smlMCo[notI], tol = 4e-11, giveRE=TRUE)
## above small diff. is from 'x3I'; dropping that, too, leaves no differences
table(smlMC [notI2] == smlMCo[notI2])
n.set <- c(1:99, 1e5L+ 0:1) # large n gave integer overflow in earlier versions
DO(0 == sapply(n.set, function(n) mc(seq_len(n))))
DO(0 == sapply(n.set, function(n) mc(seq_len(n), doRefl=FALSE)))
DO(0 == sapply(1:100, function(n) mcNaive(seq_len(n), "simple")))
DO(0 == sapply(1:100, function(n) mcNaive(seq_len(n), "h.use" )))
x1 <- c(1, 2, 7, 9, 10)
mcNaive(x1) # = -1/3
assertEQm12(-1/3, mcNaive(x1, "simple"))
assertEQm12(-1/3, mcNaive(x1, "h.use"))
assertEQm12(-1/3, mc(x1))
x2 <- c(-1, 0, 0, 0, 1, 2)
mcNaive(x2, meth="simple") # = 0 - which is wrong
mcNaive(x2, meth="h.use") # = 1/6 = 0.16666
assertEQm12(1/6, mc(x2))
assertEQm12(1/6, mcNaive(x2, "h.use"))
x4 <- c(1:5,7,10,15,25, 1e15) ## - bombed in original algo
mcNaive(x4,"h.use") # 0.5833333
assertEQm12( 7/12, mcNaive(x4, "h.use"))
assertEQm12( 7/12, mcNaive(x4, "simple"))
assertEQm12( 7/12, mc( x4, doRefl= FALSE))
assertEQm12(-7/12, mc(-x4, doRefl= FALSE))
xx <- c(-3, -3, -2, -2, -1, rep(0, 6), 1, 1, 1, 2, 2, 3, 3, 5)
stopifnot(exprs = {
mc(xx, doScale=TRUE , c.huberize = Inf) == 0 ## old mc()
mc(xx) == 0
mc(xx, doReflect=FALSE) == 0
-mc(-xx, doReflect=FALSE) == 0
mcNaive(xx, "h.use" ) == 0
mcNaive(xx, "simple") == 0
})
set.seed(17)
for(n in 3:50) {
cat(" ")
for(k in 1:5) {
x <- rlnorm(n)
mc1 <- mc(x)
mc2 <- mcNaive(x, method = "simple")
mc3 <- mcNaive(x, method = "h.use" )
stopifnot(all.equal(mc1, mc3, tolerance = 1e-10),# 1e-12 not quite ok
mc2 == mc3)
cat(".")
}
}; cat("\n")
###---- Strict tests of adjOutlyingness():
### ================= changed after long-standing bug fix in Oct.2014
## For longley, note n < 4p and hence "random nonsense" numbers
set.seed(1); S.time(a1.1 <- adjOutlyingness(longley))
set.seed(11); S.time(a1.2 <- adjOutlyingness(longley))
##
set.seed(2); S.time(a2 <- adjOutlyingness(hbk)) # 75 x 4
set.seed(3); S.time(a3 <- adjOutlyingness(hbk[, 1:3]))# the 'X' space
set.seed(4); S.time(a4 <- adjOutlyingness(milk)) # obs.63 = obs.64
set.seed(5); S.time(a5 <- adjOutlyingness(wood)) # 20 x 6 ==> n < 4p
set.seed(6); S.time(a6 <- adjOutlyingness(wood[, 1:5]))# ('X' space) 20 x 5: n = 4p (ok!)
## 32-bit <-> 64-bit different results {tested on Linux only}
is32 <- .Machine$sizeof.pointer == 4 ## <- should work for Linux/MacOS/Windows
isMac <- Sys.info()[["sysname"]] == "Darwin"
isSun <- Sys.info()[["sysname"]] == "SunOS"
Rnk <- function(u) rank(unname(u), ties.method = "first")
## to use for testing below:
cat("\nRnk(a3 $ adjout): "); dput(Rnk(a3$adjout), control= {})
cat("\nRnk(a4 $ adjout): "); dput(Rnk(a4$adjout), control= {})
(i.a4Out <- which( ! a4$nonOut)) # the outliers -- varies "wildly"
stopifnot(70 %in% i.a4Out)
{
if(is32 && !isMac)
all.equal(i.a4Out, c(1, 2, 41, 70))
## and this is "typically" true, but not for a 64-bit Linux version bypassing BLAS in matprod
else if(isSun || isMac)
TRUE
else if(length(osVersion) && grepl("^Fedora", osVersion) && !is32)
identical(i.a4Out, 70L) # since Dec 2020 (F 32)
else
all.equal(i.a4Out, c(9:19, 23:27,57, 59, 70, 77))
}
## only for ATLAS (BLAS/Lapack), not all are TRUE; which ones [but n < 4p]
if(!all(a5$nonOut))
print(which(!a5$nonOut)) # if we know, enable check below
stopifnot(exprs = {
which(!a2$nonOut) == 1:14
which(!a3$nonOut) == 1:14
## 'longley', 'wood' have no outliers in the "adjOut" sense:
if(doExtras && !isMac) { ## longley also has n < 4p (!)
if(mS$ strictR)
sum(a1.2$nonOut) >= 15 # sum(.) = 16 [nb-mm3, Oct.2014]
else ## however, openBLAS Fedora Linux /usr/bin/R gives sum(a1.2$nonOut) = 13
sum(a1.2$nonOut) >= 13
} else TRUE
if(doExtras) { ## have n < 4p (!)
if(mS$ strictR) a5$nonOut
else ## not for ATLAS
sum(a5$nonOut) >= 18 # 18: OpenBLAS
} else TRUE
a6$nonOut[-20]
## hbk (n = 75, p = 3) should be "stable" (but isn't quite)
abs(Rnk(a3$adjout) -
c(62, 64, 69, 71, 70, 66, 65, 63, 68, 67, 73, 75, 72, 74, 35,
60, 55, 4, 22, 36, 6, 33, 34, 28, 53, 16, 13, 9, 27, 31,
49, 39, 20, 50, 14, 2, 24, 40, 54, 21, 17, 37, 52, 23, 58,
19, 61, 11, 25, 8, 46, 59, 48, 47, 29, 44, 43, 42, 7, 30,
18, 51, 41, 15, 10, 38, 3, 56, 57, 5, 1, 12, 26, 32, 45)
) <= 3 ## all 0 on 64-bit (F 32) Linux
})
## milk (n = 86) : -- Quite platform dependent!
r <- Rnk(a4$adjout)
r64 <- ## the 64-bit (ubuntu 14.04, nb-mm3) values:
c(65, 66, 61, 56, 47, 51, 19, 37, 74, 67, 79, 86, 83, 84, 85,
82, 81, 73, 80, 55, 27, 3, 70, 68, 78, 76, 77, 53, 48, 8,
29, 33, 6, 32, 28, 31, 36, 40, 22, 58, 64, 52, 39, 63, 44,
30, 57, 46, 43, 45, 25, 54, 12, 1, 9, 2, 71, 14, 75, 23,
4, 10, 34, 35, 17, 24, 15, 20, 38, 72, 42, 13, 50, 60, 62,
26, 69, 18, 5, 21, 7, 49, 11, 41, 59, 16)
r32 <- ## Linux 32bit (florence: 3.14.8-100.fc19.i686.PAE)
c(78, 79, 72, 66, 52, 61, 22, 41, 53, 14, 74, 85, 82, 83, 84,
80, 81, 56, 73, 65, 30, 3, 16, 17, 68, 57, 58, 63, 54, 8,
32, 37, 6, 36, 31, 35, 40, 44, 25, 69, 77, 62, 43, 76, 48,
34, 67, 51, 47, 49, 28, 64, 12, 1, 9, 2, 33, 15, 59, 26,
4, 10, 38, 39, 20, 27, 18, 23, 42, 86, 46, 13, 60, 71, 75,
29, 50, 21, 5, 24, 7, 55, 11, 45, 70, 19)
d <- (r - if (is32) r32 else r64)
cbind(r, d)
table(abs(d))
cumsum(table(abs(d))) # <=> unscaled ecdf(d)
## For the biggest part (79 out of 86), the ranks are "close":
## 2014: still true, but in a different sense..
## ^ typically, but e.g., *not* when using non-BLAS matprod():
sum(abs(d) <= 17) >= 78
sum(abs(d) <= 13) >= 75
## check of adjOutlyingness *free* bug
## reported by Kaveh Vakili <Kaveh.Vakili@wis.kuleuven.be>
set.seed(-37665251)
X <- matrix(rnorm(100*5), 100, 5)
Z <- matrix(rnorm(10*5)/100, 10, 5)
Z[,1] <- Z[,1] + 5
X[91:100,] <- Z # if anything these should be outliers, but ...
for (i in 1:10) {
## this would produce an error in the 6th iteration
aa <- adjOutlyingness(x=X, ndir=250)
if(any(is.out <- !aa$nonOut))
cat("'outliers' at obs.", paste(which(is.out), collapse=", "),"\n")
stopifnot(1/4 < aa$adjout & aa$adjout < 16)
}
## Check "high"-dimensional Noise ... typically mc() did *not* converge for some re-centered columns
## Example by Valentin Todorov:
n <- 50
p <- 30
set.seed(1) # MM
a <- matrix(rnorm(n * p), nrow=n, ncol=p)
str(a)
kappa(a) # 20.42 (~ 10--20 or so; definitely not close to singular)
a.a <- adjOutlyingness(a, mcScale=FALSE, # <- my own recommendation
trace.lev=1)
a.s <- adjOutlyingness(a, mcScale=TRUE, trace.lev=1)
## a.a :
str(a.a) # high 'adjout' values "all similar" -> no outliers .. hmm .. ???
(hdOut <- which( ! a.a$nonOut)) ## indices of "outlier" -- very platform dependent !
a.a$MCadjout; all.equal(a.a$MCadjout, 0.136839766177,
tol = 1e-12) # seen 7.65e-14 and "big" differences on non-default platforms
## a.s :
which(! a.s$nonOut ) # none [all TRUE]
a.s$MCadjout # platform dependent; saw
all.equal(a.s$MCadjout, 0.32284906741568, tol = 1e-13) # seen 2.2e-15 ..
# and big diffs on non-default platforms
##
## The adjout values are all > 10^15 !!! why ??
## Now (2021) I know: n < 4*p ==> can find 1D-projection where 1 of the 2 {Q3-Q2, Q2-Q1} is 0 !
##---------------------------------------------------------------------------------------------
###-- Back to mc() checks for "hard" cases
### ===== -----------------------
## "large n" (this did overflow sum_p, sum_q earlier ==> had inf.loop):
set.seed(3); x <- rnorm(2e5)
(mx <- mc(x, trace.lev=3))
stopifnot(print(abs(mx - -0.000772315846101988)) < 1e-15)
# 3.252e-19, 64b Linux
# 1.198e-16, 32b Windows
### Some platform info :
local({ nms <- names(Si <- Sys.info())
dropNms <- c("nodename", "machine", "login")
structure(Si[c("nodename", nms[is.na(match(nms, dropNms))])],
class="simple.list") })
if(identical(1L, grep("linux", R.version[["os"]]))) { ##----- Linux - only ----
##
Sys.procinfo <- function(procfile)
{
l2 <- strsplit(readLines(procfile),"[ \t]*:[ \t]*")
r <- sapply(l2[sapply(l2, length) == 2],
function(c2)structure(c2[2], names= c2[1]))
attr(r,"Name") <- procfile
class(r) <- "simple.list"
r
}
##
Scpu <- Sys.procinfo("/proc/cpuinfo")
Smem <- Sys.procinfo("/proc/meminfo")
print(Scpu[c("model name", "cpu MHz", "cache size", "bogomips")])
print(Smem[c("MemTotal", "SwapTotal")])
}
##' Checking the breakdown point of mc() --- Hubert et al. theory said : 25%
##' using non-default doReflect=FALSE as that corresponds to original Hubert et al.
##'
##' @title Medcouple mc() checking
##' @param x
##' @param Xfun
##' @param eps
##' @param NAiferror
##' @param doReflect
##' @param ...
##' @return mc(*,..) or NaN in case mc() signals an error [non-convergence]
##' @author Martin Maechler
mcX <- function(x, Xfun, eps=0, NAiferror=FALSE, doReflect=FALSE, ...) {
stopifnot(is.numeric(x), is.function(Xfun), "eps" %in% names(formals(Xfun)))
myFun <-
if(NAiferror)
function(u) tryCatch(mc(Xfun(u, eps=eps), doReflect=doReflect, ...),
error = function(e) NaN)
else
function(u) mc(Xfun(u, eps=eps), doReflect=doReflect, ...)
vapply(x, myFun, 1.)
}
X1. <- function(u, eps=0) c(1,2,3, 7+(-10:10)*eps, u + (-1:1)*eps)
## ==> This *did* breakdown [but points not "in general position"]:
## but now is stable:
r.mc1 <- curve(mcX(x, X1.), 10, 1e35, log="x", n=1001)
stopifnot(r.mc1$y == 0) # now stable
if(FALSE) {
rt1 <- uniroot(function(x) mcX(exp(x), X1.) - 1/2, lower=0, upper=500)
exp(rt1$root) # 4.056265e+31
}
## eps > 0 ==> No duplicated points ==> theory says breakdown point = 0.25
## ------- but get big numerical problems:
if(FALSE) { # ==> convergence problem [also in maxit = 1e5] .. really an *inf* loop!
r.mc1.1 <- curve(mcX(x, X1., eps= .1 ), 10, 1e35, log="x", n=1001)
r.mc1.2 <- curve(mcX(x, X1., eps= .01 ), 10, 1e35, log="x", n=1001)
r.mc1.3 <- curve(mcX(x, X1., eps= .001), 10, 1e35, log="x", n=1001)
r.mc1.5 <- curve(mcX(x, X1., eps= 1e-5), 10, 1e35, log="x", n=1001)
r.mc1.8 <- curve(mcX(x, X1., eps= 1e-8), 10, 1e35, log="x", n=1001)
r.mc1.15 <- curve(mcX(x, X1., eps=1e-15), 10, 1e35, log="x", n=1001)# still!
}
## practically identical to eps = 0 where we have breakdown (see above)
r.mc1.16 <- curve(mcX(x, X1., eps=1e-16), 10, 1e35, log="x", n=1001)
all.equal(r.mc1, r.mc1.16, tol=1e-15)#-> TRUE
## Quite bad case: Non convergence
X2. <- function(u) c(1:3, seq(6, 8, by = 1/8), u, u, u)
## try(mc(X2.(4.3e31)))## -> error: no convergence
## but now
stopifnot(exprs = {
all.equal(1/30, mc(X2.(4.3e31)), tol=1e-12)
all.equal(1/30, mc(X2.(4.3e31), eps1=1e-7, eps2=1e-100), tol=1e-12)
})
## related, more direct:
X3. <- function(u) c(10*(1:3), 60:80, (4:6)*u)
stopifnot(0 == mc(X3.(1e31), trace=5)) # fine convergence in one iter.
stopifnot(0 == mc(X3.(1e32), trace=3)) # did *not* converge
### TODO : find example with *smaller* sample size -- with no convergence
X4. <- function(u, eps, ...) c(10, 70:75, (2:3)*u)
mc(X4.(1e34))# "fine"
## now stable too:
r.mc4 <- curve(mcX(x, X4.), 100, 1e35, log="x", n=2^12)
stopifnot(abs(1/3 - r.mc4$y) < 1e-15)
X5. <- function(u) c(10*(1:3), 70:78, (4:6)*u)
stopifnot(all.equal(4/15, mc(X5.(1e32), maxit=1000)))
X5. <- function(u, eps,...) c(5*(1:12), (4:6)*u)
str(r.mc5 <- mc(X5.(1e32), doReflect=FALSE, full.result = TRUE))
## Now, stable:
stopifnot(all.equal(1/5, c(r.mc5))) ## was 1; platform dependent ..
stopifnot(all.equal(4/15, mc(X5.(5e31)))) # had no convergence w/ maxit=10000
r.mc5Sml <- curve(mcX(x, X5.), 1, 100, log="x", n=1024) ## quite astonishing
x <- lseq(1, 1e200, 2^11)
mc5L <- mcX(x, X5.)
table(err <- abs(0.2 - mc5L[x >= 24])) # I see all 0!
stopifnot(abs(err) < 1e-15)
c.time(proc.time())
summary(warnings()) # seen 15 x In mcComp(....) :
## maximal number of iterations (100 =? 100) reached prematurely
|