File: subsample.R

package info (click to toggle)
robustbase 0.99-6-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,584 kB
  • sloc: fortran: 3,245; ansic: 3,243; sh: 15; makefile: 2
file content (380 lines) | stat: -rw-r--r-- 13,125 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
### test subsample
### LU decomposition and singular subsamples handling
require(robustbase)
source(system.file("xtraR/subsample-fns.R", package = "robustbase", mustWork=TRUE))
## instead of relying on  system.file("test-tools-1.R", package="Matrix"):
source(system.file("xtraR/test-tools.R", package = "robustbase")) # assert.EQ(), showProc.time() ..
options(nwarnings = 4e4, warnPartialMatchArgs = FALSE)

cat("doExtras:", doExtras <- robustbase:::doExtras(),"\n")
showProc.time()

A <- rbind(c(0.001, 1),
           c(1,     2))
set.seed(11)
## IGNORE_RDIFF_BEGIN
sa <- tstSubsample(A) # (now typically also shows Matrix version ..)
## IGNORE_RDIFF_END
str(sa)

A <- rbind(c(3, 17, 10),
           c(2,  4, -2),
           c(6, 18, 12))
tstSubsample(A)

## test some random matrix
set.seed(1002)
A <- matrix(rnorm(100), 10)
tstSubsample(A)

## test singular matrix handling
A <- rbind(c(1, 0, 0),
           c(0, 1, 0),
           c(0, 1, 0),
           c(0, 0, 1))
tstSubsample(A)


## test subsample with mts > 0
data <- data.frame(y = rnorm(9), expand.grid(A = letters[1:3], B = letters[1:3]))
x <- model.matrix(y ~ ., data)
y <- data$y
## this should produce a warning and return status == 2
showSys.time(z <- Rsubsample(x, y, mts=2))
stopifnot(identical(2L, z$status)) # (z$status may be NULL; stopifnot(NULL) does not trigger)


## test equilibration
## columns only
X <- rbind(c(1e-7, 1e-10),
           c(2   , 0.2))
y <- 1:2
tstSubsample(t(X), y)

## rows only
X <- rbind(c(1e-7, 1e+10),
           c(2   , 0.2))
y <- 1:2
tstSubsample(X, y)

## both
X <- rbind(c(1e-7,  2  ),
           c(1e10, 2e12))
y <- 1:2
tstSubsample(X, y)
showProc.time()


## test real data example
data(possumDiv)## 151 * 9; the last two variables are factors
with(possumDiv, table(eucalyptus, aspect))

mf <- model.frame(Diversity ~ .^2, possumDiv)
X <- model.matrix(mf, possumDiv)
ncol(X) # 63
y <- model.response(mf)
stopifnot(identical(qr(X)$rank, ncol(X)))

## this used to fail: different pivots in step 37
str(s1 <- tstSubsample(X, y))
s2 <- tstSubsample(X / max(abs(X)), y / max(abs(X)))
s3 <- tstSubsample(X * 2^-50, y * 2^-50)
## all components *BUT*  x, y, lu, Dr, Dc, rowequ, colequ :
nm <- names(s1); nm <- nm[is.na(match(nm, c("x","y","lu", "Dr", "Dc", "rowequ", "colequ")))]
stopifnot(all.equal(s1[nm], s2[nm], tolerance=1e-10),
	  all.equal(s1[nm], s3[nm], tolerance=1e-10))
showProc.time()

set.seed(10)
nsing <- sum(replicate(if(doExtras) 200 else 20, tstSubsampleSing(X, y)))
stopifnot(nsing == 0)
showProc.time()

## test example with many categorical predictors - 2 different random seeds:
set.seed(10) ; r1 <- lmrob(Diversity ~ .^2 , data = possumDiv, cov="none")
set.seed(108); r2 <- lmrob(Diversity ~ .^2 , data = possumDiv, cov="none")# lmrob.S() failed
(i1 <- r1$init) # print(<lmrob.S>)
(i2 <- r1$init) # ... and they are "somewhat" close:
stopifnot(all.equal(r1[names(r1) != "init.S"],
                    r2[names(r2) != "init.S"], tol = 0.40))
c1 <- coef(r1)
c2 <- coef(r2)
relD <- (c1-c2)*2/(c1+c2)
xCf <- which(abs(relD) >= 10)
stopifnot(exprs = {
    identical(xCf, c(`Bark:aspectSW-NW` = 46L))
    all.equal(c1[-xCf], c2[-xCf], tol = 0.35) # 0.3418
    sign(c1[-xCf]) == sign(c2[-xCf])
})
showProc.time()

## investigate problematic subsample:
idc <- 1 + c(140, 60, 12, 13, 89, 90, 118, 80, 17, 134, 59, 94, 36,
         43, 46, 93, 107, 62, 57, 116, 11, 45, 35, 38, 120, 34, 29,
         33, 147, 105, 115, 92, 61, 91, 104, 141, 138, 129, 130, 84,
         119, 132, 6, 135, 112, 16, 67, 41, 102, 76, 111, 82, 148, 24,
         131, 10, 96, 0, 87, 21, 127, 56, 124)
rc <- lm(Diversity ~ .^2 , data = possumDiv, subset = idc)

X <- model.matrix(rc)
y <- possumDiv$Diversity[idc]
tstSubsample(X, y)## have different pivots ... could not find non-singular

lu <- LU.gaxpy(t(X))
stopifnot(length(lusi <- lu$sing) >= 1, lusi)
zc <- Rsubsample(X, y)
stopifnot(length(st <- zc$status) > 0, st > 0)
## column 52 is linearly dependent and should have been discarded
## qr(t(X))$pivot

image(as(round(zc$lu -      (lu$L + lu$U - diag(nrow(lu$U))), 10), "Matrix"))
image(as( sign(zc$lu) - sign(lu$L + lu$U - diag(nrow(lu$U))),      "Matrix"))
showProc.time()

## test equilibration
## colequ only
X <- matrix(c(1e-7, 2, 1e-10, 0.2), 2)
y <- 1:2
tstSubsample(t(X), y)

## rowequ only
X <- matrix(c(1e-7, 2, 1e10, 0.2), 2)
y <- 1:2
tstSubsample(X, y)

## both
X <- matrix(c(1e-7, 1e10, 2, 2e12), 2)
y <- 1:2
tstSubsample(X, y)
showProc.time()

### real data, see MM's ~/R/MM/Pkg-ex/robustbase/hedlmrob.R
##  close to singular cov():
attach(system.file("external", "d1k27.rda", package="robustbase", mustWork=TRUE))

fm1 <- lmrob(y ~ a + I(a^2) + tf + I(tf^2) + A + I(A^2) + . , data = d1k27)
##     ^^^^^ gave error, earlier, now with a warning -- use ".vcov.w"
## --> cov = ".vcov.w"
fm2 <- lmrob(y ~ a + I(a^2) + tf + I(tf^2) + A + I(A^2) + . , data = d1k27,
             cov = ".vcov.w", trace = TRUE)
showProc.time()# 2.77

if(doExtras) withAutoprint({##---------------------------------------------------------

## Q: does it change to use numeric instead of binary factors ?
## A: not really ..
d1k.n <- d1k27
d1k.n[-(1:5)] <- lapply(d1k27[,-(1:5)], as.numeric)

fm1.n <- lmrob(y ~ a + I(a^2) + tf + I(tf^2) + A + I(A^2) + . , data = d1k.n)
fm2.n <- lmrob(y ~ a + I(a^2) + tf + I(tf^2) + A + I(A^2) + . , data = d1k.n,
             cov = ".vcov.w", trace = 2)

summary(weights(fm1, type="robustness"))
   hist(weights(fm1, type="robustness"), main="robustness weights of fm1")
rug(weights(fm1, type="robustness"))
showProc.time()## 2.88

##
fmc <- lm   (y ~ poly(a,2)-a + poly(tf, 2)-tf + poly(A, 2)-A + . , data = d1k27)
summary(fmc)
## -> has NA's for  'a, tf, A'  --- bad that it did *not* work to remove them

nform <- update(formula(fm1), ~ .
                +poly(A,2)  -A  -I(A^2)
                +poly(a,2)  -a  -I(a^2)
                +poly(tf,2) -tf -I(tf^2))

fm1. <- lmrob(nform, data = d1k27)# now w/o warning !? !!
fm2. <- lmrob(nform, data = d1k27, cov = ".vcov.w", trace = TRUE)

## now lmrob takes care of NA coefficients automatically
lmrob(y ~ poly(a,2)-a + poly(tf, 2)-tf + poly(A, 2)-A + . , data = d1k27)
showProc.time() ## 4.24
}) ## only if(doExtras) -----------------------------------------------------

## test exact fit property
set.seed(20)
data <- data.frame(y=c(rep.int(0, 20), round(100*rnorm(5))),
                   group=rep(letters[1:5], each=5))
x <- model.matrix(y ~ group, data)
(ini <- lmrob.S(x, data$y, lmrob.control()))
(ret <- lmrob(y ~ group, data))
summary(ret)
showProc.time() ## 4.24

##--- continuous x -- exact fit -- inspired by Thomas Mang's real data example
mkD9 <- function(iN, dN = 1:m) {
    stopifnot((length(iN) -> m) == length(dN), 1 <= m, m <= 5,
              iN == as.integer(iN), is.numeric(dN), !is.na(dN))
    x <- c(-3:0,0:1,1:3) # {n=9; sorted; x= 0, 1  are "doubled"}
    y <- x+5
    y[iN] <- y[iN] + dN
    data.frame(x,y)
}

mkRS <- function(...) { set.seed(...); .Random.seed }

d <- mkD9(c(1L,3:4, 7L))
rs2 <- mkRS(2)
Se <- tryCatch(error = identity,
               with(d, lmrob.S(cbind(1,x), y, lmrob.control("KS2014", seed=rs2))))
## gave DGELS rank error {for lmrob.c+wg..}

if(inherits(Se, "error")) {
    cat("Caught ")
    print(Se)
} else withAutoprint({ ## no error
    coef(Se)
    stopifnot(coef(Se) == c(5, 1)) # was (0 0)
    residuals(Se) # was == y  ---- FIXME
})

## try 100 different seeds
repS <- lapply(1:100, function(ii) tryCatch(error = identity,
                with(d, lmrob.S(cbind(1,x), y, lmrob.control("KS2014", seed = mkRS(ii))))))
if(FALSE)
 ## was
 str(unique(repS))## ==> 100 times the same error
## now completely different: *all* returned properly
str(cfS <- t(sapply(repS, coef))) # all numeric -- not *one* error --
## even all the *same* (5 1) solution:
(ucfS <- unique(cfS))
stopifnot(identical(ucfS, array(c(5, 1), dim = 1:2, dimnames = list(NULL, c("", "x")))))

## *Not* "KS2014" but the defaults works *all the time* (!)
repS0 <- lapply(1:100, function(ii) tryCatch(error = identity,
               with(d, lmrob.S(cbind(1,x), y, lmrob.control(seed = mkRS(ii))))))
summary(warnings())
## 100 identical warnings:
## In lmrob.S(cbind(1, x), y, lmrob.control(seed = mkRS(ii))) :
##   S-estimated scale == 0:  Probably exact fit; check your data

str(cfS0 <- t(sapply(repS0, coef))) # all numeric -- not *one* error
## even all the same *and* the same as "KS2014"
(ucfS0 <- unique(cfS0))
stopifnot(nrow(ucfS0) == 1L,
          ucfS0 == c(5,1))



d9L <- list(
    mkD9(c(1L,3L, 5L, 7L))
  , mkD9(c(1L,3L, 8:9))
  , mkD9(2L*(1:4))
)

if(doExtras) {
sfsmisc::mult.fig(length(d9L)); invisible(lapply(d9L, function(d) plot(y ~ x, data=d)))
}

dorob <- function(dat, control=lmrob.control(...), meth = c("S", "MM"),
                  doPl=interactive(), cex=1, ...) {
    meth <- match.arg(meth)
    stopifnot(is.data.frame(dat), c("x","y") %in% names(dat), is.list(control))
    if(doPl) plot(y ~ x, data=dat) ## with(dat, n.plot(x, y, cex=cex))
    ans <- tryCatch(error = identity,
                  switch(meth
                       , "S" = with(dat, lmrob.S(cbind(1,x), y, control))
                       , "MM"= lmrob(y ~ x, data = dat, control=control)
                       , stop("invalid 'meth'")))
    if(!doPl)
        return(ans)
    ## else
    if(!inherits(ans, "error")) {
        abline(coef(ans))
    } else { # error
        mtext(paste(paste0("lmrob.", meth), "Error:", conditionMessage(ans)))
    }
    invisible(ans)
}

## a bad case -- much better new robustbase >= 0.99-0
Se <- dorob(d9L[[1]], lmrob.control("KS2014", mkRS(2), trace.lev=4))
## was really bad -- ended returning  coef = (0 0); fitted == 0, residuals == 0 !!

if(doExtras) sfsmisc::mult.fig(length(d9L))
r0 <- lapply(d9L, dorob, seed=rs2, doPl=doExtras) # 3 x ".. exact fit" warning
if(doExtras) print(r0)
## back to 3 identical fits: (5 1)
(cf0 <- sapply(r0, coef))
stopifnot(cf0 == c(5,1))

if(doExtras) sfsmisc::mult.fig(length(d9L))
### Here, all 3 were "0-models"
r14 <- lapply(d9L, dorob, control=lmrob.control("KS2014", seed=rs2), doPl=doExtras)
## --> 3 (identical) warnings:   In lmrob.S(cbind(1, x), y, control) :#
##                        S-estimated scale == 0:  Probably exact fit; check your data
## now *does* plot
if(doExtras) print(r14)
## all 3 are "identical"
(cf14 <- sapply(r14, coef))
identical(cf0, cf14) # see TRUE; test a bit less:
stopifnot(all.equal(cf0, cf14, tol=1e-15))

## use "large n"
ctrl.LRG.n <- lmrob.control("KS2014", seed=rs2, trace.lev = if(doExtras) 2 else 1, # 3: too much (for now),
                            nResample = 60,
                            fast.s.large.n = 7, n.group = 3, groups = 2)
rLrg.n <- lapply(d9L, \(d) lmrob.S(cbind(1,d$x), d$y, ctrl.LRG.n))
summary(warnings())
sapply(rLrg.n, coef)
## currently ... ....  really would want always (5 1)
##      [,1] [,2]     [,3]
## [1,]    5    5 7.333333
## [2,]    1    1 1.666667


## ==> use  lmrob() instead of  lmrob.S():

mm0 <- lapply(d9L, dorob, meth = "MM", seed=rs2, doPl=doExtras) # looks all fine -- no longer: error in [[3]]
if(doExtras) print(mm0)
## now, the 3rd one errors (on Linux, not on M1 mac!)
(cm0 <- sapply(mm0, function(.) if(inherits(.,"error")) noquote(paste("Caught", as.character(.))) else coef(.)))

## no longer needed
c0.12 <- rbind(`(Intercept)` = c(5.7640215, 6.0267156),
               x             = c(0.85175883, 1.3823841))
if(is.list(cm0)) { ## after error {was on Linux+Win, not on M1 mac}:
    ## NB: This does *not* happen on Macbuilder -- there the result it cf = (5 1)  !!
    stopifnot(all.equal(tol = 1e-8, # seen 4.4376e-9
                        c0.12, simplify2array(cm0[1:2])))
    print(cm0[[3]])
    ## FIXME?:   Caught Error in eigen(ret, symmetric = TRUE): infinite or missing values in 'x'\n
} else if(is.matrix(cm0)) { # when no error happened
    k <- ncol(cm0)
    stopifnot(all.equal(tol = 1e-8, rbind(`(Intercept)` = rep(5,k), "x" = rep(1,k)), cm0))
} else warning("not yet encountered this case {and it should not happen}")


se3 <- lmrob(y ~ x, data=d9L[[3]], init = r0[[3]], seed=rs2, trace.lev=6)


if(doExtras) sfsmisc::mult.fig(length(d9L))
### Here, all 3 were "0-models"
##  now, have 3 *different* cases {with this seed}
## [1] : init fails (-> r14[[1]] above)
## [2] : init s=0, b=(5,1) .. but  residuals(),fitted() wrong
## [3] : init s=0, b=(5,1) ..*and* residuals(),fitted() are good

cm14 <- lapply(d9L, dorob, meth = "MM", control=lmrob.control("KS2014", seed=rs2), doPl=doExtras)
## now, first is error; for others, coef = (5, 1) are correct:
stopifnot(exprs = {
    sapply(cm14[-1], coef)  == c(5,1)
    sapply(cm14[-1], sigma) == 0
})

m2 <- cm14[[2]]
summary(m2) # prints quite nicely; and this is perfect (for scale=0), too:
## {residual != 0 <==> weights = 0}:
cbind(rwgt = weights(m2, "rob"), res = residuals(m2), fit = fitted(m2), y = d9L[[2]][,"y"])

sapply(cm14, residuals) ## now, [2] is good; [3] still wrong - FIXME
sapply(cm14, fitted)
sapply(cm14, weights, "robust")## [2]: 0 1 0 1 1 1 1 0 0;  [3]: all 0

## (unfinished ... do *test* once we've checked platform consistency)

summary(warnings())
showProc.time()