1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
### test subsample
### LU decomposition and singular subsamples handling
require(robustbase)
source(system.file("xtraR/subsample-fns.R", package = "robustbase", mustWork=TRUE))
## instead of relying on system.file("test-tools-1.R", package="Matrix"):
source(system.file("xtraR/test-tools.R", package = "robustbase")) # assert.EQ(), showProc.time() ..
options(nwarnings = 4e4, warnPartialMatchArgs = FALSE)
cat("doExtras:", doExtras <- robustbase:::doExtras(),"\n")
showProc.time()
A <- rbind(c(0.001, 1),
c(1, 2))
set.seed(11)
## IGNORE_RDIFF_BEGIN
sa <- tstSubsample(A) # (now typically also shows Matrix version ..)
## IGNORE_RDIFF_END
str(sa)
A <- rbind(c(3, 17, 10),
c(2, 4, -2),
c(6, 18, 12))
tstSubsample(A)
## test some random matrix
set.seed(1002)
A <- matrix(rnorm(100), 10)
tstSubsample(A)
## test singular matrix handling
A <- rbind(c(1, 0, 0),
c(0, 1, 0),
c(0, 1, 0),
c(0, 0, 1))
tstSubsample(A)
## test subsample with mts > 0
data <- data.frame(y = rnorm(9), expand.grid(A = letters[1:3], B = letters[1:3]))
x <- model.matrix(y ~ ., data)
y <- data$y
## this should produce a warning and return status == 2
showSys.time(z <- Rsubsample(x, y, mts=2))
stopifnot(identical(2L, z$status)) # (z$status may be NULL; stopifnot(NULL) does not trigger)
## test equilibration
## columns only
X <- rbind(c(1e-7, 1e-10),
c(2 , 0.2))
y <- 1:2
tstSubsample(t(X), y)
## rows only
X <- rbind(c(1e-7, 1e+10),
c(2 , 0.2))
y <- 1:2
tstSubsample(X, y)
## both
X <- rbind(c(1e-7, 2 ),
c(1e10, 2e12))
y <- 1:2
tstSubsample(X, y)
showProc.time()
## test real data example
data(possumDiv)## 151 * 9; the last two variables are factors
with(possumDiv, table(eucalyptus, aspect))
mf <- model.frame(Diversity ~ .^2, possumDiv)
X <- model.matrix(mf, possumDiv)
ncol(X) # 63
y <- model.response(mf)
stopifnot(identical(qr(X)$rank, ncol(X)))
## this used to fail: different pivots in step 37
str(s1 <- tstSubsample(X, y))
s2 <- tstSubsample(X / max(abs(X)), y / max(abs(X)))
s3 <- tstSubsample(X * 2^-50, y * 2^-50)
## all components *BUT* x, y, lu, Dr, Dc, rowequ, colequ :
nm <- names(s1); nm <- nm[is.na(match(nm, c("x","y","lu", "Dr", "Dc", "rowequ", "colequ")))]
stopifnot(all.equal(s1[nm], s2[nm], tolerance=1e-10),
all.equal(s1[nm], s3[nm], tolerance=1e-10))
showProc.time()
set.seed(10)
nsing <- sum(replicate(if(doExtras) 200 else 20, tstSubsampleSing(X, y)))
stopifnot(nsing == 0)
showProc.time()
## test example with many categorical predictors - 2 different random seeds:
set.seed(10) ; r1 <- lmrob(Diversity ~ .^2 , data = possumDiv, cov="none")
set.seed(108); r2 <- lmrob(Diversity ~ .^2 , data = possumDiv, cov="none")# lmrob.S() failed
(i1 <- r1$init) # print(<lmrob.S>)
(i2 <- r1$init) # ... and they are "somewhat" close:
stopifnot(all.equal(r1[names(r1) != "init.S"],
r2[names(r2) != "init.S"], tol = 0.40))
c1 <- coef(r1)
c2 <- coef(r2)
relD <- (c1-c2)*2/(c1+c2)
xCf <- which(abs(relD) >= 10)
stopifnot(exprs = {
identical(xCf, c(`Bark:aspectSW-NW` = 46L))
all.equal(c1[-xCf], c2[-xCf], tol = 0.35) # 0.3418
sign(c1[-xCf]) == sign(c2[-xCf])
})
showProc.time()
## investigate problematic subsample:
idc <- 1 + c(140, 60, 12, 13, 89, 90, 118, 80, 17, 134, 59, 94, 36,
43, 46, 93, 107, 62, 57, 116, 11, 45, 35, 38, 120, 34, 29,
33, 147, 105, 115, 92, 61, 91, 104, 141, 138, 129, 130, 84,
119, 132, 6, 135, 112, 16, 67, 41, 102, 76, 111, 82, 148, 24,
131, 10, 96, 0, 87, 21, 127, 56, 124)
rc <- lm(Diversity ~ .^2 , data = possumDiv, subset = idc)
X <- model.matrix(rc)
y <- possumDiv$Diversity[idc]
tstSubsample(X, y)## have different pivots ... could not find non-singular
lu <- LU.gaxpy(t(X))
stopifnot(length(lusi <- lu$sing) >= 1, lusi)
zc <- Rsubsample(X, y)
stopifnot(length(st <- zc$status) > 0, st > 0)
## column 52 is linearly dependent and should have been discarded
## qr(t(X))$pivot
image(as(round(zc$lu - (lu$L + lu$U - diag(nrow(lu$U))), 10), "Matrix"))
image(as( sign(zc$lu) - sign(lu$L + lu$U - diag(nrow(lu$U))), "Matrix"))
showProc.time()
## test equilibration
## colequ only
X <- matrix(c(1e-7, 2, 1e-10, 0.2), 2)
y <- 1:2
tstSubsample(t(X), y)
## rowequ only
X <- matrix(c(1e-7, 2, 1e10, 0.2), 2)
y <- 1:2
tstSubsample(X, y)
## both
X <- matrix(c(1e-7, 1e10, 2, 2e12), 2)
y <- 1:2
tstSubsample(X, y)
showProc.time()
### real data, see MM's ~/R/MM/Pkg-ex/robustbase/hedlmrob.R
## close to singular cov():
attach(system.file("external", "d1k27.rda", package="robustbase", mustWork=TRUE))
fm1 <- lmrob(y ~ a + I(a^2) + tf + I(tf^2) + A + I(A^2) + . , data = d1k27)
## ^^^^^ gave error, earlier, now with a warning -- use ".vcov.w"
## --> cov = ".vcov.w"
fm2 <- lmrob(y ~ a + I(a^2) + tf + I(tf^2) + A + I(A^2) + . , data = d1k27,
cov = ".vcov.w", trace = TRUE)
showProc.time()# 2.77
if(doExtras) withAutoprint({##---------------------------------------------------------
## Q: does it change to use numeric instead of binary factors ?
## A: not really ..
d1k.n <- d1k27
d1k.n[-(1:5)] <- lapply(d1k27[,-(1:5)], as.numeric)
fm1.n <- lmrob(y ~ a + I(a^2) + tf + I(tf^2) + A + I(A^2) + . , data = d1k.n)
fm2.n <- lmrob(y ~ a + I(a^2) + tf + I(tf^2) + A + I(A^2) + . , data = d1k.n,
cov = ".vcov.w", trace = 2)
summary(weights(fm1, type="robustness"))
hist(weights(fm1, type="robustness"), main="robustness weights of fm1")
rug(weights(fm1, type="robustness"))
showProc.time()## 2.88
##
fmc <- lm (y ~ poly(a,2)-a + poly(tf, 2)-tf + poly(A, 2)-A + . , data = d1k27)
summary(fmc)
## -> has NA's for 'a, tf, A' --- bad that it did *not* work to remove them
nform <- update(formula(fm1), ~ .
+poly(A,2) -A -I(A^2)
+poly(a,2) -a -I(a^2)
+poly(tf,2) -tf -I(tf^2))
fm1. <- lmrob(nform, data = d1k27)# now w/o warning !? !!
fm2. <- lmrob(nform, data = d1k27, cov = ".vcov.w", trace = TRUE)
## now lmrob takes care of NA coefficients automatically
lmrob(y ~ poly(a,2)-a + poly(tf, 2)-tf + poly(A, 2)-A + . , data = d1k27)
showProc.time() ## 4.24
}) ## only if(doExtras) -----------------------------------------------------
## test exact fit property
set.seed(20)
data <- data.frame(y=c(rep.int(0, 20), round(100*rnorm(5))),
group=rep(letters[1:5], each=5))
x <- model.matrix(y ~ group, data)
(ini <- lmrob.S(x, data$y, lmrob.control()))
(ret <- lmrob(y ~ group, data))
summary(ret)
showProc.time() ## 4.24
##--- continuous x -- exact fit -- inspired by Thomas Mang's real data example
mkD9 <- function(iN, dN = 1:m) {
stopifnot((length(iN) -> m) == length(dN), 1 <= m, m <= 5,
iN == as.integer(iN), is.numeric(dN), !is.na(dN))
x <- c(-3:0,0:1,1:3) # {n=9; sorted; x= 0, 1 are "doubled"}
y <- x+5
y[iN] <- y[iN] + dN
data.frame(x,y)
}
mkRS <- function(...) { set.seed(...); .Random.seed }
d <- mkD9(c(1L,3:4, 7L))
rs2 <- mkRS(2)
Se <- tryCatch(error = identity,
with(d, lmrob.S(cbind(1,x), y, lmrob.control("KS2014", seed=rs2))))
## gave DGELS rank error {for lmrob.c+wg..}
if(inherits(Se, "error")) {
cat("Caught ")
print(Se)
} else withAutoprint({ ## no error
coef(Se)
stopifnot(coef(Se) == c(5, 1)) # was (0 0)
residuals(Se) # was == y ---- FIXME
})
## try 100 different seeds
repS <- lapply(1:100, function(ii) tryCatch(error = identity,
with(d, lmrob.S(cbind(1,x), y, lmrob.control("KS2014", seed = mkRS(ii))))))
if(FALSE)
## was
str(unique(repS))## ==> 100 times the same error
## now completely different: *all* returned properly
str(cfS <- t(sapply(repS, coef))) # all numeric -- not *one* error --
## even all the *same* (5 1) solution:
(ucfS <- unique(cfS))
stopifnot(identical(ucfS, array(c(5, 1), dim = 1:2, dimnames = list(NULL, c("", "x")))))
## *Not* "KS2014" but the defaults works *all the time* (!)
repS0 <- lapply(1:100, function(ii) tryCatch(error = identity,
with(d, lmrob.S(cbind(1,x), y, lmrob.control(seed = mkRS(ii))))))
summary(warnings())
## 100 identical warnings:
## In lmrob.S(cbind(1, x), y, lmrob.control(seed = mkRS(ii))) :
## S-estimated scale == 0: Probably exact fit; check your data
str(cfS0 <- t(sapply(repS0, coef))) # all numeric -- not *one* error
## even all the same *and* the same as "KS2014"
(ucfS0 <- unique(cfS0))
stopifnot(nrow(ucfS0) == 1L,
ucfS0 == c(5,1))
d9L <- list(
mkD9(c(1L,3L, 5L, 7L))
, mkD9(c(1L,3L, 8:9))
, mkD9(2L*(1:4))
)
if(doExtras) {
sfsmisc::mult.fig(length(d9L)); invisible(lapply(d9L, function(d) plot(y ~ x, data=d)))
}
dorob <- function(dat, control=lmrob.control(...), meth = c("S", "MM"),
doPl=interactive(), cex=1, ...) {
meth <- match.arg(meth)
stopifnot(is.data.frame(dat), c("x","y") %in% names(dat), is.list(control))
if(doPl) plot(y ~ x, data=dat) ## with(dat, n.plot(x, y, cex=cex))
ans <- tryCatch(error = identity,
switch(meth
, "S" = with(dat, lmrob.S(cbind(1,x), y, control))
, "MM"= lmrob(y ~ x, data = dat, control=control)
, stop("invalid 'meth'")))
if(!doPl)
return(ans)
## else
if(!inherits(ans, "error")) {
abline(coef(ans))
} else { # error
mtext(paste(paste0("lmrob.", meth), "Error:", conditionMessage(ans)))
}
invisible(ans)
}
## a bad case -- much better new robustbase >= 0.99-0
Se <- dorob(d9L[[1]], lmrob.control("KS2014", mkRS(2), trace.lev=4))
## was really bad -- ended returning coef = (0 0); fitted == 0, residuals == 0 !!
if(doExtras) sfsmisc::mult.fig(length(d9L))
r0 <- lapply(d9L, dorob, seed=rs2, doPl=doExtras) # 3 x ".. exact fit" warning
if(doExtras) print(r0)
## back to 3 identical fits: (5 1)
(cf0 <- sapply(r0, coef))
stopifnot(cf0 == c(5,1))
if(doExtras) sfsmisc::mult.fig(length(d9L))
### Here, all 3 were "0-models"
r14 <- lapply(d9L, dorob, control=lmrob.control("KS2014", seed=rs2), doPl=doExtras)
## --> 3 (identical) warnings: In lmrob.S(cbind(1, x), y, control) :#
## S-estimated scale == 0: Probably exact fit; check your data
## now *does* plot
if(doExtras) print(r14)
## all 3 are "identical"
(cf14 <- sapply(r14, coef))
identical(cf0, cf14) # see TRUE; test a bit less:
stopifnot(all.equal(cf0, cf14, tol=1e-15))
## use "large n"
ctrl.LRG.n <- lmrob.control("KS2014", seed=rs2, trace.lev = if(doExtras) 2 else 1, # 3: too much (for now),
nResample = 60,
fast.s.large.n = 7, n.group = 3, groups = 2)
rLrg.n <- lapply(d9L, \(d) lmrob.S(cbind(1,d$x), d$y, ctrl.LRG.n))
summary(warnings())
sapply(rLrg.n, coef)
## currently ... .... really would want always (5 1)
## [,1] [,2] [,3]
## [1,] 5 5 7.333333
## [2,] 1 1 1.666667
## ==> use lmrob() instead of lmrob.S():
mm0 <- lapply(d9L, dorob, meth = "MM", seed=rs2, doPl=doExtras) # looks all fine -- no longer: error in [[3]]
if(doExtras) print(mm0)
## now, the 3rd one errors (on Linux, not on M1 mac!)
(cm0 <- sapply(mm0, function(.) if(inherits(.,"error")) noquote(paste("Caught", as.character(.))) else coef(.)))
## no longer needed
c0.12 <- rbind(`(Intercept)` = c(5.7640215, 6.0267156),
x = c(0.85175883, 1.3823841))
if(is.list(cm0)) { ## after error {was on Linux+Win, not on M1 mac}:
## NB: This does *not* happen on Macbuilder -- there the result it cf = (5 1) !!
stopifnot(all.equal(tol = 1e-8, # seen 4.4376e-9
c0.12, simplify2array(cm0[1:2])))
print(cm0[[3]])
## FIXME?: Caught Error in eigen(ret, symmetric = TRUE): infinite or missing values in 'x'\n
} else if(is.matrix(cm0)) { # when no error happened
k <- ncol(cm0)
stopifnot(all.equal(tol = 1e-8, rbind(`(Intercept)` = rep(5,k), "x" = rep(1,k)), cm0))
} else warning("not yet encountered this case {and it should not happen}")
se3 <- lmrob(y ~ x, data=d9L[[3]], init = r0[[3]], seed=rs2, trace.lev=6)
if(doExtras) sfsmisc::mult.fig(length(d9L))
### Here, all 3 were "0-models"
## now, have 3 *different* cases {with this seed}
## [1] : init fails (-> r14[[1]] above)
## [2] : init s=0, b=(5,1) .. but residuals(),fitted() wrong
## [3] : init s=0, b=(5,1) ..*and* residuals(),fitted() are good
cm14 <- lapply(d9L, dorob, meth = "MM", control=lmrob.control("KS2014", seed=rs2), doPl=doExtras)
## now, first is error; for others, coef = (5, 1) are correct:
stopifnot(exprs = {
sapply(cm14[-1], coef) == c(5,1)
sapply(cm14[-1], sigma) == 0
})
m2 <- cm14[[2]]
summary(m2) # prints quite nicely; and this is perfect (for scale=0), too:
## {residual != 0 <==> weights = 0}:
cbind(rwgt = weights(m2, "rob"), res = residuals(m2), fit = fitted(m2), y = d9L[[2]][,"y"])
sapply(cm14, residuals) ## now, [2] is good; [3] still wrong - FIXME
sapply(cm14, fitted)
sapply(cm14, weights, "robust")## [2]: 0 1 0 1 1 1 1 0 0; [3]: all 0
## (unfinished ... do *test* once we've checked platform consistency)
summary(warnings())
showProc.time()
|