1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
library(robustbase)
source(system.file("xtraR/test_MCD.R", package = "robustbase"))#-> doMCDdata
## ../inst/xtraR/test_MCD.R
## instead of relying on system.file("test-tools-1.R", package="Matrix"):
source(system.file("xtraR/test-tools.R", package = "robustbase")) # showProc.time(), relErr()
showProc.time()
## -- now do it:
options(digits = 5)
set.seed(101) # <<-- sub-sampling algorithm now based on R's RNG and seed
doMCDdata()
doMCDdata(method="DetMCD"); warnings()
## vvvv no timing for 'R CMD Rdiff' outputs
doMCDdata(nrep = 12, time=FALSE)
doMCDdata(nrep = 12, time=FALSE, method="DetMCD"); warnings()
doMCDdata(nrep = 12, time=FALSE, method = "MASS")
###--- now the "close to singular" mahalanobis case:
set.seed(6)
(c3 <- covMcd(mort3))
(c3. <- covMcd(mort3, nsamp="deterministic"))
stopifnot(log(c3$crit) <= log(c3.$crit),
print(log(c3.$crit / c3$crit)) <= 0.8)
## see 0.516 / 0.291 {with seed 7}
##
## rescale variables:
scaleV <- c(0.1, 0.1, 1, 1, .001, 0.1, 0.1, 100)
mm <- data.matrix(mort3) * rep(scaleV, each = nrow(mort3))
C3 <- covMcd(mm)
C3. <- covMcd(mm, nsamp="deterministic")
stopifnot(C3$mcd.wt == c3$mcd.wt)# here, not for all seeds!
## error ("computationally singular") with old (too high) default tolerance:
try( covMcd(mm, control= rrcov.control(tol = 1e-10)) )
try( covMcd(mm, control= rrcov.control(tol = 1e-10), nsamp="deterministic") )
showProc.time()
## "large" examples using different algo branches {seg.fault in version 0.4-4}:
n <- 600 ## - partitioning will be triggered
set.seed(1)
X <- matrix(round(100*rnorm(n * 3)), n, 3)
(cX <- covMcd(X))
cX. <- covMcd(X, nsamp="deterministic", scalefn = scaleTau2)
i <- names(cX); i <- i[!(i %in% c("call", "nsamp", "method", "raw.weights"))]
stopifnot(sum(cX.$raw.weights != cX$raw.weights) <= 2,
all.equal(cX[i], cX.[i], tol= 1/9))
n <- 2000 ## - nesting will be triggered
set.seed(4)
X <- matrix(round(100*rnorm(n * 3)), n, 3)
set.seed(1)
summary(cX <- covMcd(X)) # <- show newly activated print.summary.mcd(.)
cX. <- covMcd(X, nsamp="deterministic", scalefn = scaleTau2)
i2 <- i[i != "mcd.wt"]
stopifnot(print(sum(cX.$raw.weights != cX$raw.weights)) <= 3, # 2
all.equal(cX[i2], cX.[i2], tol= 1/10))# 1/16
set.seed(1) ## testing of 'raw.only' :
cXo <- covMcd(X, raw.only=TRUE)
i <- paste0("raw.", c("cov", "center", "cnp2"))
stopifnot(cXo$raw.only, all.equal(cX[i], cXo[i], tol = 1e-15),
c("best", "mah") %in% setdiff(names(cX), names(cXo)))
showProc.time()
## Now, some small sample cases:
## maximal values:
n. <- 10
p. <- 8
set.seed(44)
(X. <- cbind(1:n., round(10*rt(n.,3)), round(10*rt(n.,2)),
matrix(round(10*rnorm(n. * (p.-3)), 1), nrow = n., ncol = p.-3)))
## 2 x 1 ---> Error
r <- tryCatch(covMcd(X.[1:2, 2, drop=FALSE]), error=function(e)e)
stopifnot(inherits(r, "error"),
grepl("too small sample size", r$message))
## 3 x 2 --- ditto
r <- tryCatch(covMcd(X.[1:3, 2:3]), error=function(e)e)
stopifnot(inherits(r, "error"),
grepl("too small sample size", r$message))
## 5 x 3 [ n < 2 p ! ] --- also works for MASS
X <- X.[1:5, 1:3]
set.seed(101)
## the finite-sample correction is definitely doubtful:
summary(cc <- covMcd(X, use.correction = FALSE))
str(cc) ## best = 2 3 4 5
if(hasMASS <- requireNamespace("MASS", quietly=TRUE)) {
mcc <- MASS::cov.mcd(X)
stopifnot(cc$best == mcc$best,
all.equal(cc$center, mcc$center, tolerance = 1e-10),
all.equal(c(mcc$cov / cc$raw.cov), rep(0.673549282206, 3*3)))
}
## p = 4 -- 6 x 4 & 7 x 4 [ n < 2 p ! ]
p <- 4
n <- 7
X <- X.[1:n, 1+(1:p)]
stopifnot(dim(X) == c(n,p))
(cc <- covMcd(X, use.correction = FALSE))
str(cc) ## best = 1 2 4 5 6 7
if(hasMASS) {
mcc <- MASS::cov.mcd(X)
stopifnot(cc$best == mcc$best,
all.equal(cc$center, mcc$center, tolerance = 1e-10),
all.equal(c(mcc$cov / cc$raw.cov), rep(0.7782486992881, p*p)))
}
n <- 6
X <- X[1:n,]
(cc <- covMcd(X, use.correction = FALSE))
if(hasMASS) {
mcc <- MASS::cov.mcd(X)
stopifnot(cc$best == mcc$best,
all.equal(cc$center, mcc$center, tolerance = 1e-10),
all.equal(c(mcc$cov / cc$raw.cov), rep(0.7528695976179, p*p)))
}
showProc.time()
## nsamp = "exact" -- here for p=7
coleman.x <- data.matrix(coleman[, 1:6])
showSys.time(CcX <- covMcd(coleman.x, nsamp= "exact"))
showSys.time(Ccd <- covMcd(coleman.x, nsamp= "deterministic"))
stopifnot(all.equal(CcX$best,
c(2, 5:9, 11,13, 14:16, 19:20), tolerance=0),
intersect(CcX$best, Ccd$best) == c(2,5,7,8,13,14,16,19,20),
relErr(CcX$crit, Ccd$crit) < 0.35 # see ~ 0.34
)
summary(Ccd)
demo(determinMCD)## ../demo/determinMCD.R
## ----------- including simple "exactfit" (code = 3)
warnings()
showProc.time()
if(!robustbase:::doExtras()) quit()
## if ( doExtras ) -----------------------------------------------------------------
## ==============
## (nmini, kmini) examples:
set.seed(7) ; X1 <- gendata(10000, p=13, eps = 0.30)
showSys.time(c1 <- covMcd(X1$X)) # 0.87 sec
chk.covMcd <- function(ans, ind) {
stopifnot(inherits(ans, "mcd"))
## check that all outliers were detected:
mod.outl <- which(ans$mcd.wt == 0)
outl.detected <- (ind %in% mod.outl)
if(!all(outl.detected)) {
cat("The following outliers are *not* detected:\n")
print(which(!outl.detected))
}
fp <- !(mod.outl %in% ind)
if(any(fp)) {
cat(sprintf("False positive \"outliers\" (a few expected) %d of %d (= %.2f%%):\n",
sum(fp), nobs(ans), 100*sum(fp)/nobs(ans)))
print(which(fp))
} else cat("** No ** false positive outliers -- exceptional!\n")
}
##
chk.covMcd(c1, X1$xind)
cat("\ncovMcd(*, kmini=12, trace=2) ...\n------\n")
showSys.time(c2 <- covMcd(X1$X, kmini=12, trace=2))# slower..
chk.covMcd(c2, X1$xind)
## Comparing:
ii <- !(names(c1) %in% c("call", "method"))
cat("\ncovMcd(*, nsamp=\"deterministic\")\n")
showSys.time(cD <- covMcd(X1$X, nsamp="deterministic"))# quite slower than FASTMCD
chk.covMcd(cD, X1$xind)
cat("<.>$crit = log(det(.)) [minimal = best] :\n")
print(cbind(sort(c(default = c1$crit, kmini.12 = c2$crit, determin = cD$crit))))
i2 <- names(c1)[ii]; i2 <- i2[i2 != "nsamp"]
## closer coincidence if "raw.*" are dropped:
i3 <- i2; i3 <- i3[ - grep("^raw", i3) ]
stopifnot(all.equal(c1[ii], c2[ii], tol= 0.02),
all.equal(cD[i2], c1[i2], tol= 0.02),
all.equal(cD[i3], c1[i3], tol= 6e-4), # 4.60e-4
## the 0/1 weights coincide :
cD$mcd.wt == c1$mcd.wt,
c2$mcd.wt == c1$mcd.wt)
showProc.time()
## Radarexample --- already some in ../man/radarImage.Rd <<<-------------
data(radarImage)
print(d <- dim(radarImage)); n.rI <- d[1]
## The 8 "clear" outliers (see also below)
ii8 <- c(1548:1549, 1553:1554, 1565:1566, 1570:1571)
set.seed(7)
showSys.time( L1 <- lapply(0:200, function(n)
n+ which(0 == covMcd(unname(radarImage[(n+1L):n.rI,]), trace=2)$mcd.wt)))
## check for covMcd() consistency:
print(tablen <- table(vapply(L1, length, 1)))
plot(tablen)
print(iCommon <- Reduce(intersect, L1))
stopifnot(ii8 %in% iCommon)
##
|