File: tmcd.R

package info (click to toggle)
robustbase 0.99-6-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 4,584 kB
  • sloc: fortran: 3,245; ansic: 3,243; sh: 15; makefile: 2
file content (203 lines) | stat: -rw-r--r-- 7,101 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
library(robustbase)

source(system.file("xtraR/test_MCD.R", package = "robustbase"))#-> doMCDdata
##          ../inst/xtraR/test_MCD.R
## instead of relying on  system.file("test-tools-1.R", package="Matrix"):
source(system.file("xtraR/test-tools.R", package = "robustbase")) # showProc.time(), relErr()
showProc.time()

## -- now do it:
options(digits = 5)
set.seed(101) # <<-- sub-sampling algorithm now based on R's RNG and seed
doMCDdata()
doMCDdata(method="DetMCD"); warnings()
##                        vvvv no timing for 'R CMD Rdiff' outputs
doMCDdata(nrep = 12, time=FALSE)
doMCDdata(nrep = 12, time=FALSE, method="DetMCD"); warnings()
doMCDdata(nrep = 12, time=FALSE, method = "MASS")

###--- now the "close to singular" mahalanobis case:
set.seed(6)
(c3  <- covMcd(mort3))
(c3. <- covMcd(mort3, nsamp="deterministic"))
stopifnot(log(c3$crit) <= log(c3.$crit),
          print(log(c3.$crit / c3$crit)) <= 0.8)
## see 0.516 / 0.291 {with seed 7}
##
## rescale variables:
scaleV <- c(0.1, 0.1, 1, 1, .001, 0.1, 0.1, 100)
mm <- data.matrix(mort3) * rep(scaleV, each = nrow(mort3))
C3  <- covMcd(mm)
C3. <- covMcd(mm, nsamp="deterministic")
stopifnot(C3$mcd.wt == c3$mcd.wt)# here, not for all seeds!

## error ("computationally singular") with old (too high) default tolerance:
try( covMcd(mm, control= rrcov.control(tol = 1e-10)) )
try( covMcd(mm, control= rrcov.control(tol = 1e-10), nsamp="deterministic") )

showProc.time()

## "large" examples using different algo branches {seg.fault in version 0.4-4}:

n <- 600 ## - partitioning will be triggered
set.seed(1)
X <- matrix(round(100*rnorm(n * 3)), n, 3)
(cX  <- covMcd(X))
 cX. <- covMcd(X, nsamp="deterministic", scalefn = scaleTau2)
i <- names(cX); i <- i[!(i %in% c("call", "nsamp", "method", "raw.weights"))]
stopifnot(sum(cX.$raw.weights != cX$raw.weights) <= 2,
          all.equal(cX[i], cX.[i], tol= 1/9))

n <- 2000 ## - nesting will be triggered
set.seed(4)
X <- matrix(round(100*rnorm(n * 3)), n, 3)
set.seed(1)
summary(cX  <- covMcd(X)) # <- show newly activated  print.summary.mcd(.)
 cX. <- covMcd(X, nsamp="deterministic", scalefn = scaleTau2)
i2 <- i[i != "mcd.wt"]
stopifnot(print(sum(cX.$raw.weights != cX$raw.weights)) <= 3, # 2
          all.equal(cX[i2], cX.[i2], tol= 1/10))# 1/16

set.seed(1) ## testing of 'raw.only' :
cXo <- covMcd(X, raw.only=TRUE)
i <- paste0("raw.", c("cov", "center", "cnp2"))
stopifnot(cXo$raw.only, all.equal(cX[i], cXo[i], tol = 1e-15),
          c("best", "mah") %in% setdiff(names(cX), names(cXo)))
showProc.time()

## Now, some small sample cases:

## maximal values:
n. <- 10
p. <-  8
set.seed(44)
(X. <- cbind(1:n., round(10*rt(n.,3)), round(10*rt(n.,2)),
             matrix(round(10*rnorm(n. * (p.-3)), 1),  nrow = n., ncol = p.-3)))

## 2 x 1 ---> Error
r <- tryCatch(covMcd(X.[1:2, 2, drop=FALSE]), error=function(e)e)
stopifnot(inherits(r, "error"),
          grepl("too small sample size", r$message))

## 3 x 2 --- ditto
r <- tryCatch(covMcd(X.[1:3, 2:3]), error=function(e)e)
stopifnot(inherits(r, "error"),
          grepl("too small sample size", r$message))

## 5 x 3  [ n < 2 p  ! ]  --- also works for MASS
X <- X.[1:5, 1:3]
set.seed(101)
## the finite-sample correction is definitely doubtful:
summary(cc <- covMcd(X, use.correction = FALSE))
str(cc) ## best = 2 3 4 5
if(hasMASS <- requireNamespace("MASS", quietly=TRUE)) {
mcc <- MASS::cov.mcd(X)
stopifnot(cc$best == mcc$best,
          all.equal(cc$center, mcc$center, tolerance = 1e-10),
          all.equal(c(mcc$cov / cc$raw.cov), rep(0.673549282206, 3*3)))
}
## p = 4 -- 6 x 4 & 7 x 4  [ n < 2 p  ! ]
p <- 4
n <- 7
X <- X.[1:n, 1+(1:p)]
stopifnot(dim(X) == c(n,p))
(cc <- covMcd(X, use.correction = FALSE))
str(cc) ## best = 1 2 4 5 6 7
if(hasMASS) {
mcc <- MASS::cov.mcd(X)
stopifnot(cc$best == mcc$best,
          all.equal(cc$center, mcc$center, tolerance = 1e-10),
          all.equal(c(mcc$cov / cc$raw.cov), rep(0.7782486992881, p*p)))
}

n <- 6
X <- X[1:n,]
(cc <- covMcd(X, use.correction = FALSE))
if(hasMASS) {
mcc <- MASS::cov.mcd(X)
stopifnot(cc$best == mcc$best,
          all.equal(cc$center, mcc$center, tolerance = 1e-10),
          all.equal(c(mcc$cov / cc$raw.cov), rep(0.7528695976179, p*p)))
}

showProc.time()

## nsamp = "exact" -- here for p=7
coleman.x <- data.matrix(coleman[, 1:6])
showSys.time(CcX <- covMcd(coleman.x, nsamp= "exact"))
showSys.time(Ccd <- covMcd(coleman.x, nsamp= "deterministic"))
stopifnot(all.equal(CcX$best,
		    c(2, 5:9, 11,13, 14:16, 19:20), tolerance=0),
	  intersect(CcX$best, Ccd$best) == c(2,5,7,8,13,14,16,19,20),
          relErr(CcX$crit, Ccd$crit) < 0.35 # see ~ 0.34
)
summary(Ccd)


demo(determinMCD)## ../demo/determinMCD.R
##   ----------- including simple "exactfit" (code = 3)
warnings()

showProc.time()
if(!robustbase:::doExtras()) quit()

## if ( doExtras ) -----------------------------------------------------------------
## ==============

##  (nmini, kmini) examples:
set.seed(7) ; X1 <- gendata(10000, p=13, eps = 0.30)
showSys.time(c1 <- covMcd(X1$X)) # 0.87 sec
chk.covMcd <- function(ans, ind) {
    stopifnot(inherits(ans, "mcd"))
    ## check that all outliers were detected:
    mod.outl <- which(ans$mcd.wt == 0)
    outl.detected <- (ind %in% mod.outl)
    if(!all(outl.detected)) {
        cat("The following outliers are *not* detected:\n")
        print(which(!outl.detected))
    }
    fp <- !(mod.outl %in% ind)
    if(any(fp)) {
        cat(sprintf("False positive \"outliers\" (a few expected) %d of %d (= %.2f%%):\n",
       	     sum(fp), nobs(ans), 100*sum(fp)/nobs(ans)))
        print(which(fp))
    } else cat("** No ** false positive outliers -- exceptional!\n")
}
##
chk.covMcd(c1, X1$xind)
cat("\ncovMcd(*, kmini=12, trace=2) ...\n------\n")
showSys.time(c2 <- covMcd(X1$X, kmini=12, trace=2))# slower..
chk.covMcd(c2, X1$xind)
## Comparing:
ii <- !(names(c1) %in% c("call", "method"))
cat("\ncovMcd(*, nsamp=\"deterministic\")\n")
showSys.time(cD <- covMcd(X1$X, nsamp="deterministic"))# quite slower than FASTMCD
chk.covMcd(cD, X1$xind)
cat("<.>$crit = log(det(.)) [minimal = best] :\n")
print(cbind(sort(c(default = c1$crit, kmini.12 = c2$crit, determin = cD$crit))))
i2 <- names(c1)[ii]; i2 <- i2[i2 != "nsamp"]
## closer coincidence if "raw.*" are dropped:
i3 <- i2; i3 <- i3[ - grep("^raw", i3) ]
stopifnot(all.equal(c1[ii], c2[ii], tol= 0.02),
          all.equal(cD[i2], c1[i2], tol= 0.02),
          all.equal(cD[i3], c1[i3], tol= 6e-4), # 4.60e-4
          ## the 0/1 weights coincide :
          cD$mcd.wt == c1$mcd.wt,
          c2$mcd.wt == c1$mcd.wt)
showProc.time()

## Radarexample --- already some in  ../man/radarImage.Rd <<<-------------
data(radarImage)
print(d <- dim(radarImage)); n.rI <- d[1]
## The 8 "clear" outliers (see also below)
ii8 <- c(1548:1549, 1553:1554, 1565:1566, 1570:1571)
set.seed(7)
showSys.time( L1 <- lapply(0:200, function(n)
    n+ which(0 == covMcd(unname(radarImage[(n+1L):n.rI,]), trace=2)$mcd.wt)))
## check for covMcd() consistency:
print(tablen <- table(vapply(L1, length, 1)))
plot(tablen)
print(iCommon <- Reduce(intersect, L1))
stopifnot(ii8 %in% iCommon)
##