File: weights.R

package info (click to toggle)
robustbase 0.99-6-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 4,584 kB
  • sloc: fortran: 3,245; ansic: 3,243; sh: 15; makefile: 2
file content (248 lines) | stat: -rw-r--r-- 10,013 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
## test handing of weights and offset argument
require(robustbase)

## generate simple example data  (extension of the one in ./NAcoef.R )
data <- expand.grid(x1=letters[1:3], x2=LETTERS[1:4], rep=1:3,
                    KEEP.OUT.ATTRS = FALSE)
## generate offset column
data$os <- 1:nrow(data)
set.seed(1)
data$y <- data$os + rnorm(nrow(data))
## add collinear variables
data$x3 <- rnorm(nrow(data))
data$x4 <- rnorm(nrow(data))
data$x5 <- data$x3 + data$x4 ## lm() will have 'x5'  "aliased" (and give coef = NA)
## add some NA terms
data$y[1] <- NA
data$x4[2:3] <- NA ## to test anova
## generate weights
## some obs with weight 0
data$weights <- as.numeric(with(data, x1 != 'c' | (x2 != 'B' & x2 != 'C')))
## some obs with weight 2
data$weights[data$x1 == 'b'] <- 2
## data2 := {data + weights}, encoded in "data2" (-> "ok" for coef(), not for SE)
data2 <- rbind(subset(data, weights  > 0),
	       subset(data, weights == 2))
## using these parameters we're essentially forcing lmrob() to
## fit a classic model --> easier to compare to lm()
ctrl <- lmrob.control(psi="optimal", tuning.chi = 20, bb = 0.0003846154,
                      tuning.psi=20, method="SM", cov=".vcov.w")
## SM = MM == the case where  .vcov.avar1  was also defined for

## Classical models start with 'cm', robust just with  'rm' (or just 'm'),
## "." - models drop 'x5' (which is aliased / extraneous by construction) :
(cm0 <- lm   (y ~ x1*x2 + x3 + x4 + x5 + offset(os), data))
(cm0.<- lm   (y ~ x1*x2 + x3 + x4      + offset(os), data))
(cm1 <- lm   (y ~ x1*x2 + x3 + x4 + x5 + offset(os), data,  weights=weights))
(cm1.<- lm   (y ~ x1*x2 + x3 + x4      + offset(os), data,  weights=weights))
(cm2 <- lm   (y ~ x1*x2 + x3 + x4 + x5,              data2, offset=os))
(cm2.<- lm   (y ~ x1*x2 + x3 + x4,                   data2, offset=os))
(rm0 <- lmrob(y ~ x1*x2 + x3 + x4 + x5 + offset(os), data,                   control=ctrl))
(rm0.<- lmrob(y ~ x1*x2 + x3 + x4      + offset(os), data,                   control=ctrl))
set.seed(2)
(rm1 <- lmrob(y ~ x1*x2 + x3 + x4 + x5 + offset(os), data,  weights=weights, control=ctrl))
set.seed(2)
(rm1.<- lmrob(y ~ x1*x2 + x3 + x4      + offset(os), data,  weights=weights, control=ctrl))
set.seed(2)
(rm2 <- lmrob(y ~ x1*x2 + x3 + x4 + x5,              data2, offset=os,       control=ctrl))
set.seed(2)
(rm2.<- lmrob(y ~ x1*x2 + x3 + x4,                   data2, offset=os,       control=ctrl))

sc0 <- summary(cm0)
sc1 <- summary(cm1)
sc2 <- summary(cm2)
(sr0 <- summary(rm0))
(sr1 <- summary(rm1))
(sr2 <- summary(rm2))

## test Estimates, Std. Errors, ...
nc <- names(coef(cm1))
nc. <- setdiff(nc, "x5") # those who are "valid"
stopifnot(exprs = {
    all.equal(coef(cm0.),coef(cm0)[nc.])
    all.equal(coef(cm1.),coef(cm1)[nc.])
    all.equal(coef(cm2.),coef(cm2)[nc.])
    all.equal(coef(cm1), coef(cm2))
    all.equal(coef(rm1), coef(rm2))
    all.equal(coef(sc0), coef(sr0))
    all.equal(coef(sc1), coef(sr1))
    all.equal(coef(sc2), coef(sr2))
})

## test class "lm" methods that do not depend on weights
meths1 <- c("family",
            "formula",
            "labels",
            "model.matrix",
            "na.action",
            "terms")
for (meth in meths1)
    stopifnot(all.equal(do.call(meth, list(rm0)),
                        do.call(meth, list(rm1))))

## class "lm" methods that depend on weights
##                                      FIXME:
meths2 <- c(#"AIC",
            "alias",
            #"BIC",
            "case.names",
            "coef",
            "confint",
            #"cooks.distance",
            #"deviance",
            "df.residual",
            #"dfbeta",
            #"dfbetas",
            #"drop1",
            "dummy.coef",
            #"effects",
            #"extractAIC",
            #"hatvalues",
            #"influence",
            "kappa",
            #"logLik",
            #"model.frame", ## disable because of zero.weights attribute
            "nobs",
            "predict",
                                        #"proj",
                                        #"rstandard",
                                        #"rstudent",
                                        #"simulate",
            ##"summary", ## see above
            "variable.names",
            ##"vcov",    ## see below
            "weights")
op <- options(warn = 1)# print immediately
for (meth in meths2) {
    cat(meth,":")
    .SW. <- if(meth == "weights") suppressWarnings else identity # for suppressing
    ## No weights defined for this object. Use type="robustness" ....
    stopifnot(all.equal(do.call(meth, list(cm1)),
                        do.call(meth, list(rm1))),
              all.equal(do.call(meth, list(cm2)),
		   .SW.(do.call(meth, list(rm2)))))
    cat("\n")
}
options(op)# reverting

## further tests:
anova(rm1, update(rm1, ~ . - x4 - x5))
anova(rm2, update(rm2, ~ . - x4 - x5))

stopifnot(all.equal(fitted(cm0), fitted(rm0)),
          all.equal(fitted(cm1), fitted(rm1)),
          all.equal(fitted(cm2), fitted(rm2)))

nd <- expand.grid(x1=letters[1:3], x2=LETTERS[1:4])
set.seed(3)
nd$x3 <- rnorm(nrow(nd))
nd$x4 <- rnorm(nrow(nd))
nd$x5 <- rnorm(nrow(nd)) # (*not* the sum x3+x4 !)
nd$os <- nrow(nd):1
wts   <- runif(nrow(nd))
stopifnot(exprs = {
    all.equal(predict(cm0, nd, interval="prediction"),
              predict(rm0, nd, interval="prediction"))
    all.equal(predict(cm1, nd, interval="prediction"),
              predict(rm1, nd, interval="prediction"))
    all.equal(predict(cm2, nd, interval="prediction"),
              predict(rm2, nd, interval="prediction"))
    all.equal(predict(cm0, nd, interval="prediction", weights=wts),
              predict(rm0, nd, interval="prediction", weights=wts))
    all.equal(predict(cm1, nd, interval="prediction", weights=wts),
              predict(rm1, nd, interval="prediction", weights=wts))
    all.equal(predict(cm2, nd, interval="prediction", weights=wts),
              predict(rm2, nd, interval="prediction", weights=wts),
              tolerance=1e-7)
})

## Padding can lead to differing values here
## so test only full rank part
qrEQ <- function(m1, m2) {
    q1 <- qr(m1)
    q2 <- qr(m2)
    r <- 1:q1$rank
    stopifnot(q1$rank == q2$rank,
              all.equal(q1$pivot, q2$pivot),
              all.equal(q1$qraux[r],q2$qraux[r]),
              all.equal(q1$qr[r,r], q2$qr[r,r]))
}
qrEQ(cm0, rm0)
qrEQ(cm1, rm1)
qrEQ(cm2, rm2)

stopifnot(all.equal(residuals(cm0),             residuals(rm0)),
          all.equal(residuals(cm1),             residuals(rm1)),
          all.equal(residuals(cm2),             residuals(rm2)),
          all.equal(resid(cm0, type="pearson"), resid(rm0, type="pearson")),
          all.equal(resid(cm1, type="pearson"), resid(rm1, type="pearson")),
          all.equal(resid(cm2, type="pearson"), resid(rm2, type="pearson")))

## R 3.5.0:  vcov(*,  complete=TRUE)  new default ==> same NA's as coef()
if(interactive()) withAutoprint({
    op <- options(width = 130, digits = 2) # -->  vcov() rows fit on 1 line
    vcov(cm0) # 'x5' is NA
    vcov(cm2) # 'x5', 'x1c:2B', 'x1c:2C'  rows & columns are NA
    options(op)
})

(no.C <- is.na(match("complete", names(formals(stats:::vcov.lm))))) ## temporary _FIXME_
vcovC <- if(no.C) function(M, ...) vcov(M, complete=FALSE, ...) else vcov # (complete=TRUE)
stopifnot(all.equal(vcov(cm0), vcovC(rm0), check.attributes=FALSE),
          all.equal(vcov(cm1), vcovC(rm1), check.attributes=FALSE),
          all.equal(vcov(cm2), vcovC(rm2), check.attributes=FALSE))

## "clean":
cln <- function(vc) structure(vc, weights=NULL, eigen=NULL)
## .vcov.avar1() is not recommended here, but also should work with singular / NA coef case:
ok0 <- !is.na(coef(rm0))
tools::assertWarning(verbose = TRUE, # on non-M1mac, there is a 2nd warning (not shown here!):
vr0.NA<- vcov(rm0, cov=".vcov.avar1", complete=NA))
vr0.T <- vcov(rm0, cov=".vcov.avar1", complete=TRUE)
vr0.F <- vcov(rm0, cov=".vcov.avar1", complete=FALSE)
stopifnot(identical(dim(vr0.NA), dim(vr0.T)),
          identical(dim(vr0.F),  dim(vr0.T) - 1L), dim(vr0.F) == 14,
          all.equal(cln(vr0.F), vr0.T[ok0,ok0], tol = 1e-15))

if(!no.C) {
vc0.T <- vcov(cm0, complete=TRUE)
vc0.F <- vcov(cm0, complete=FALSE)
}

ok1 <- !is.na(coef(rm1))
## cannot work because init/fit residuals are not of full length
tools::assertError(vr1.NA<- vcov(rm1, cov=".vcov.avar1", complete=NA))
tools::assertError(vr1.T <- vcov(rm1, cov=".vcov.avar1", complete=TRUE ))
tools::assertError(vr1.F <- vcov(rm1, cov=".vcov.avar1", complete=FALSE))
## instead, must refit
rm1. <- update(rm1, control = within(ctrl,  cov <- ".vcov.avar1"))
vr1.NA<- vcov(rm1., complete=NA)
vr1.T <- vcov(rm1., complete=TRUE)
vr1.F <- vcov(rm1., complete=FALSE)

stopifnot(identical(vr1.F, vr1.NA), # in this case
          identical(dim(vr1.F),  dim(vr1.T) - 3L), dim(vr1.F) == 12, isSymmetric(vr1.T),
          identical(rownames(vr1.F),  rownames(vr1.T)[ok1]),
          all.equal(cln(vr1.F), vr1.T[ok1,ok1], tol=1e-15))

if(FALSE) ## ERROR "exact singular" (probably *NOT* to fix, as TRUE/FALSE do work !)
vr2.NA<- vcov(rm2, cov=".vcov.avar1", complete=NA) # "almost singular" warning
vr2.T <- vcov(rm2, cov=".vcov.avar1", complete=TRUE)
vr2.F <- vcov(rm2, cov=".vcov.avar1", complete=FALSE)
stopifnot(TRUE, # identical(dim(vr2.NA), dim(vr2.T)),
	  identical(dim(vr2.F),  dim(vr2.T) - 3L), dim(vr2.F) == 12,
	  identical(rownames(vr2.F), rownames(vr1.F)),
	  identical(rownames(vr2.T), rownames(vr1.T)),
	  all.equal(cln(vr2.F), vr2.T[ok1,ok1], tol=1e-15))

## Hmm, the supposedly heteroscedastic-robust estimates *are* very different:
all.equal(vcov(cm0), vcovC(rm0, cov = ".vcov.avar1"), check.attributes=FALSE) # rel.diff. 0.5367564
if(FALSE) # does not make sense
all.equal(vcov(cm1), vcovC(rm1, cov = ".vcov.avar1"), check.attributes=FALSE)
all.equal(vcov(cm2), vcovC(rm2, cov = ".vcov.avar1"), check.attributes=FALSE) # rel.diff. 0.5757642


## Null fits (rank(X)==0) are tested in NAcoef.R

## testing weight=0 bug
lmrob(y ~ x3, data, weights=weights)