1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
## test handing of weights and offset argument
require(robustbase)
## generate simple example data (extension of the one in ./NAcoef.R )
data <- expand.grid(x1=letters[1:3], x2=LETTERS[1:4], rep=1:3,
KEEP.OUT.ATTRS = FALSE)
## generate offset column
data$os <- 1:nrow(data)
set.seed(1)
data$y <- data$os + rnorm(nrow(data))
## add collinear variables
data$x3 <- rnorm(nrow(data))
data$x4 <- rnorm(nrow(data))
data$x5 <- data$x3 + data$x4 ## lm() will have 'x5' "aliased" (and give coef = NA)
## add some NA terms
data$y[1] <- NA
data$x4[2:3] <- NA ## to test anova
## generate weights
## some obs with weight 0
data$weights <- as.numeric(with(data, x1 != 'c' | (x2 != 'B' & x2 != 'C')))
## some obs with weight 2
data$weights[data$x1 == 'b'] <- 2
## data2 := {data + weights}, encoded in "data2" (-> "ok" for coef(), not for SE)
data2 <- rbind(subset(data, weights > 0),
subset(data, weights == 2))
## using these parameters we're essentially forcing lmrob() to
## fit a classic model --> easier to compare to lm()
ctrl <- lmrob.control(psi="optimal", tuning.chi = 20, bb = 0.0003846154,
tuning.psi=20, method="SM", cov=".vcov.w")
## SM = MM == the case where .vcov.avar1 was also defined for
## Classical models start with 'cm', robust just with 'rm' (or just 'm'),
## "." - models drop 'x5' (which is aliased / extraneous by construction) :
(cm0 <- lm (y ~ x1*x2 + x3 + x4 + x5 + offset(os), data))
(cm0.<- lm (y ~ x1*x2 + x3 + x4 + offset(os), data))
(cm1 <- lm (y ~ x1*x2 + x3 + x4 + x5 + offset(os), data, weights=weights))
(cm1.<- lm (y ~ x1*x2 + x3 + x4 + offset(os), data, weights=weights))
(cm2 <- lm (y ~ x1*x2 + x3 + x4 + x5, data2, offset=os))
(cm2.<- lm (y ~ x1*x2 + x3 + x4, data2, offset=os))
(rm0 <- lmrob(y ~ x1*x2 + x3 + x4 + x5 + offset(os), data, control=ctrl))
(rm0.<- lmrob(y ~ x1*x2 + x3 + x4 + offset(os), data, control=ctrl))
set.seed(2)
(rm1 <- lmrob(y ~ x1*x2 + x3 + x4 + x5 + offset(os), data, weights=weights, control=ctrl))
set.seed(2)
(rm1.<- lmrob(y ~ x1*x2 + x3 + x4 + offset(os), data, weights=weights, control=ctrl))
set.seed(2)
(rm2 <- lmrob(y ~ x1*x2 + x3 + x4 + x5, data2, offset=os, control=ctrl))
set.seed(2)
(rm2.<- lmrob(y ~ x1*x2 + x3 + x4, data2, offset=os, control=ctrl))
sc0 <- summary(cm0)
sc1 <- summary(cm1)
sc2 <- summary(cm2)
(sr0 <- summary(rm0))
(sr1 <- summary(rm1))
(sr2 <- summary(rm2))
## test Estimates, Std. Errors, ...
nc <- names(coef(cm1))
nc. <- setdiff(nc, "x5") # those who are "valid"
stopifnot(exprs = {
all.equal(coef(cm0.),coef(cm0)[nc.])
all.equal(coef(cm1.),coef(cm1)[nc.])
all.equal(coef(cm2.),coef(cm2)[nc.])
all.equal(coef(cm1), coef(cm2))
all.equal(coef(rm1), coef(rm2))
all.equal(coef(sc0), coef(sr0))
all.equal(coef(sc1), coef(sr1))
all.equal(coef(sc2), coef(sr2))
})
## test class "lm" methods that do not depend on weights
meths1 <- c("family",
"formula",
"labels",
"model.matrix",
"na.action",
"terms")
for (meth in meths1)
stopifnot(all.equal(do.call(meth, list(rm0)),
do.call(meth, list(rm1))))
## class "lm" methods that depend on weights
## FIXME:
meths2 <- c(#"AIC",
"alias",
#"BIC",
"case.names",
"coef",
"confint",
#"cooks.distance",
#"deviance",
"df.residual",
#"dfbeta",
#"dfbetas",
#"drop1",
"dummy.coef",
#"effects",
#"extractAIC",
#"hatvalues",
#"influence",
"kappa",
#"logLik",
#"model.frame", ## disable because of zero.weights attribute
"nobs",
"predict",
#"proj",
#"rstandard",
#"rstudent",
#"simulate",
##"summary", ## see above
"variable.names",
##"vcov", ## see below
"weights")
op <- options(warn = 1)# print immediately
for (meth in meths2) {
cat(meth,":")
.SW. <- if(meth == "weights") suppressWarnings else identity # for suppressing
## No weights defined for this object. Use type="robustness" ....
stopifnot(all.equal(do.call(meth, list(cm1)),
do.call(meth, list(rm1))),
all.equal(do.call(meth, list(cm2)),
.SW.(do.call(meth, list(rm2)))))
cat("\n")
}
options(op)# reverting
## further tests:
anova(rm1, update(rm1, ~ . - x4 - x5))
anova(rm2, update(rm2, ~ . - x4 - x5))
stopifnot(all.equal(fitted(cm0), fitted(rm0)),
all.equal(fitted(cm1), fitted(rm1)),
all.equal(fitted(cm2), fitted(rm2)))
nd <- expand.grid(x1=letters[1:3], x2=LETTERS[1:4])
set.seed(3)
nd$x3 <- rnorm(nrow(nd))
nd$x4 <- rnorm(nrow(nd))
nd$x5 <- rnorm(nrow(nd)) # (*not* the sum x3+x4 !)
nd$os <- nrow(nd):1
wts <- runif(nrow(nd))
stopifnot(exprs = {
all.equal(predict(cm0, nd, interval="prediction"),
predict(rm0, nd, interval="prediction"))
all.equal(predict(cm1, nd, interval="prediction"),
predict(rm1, nd, interval="prediction"))
all.equal(predict(cm2, nd, interval="prediction"),
predict(rm2, nd, interval="prediction"))
all.equal(predict(cm0, nd, interval="prediction", weights=wts),
predict(rm0, nd, interval="prediction", weights=wts))
all.equal(predict(cm1, nd, interval="prediction", weights=wts),
predict(rm1, nd, interval="prediction", weights=wts))
all.equal(predict(cm2, nd, interval="prediction", weights=wts),
predict(rm2, nd, interval="prediction", weights=wts),
tolerance=1e-7)
})
## Padding can lead to differing values here
## so test only full rank part
qrEQ <- function(m1, m2) {
q1 <- qr(m1)
q2 <- qr(m2)
r <- 1:q1$rank
stopifnot(q1$rank == q2$rank,
all.equal(q1$pivot, q2$pivot),
all.equal(q1$qraux[r],q2$qraux[r]),
all.equal(q1$qr[r,r], q2$qr[r,r]))
}
qrEQ(cm0, rm0)
qrEQ(cm1, rm1)
qrEQ(cm2, rm2)
stopifnot(all.equal(residuals(cm0), residuals(rm0)),
all.equal(residuals(cm1), residuals(rm1)),
all.equal(residuals(cm2), residuals(rm2)),
all.equal(resid(cm0, type="pearson"), resid(rm0, type="pearson")),
all.equal(resid(cm1, type="pearson"), resid(rm1, type="pearson")),
all.equal(resid(cm2, type="pearson"), resid(rm2, type="pearson")))
## R 3.5.0: vcov(*, complete=TRUE) new default ==> same NA's as coef()
if(interactive()) withAutoprint({
op <- options(width = 130, digits = 2) # --> vcov() rows fit on 1 line
vcov(cm0) # 'x5' is NA
vcov(cm2) # 'x5', 'x1c:2B', 'x1c:2C' rows & columns are NA
options(op)
})
(no.C <- is.na(match("complete", names(formals(stats:::vcov.lm))))) ## temporary _FIXME_
vcovC <- if(no.C) function(M, ...) vcov(M, complete=FALSE, ...) else vcov # (complete=TRUE)
stopifnot(all.equal(vcov(cm0), vcovC(rm0), check.attributes=FALSE),
all.equal(vcov(cm1), vcovC(rm1), check.attributes=FALSE),
all.equal(vcov(cm2), vcovC(rm2), check.attributes=FALSE))
## "clean":
cln <- function(vc) structure(vc, weights=NULL, eigen=NULL)
## .vcov.avar1() is not recommended here, but also should work with singular / NA coef case:
ok0 <- !is.na(coef(rm0))
tools::assertWarning(verbose = TRUE, # on non-M1mac, there is a 2nd warning (not shown here!):
vr0.NA<- vcov(rm0, cov=".vcov.avar1", complete=NA))
vr0.T <- vcov(rm0, cov=".vcov.avar1", complete=TRUE)
vr0.F <- vcov(rm0, cov=".vcov.avar1", complete=FALSE)
stopifnot(identical(dim(vr0.NA), dim(vr0.T)),
identical(dim(vr0.F), dim(vr0.T) - 1L), dim(vr0.F) == 14,
all.equal(cln(vr0.F), vr0.T[ok0,ok0], tol = 1e-15))
if(!no.C) {
vc0.T <- vcov(cm0, complete=TRUE)
vc0.F <- vcov(cm0, complete=FALSE)
}
ok1 <- !is.na(coef(rm1))
## cannot work because init/fit residuals are not of full length
tools::assertError(vr1.NA<- vcov(rm1, cov=".vcov.avar1", complete=NA))
tools::assertError(vr1.T <- vcov(rm1, cov=".vcov.avar1", complete=TRUE ))
tools::assertError(vr1.F <- vcov(rm1, cov=".vcov.avar1", complete=FALSE))
## instead, must refit
rm1. <- update(rm1, control = within(ctrl, cov <- ".vcov.avar1"))
vr1.NA<- vcov(rm1., complete=NA)
vr1.T <- vcov(rm1., complete=TRUE)
vr1.F <- vcov(rm1., complete=FALSE)
stopifnot(identical(vr1.F, vr1.NA), # in this case
identical(dim(vr1.F), dim(vr1.T) - 3L), dim(vr1.F) == 12, isSymmetric(vr1.T),
identical(rownames(vr1.F), rownames(vr1.T)[ok1]),
all.equal(cln(vr1.F), vr1.T[ok1,ok1], tol=1e-15))
if(FALSE) ## ERROR "exact singular" (probably *NOT* to fix, as TRUE/FALSE do work !)
vr2.NA<- vcov(rm2, cov=".vcov.avar1", complete=NA) # "almost singular" warning
vr2.T <- vcov(rm2, cov=".vcov.avar1", complete=TRUE)
vr2.F <- vcov(rm2, cov=".vcov.avar1", complete=FALSE)
stopifnot(TRUE, # identical(dim(vr2.NA), dim(vr2.T)),
identical(dim(vr2.F), dim(vr2.T) - 3L), dim(vr2.F) == 12,
identical(rownames(vr2.F), rownames(vr1.F)),
identical(rownames(vr2.T), rownames(vr1.T)),
all.equal(cln(vr2.F), vr2.T[ok1,ok1], tol=1e-15))
## Hmm, the supposedly heteroscedastic-robust estimates *are* very different:
all.equal(vcov(cm0), vcovC(rm0, cov = ".vcov.avar1"), check.attributes=FALSE) # rel.diff. 0.5367564
if(FALSE) # does not make sense
all.equal(vcov(cm1), vcovC(rm1, cov = ".vcov.avar1"), check.attributes=FALSE)
all.equal(vcov(cm2), vcovC(rm2, cov = ".vcov.avar1"), check.attributes=FALSE) # rel.diff. 0.5757642
## Null fits (rank(X)==0) are tested in NAcoef.R
## testing weight=0 bug
lmrob(y ~ x3, data, weights=weights)
|