1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
anova.lmrob <- function(object, ..., test = c("Wald", "Deviance"), verbose=getOption("verbose"))
{
dotargs <- list(...)
named <- if (is.null(names(dotargs)))
logical(length(dotargs))# FALSE
else (names(dotargs) != "")
if (any(named))
warning("the following arguments to 'anova.lmrob' are invalid and \n",
"dropped: ",
pasteK(deparse(dotargs[named])))
dotargs <- dotargs[!named]
test <- match.arg(test)
## method argument has to end with 'M' (req. for refitting)
if (test == "Deviance" && !grepl('M$', object$control$method))
stop("For test = 'Deviance', the estimator chain has to end with 'M'")
if (length(dotargs) > 0) {
length.tl <- function(x) length(attr(terms(x),"term.labels"))
isFormula <- vapply(dotargs, inherits, NA, what = "formula")
h <- vapply(dotargs, length.tl, 0L)
if(all(isFormula)) {
if(any(h >= length.tl(object)))
stop("The first object does not contain the largest model")
modform <- dotargs
}
else {
if(verbose) message("All models are refitted except the largest one")
if(any(h >= length.tl(object))) {
h <- c(length.tl(object),h)
dotargs <- c(list(object), dotargs)[order(h, decreasing = TRUE)]
object <- dotargs[[1]]
if(!inherits(object, "lmrob"))
stop("anova.lmrob() only works for 'lmrob' objects")
dotargs <- dotargs[-1]
}
modform <- lapply(dotargs, formula)
}
initCoef <- lapply(dotargs, coef)
return(anovaLmrobList(object, modform, initCoef, test = test))
}
##
## "'Anova Table' for a single model object
stop("'Anova Table' for a single model not yet implemented")
}
anovaLmrobList <- function (object, modform, initCoef, test)
{
responses <- as.character(lapply(modform, function(x) deparse(x[[2]])))
if (!all(responses == deparse(formula(object)[[2]])))
stop("Not the same response used in the fitted models")
##
nobs <- length(object$residuals)
nmodels <- length(modform) + 1
tbl <- matrix(rep(NA, nmodels*4), ncol = 4)
tbl[1,1] <- nobs[1] - length(coef(object))
obj0 <- object
for(k in 2:nmodels) {
obj0 <- anovaLmrobPair(obj0, modform[[k-1]], initCoef[[k-1]],
test = test)
tbl[k,] <- obj0$anova
obj0$scale <- object$scale
}
## return
dimnames(tbl) <- list(1:nmodels,
c("pseudoDf", "Test.Stat", "Df", "Pr(>chisq)"))
title <- switch(test,
Wald = "Robust Wald Test Table",
Deviance = "Robust Deviance Table",
stop("invalid 'test'"))
variables <- c(list(formula(terms(object))), modform)
topnote <- paste("Model ", format(1:nmodels), ": ", variables,
sep = "", collapse = "\n")
note <- paste("Largest model fitted by lmrob(), i.e.",
object$control$method)
## paste("Models fitted by method '", methods[1], "'", sep="")
structure(as.data.frame(tbl), heading = c(title, "", topnote, note,""),
class = c("anova", "data.frame"))
}
anovaLmrobPair <- function(FMfit, reduced.model, initCoef, test)
{
## 'FM': full model; 'RM' : reduced model
X <- model.matrix(FMfit, data = FMfit$model)
FMod <- FMfit$qr$pivot[1:FMfit$rank]
asgn <- attr(X, "assign")
FMt <- terms(FMfit)
RMt <- terms(reduced.model)
FMtl <- attr(FMt, "term.labels")
RMtl <- attr(RMt, "term.labels")
RMnumtl <- match(RMtl , FMtl, nomatch = -1)
if(attr(RMt, "intercept") == 1) RMnumtl <- c(0, RMnumtl)
if(any(is.na(match(RMnumtl, unique(asgn)))))
stop("Models are not nested!")
RMod0 <- seq(along = asgn)[!is.na(match(asgn, RMnumtl))]
RMod <- intersect(RMod0, FMod)
if (length(FMod) == length(RMod))
stop("Models are not strictly nested")
H0ind <- which(!FMod %in% RMod)
H0coef <- coef(FMfit)[H0ind]
df <- length(H0coef)
pp <- FMfit$rank
switch(test, "Wald" = {
t.cov <- FMfit$cov
t.chisq <- sum(H0coef * solve(t.cov[H0ind, H0ind], H0coef))
## return
c(FMfit,
list(anova = c(nrow(X)-pp+df, t.chisq, df,
pchisq(as.vector(t.chisq), df = df, lower.tail = FALSE))))
},
"Deviance" = {
y <- FMfit$residuals + FMfit$fitted.values
s0 <- FMfit$scale
fCtrl <- FMfit$control
psi <- function(u, deriv = 0)
Mpsi(u, cc = fCtrl$tuning.psi,
psi = fCtrl$psi, deriv)
iC <-
if(is.null(initCoef)) {
res <- as.vector(y - X[,RMod] %*% FMfit$coef[RMod])
psiRes <- psi(res/s0)
if(sum(abs(psiRes) < 1e-08) > 0.6*nrow(X))
stop("Please fit the nested models by lmrob")
FMfit$coef[RMod]
} else {
idx <- !is.na(initCoef)
if (any(idx != RMod0 %in% RMod))
stop("NA coefs in full and reduced model do not match")
initCoef[idx]
}
RMfit <- lmrob..M..fit(x = X[,RMod, drop=FALSE], y = y,
beta.initial = iC, scale = s0,
control = fCtrl, method = fCtrl$method)
FMres <- as.vector(y - X[,FMod] %*% FMfit$coef[FMod])
RMres <- RMfit$resid ## as.vector(y - X[,RMod] %*% RMfit$coef)
FM_sRho <- sum(psi(FMres/s0, deriv = -1))
RM_sRho <- sum(psi(RMres/s0, deriv = -1))
tauStar <- mean(psi(FMres/s0, deriv = 1)) /
mean(psi(FMres/s0)^2, deriv = 0)
t.chisq <- 2*tauStar*(RM_sRho - FM_sRho)
## return
c(RMfit,
list(anova = c(nrow(X)-pp+df, t.chisq, df,
pchisq(as.vector(t.chisq), df = df, lower.tail = FALSE))))
},
stop("test ", test, " not yet implemented"))
} ## anovaLmrobPair
|