1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
### -*- mode: R ; delete-old-versions: never -*-
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, a copy is available at
## http://www.r-project.org/Licenses/
### From package 'Biobase' (has only rowMedians + rowQ) / 'matrixStats'
### MM: all type checking now in C
## --- TODO: implement hasNA=NA ==> do check maybe differently than = TRUE
## --> ../src/rowMedians.c + ../src/rowMedians_TYPE-template.h
colMedians <- function(x, na.rm=FALSE, hasNA=TRUE, keep.names=TRUE)
.Call(R_rowMedians, x, na.rm, hasNA, FALSE, keep.names)
rowMedians <- function(x, na.rm=FALSE, hasNA=TRUE, keep.names=TRUE)
.Call(R_rowMedians, x, na.rm, hasNA, TRUE, keep.names)
### Maria Anna di Palma, without consistency factor 15.11.2014
### Fixes by Valentin Todorov
### Martin Maechler: added mad() consistency factor, 27.11.2014
### new name, class; more compatible to 'covMcd'
covComed <- function (X, n.iter = 2, reweight = FALSE,
tolSolve = control$ tolSolve,# had 1e-10 hardwired {now 1e-14 default}
trace = control$ trace,
wgtFUN = control$ wgtFUN,
control = rrcov.control())
{
## ATTENTION ##
## Med(abs(X))^2=Med(X*X) only if the number of rows is odd
d <- dim(X <- as.matrix(X))
n <- d[1]
p <- d[2]
if(is.character(wgtFUN))
wgtFUN <- .wgtFUN.covComed[[wgtFUN]](p=p, n=n, control)
if(!is.function(wgtFUN))
stop("'wgtFUN' must be a function or a string specifying such a function")
madX <- apply(X, 2, mad)
I.mad <- 1/madX
rho <- I.mad * COM(X) * rep(I.mad, each = p)
## better than
## D <- diag(1/madX)
## rho <- D %*% COM(X) %*% t(D)
U <- svd(rho, p, nv = 0L)$u
## DD <- diag(madX)
## Q <- DD %*% U
## invQ <- solve(Q) ## == t(U) %*% D -- since U is orthogonal!
t.inv.Q <- I.mad * U # = t(solve(Q)) = t(t(U) * D) == t(D) U = D U
Z <- X %*% t.inv.Q ## much faster than for (i in 1:n) Z[i,] <- invQ %*% X[i,]
out <- comedian(rho, Z, X)
## Mahalanobis distance
for(it in seq_len(n.iter))# allow n.iter = 0
out <- comedian(out$S., out$Z, X)
mm <- colMedians(out$Z)
mx <- drop(out$Q %*% mm)
## MM: These are "raw" distances compared to covMcd()
mah <- mahalanobis(X, mx, out$S., tol = tolSolve)
## compute weights
weights <- wgtFUN(mah)
covW <- cov.wt(X, wt=weights)[c("cov", "center", "n.obs")]
covW$weights <-
if(reweight) { ## above 'mah' = 'raw.mah' .. ==> allow another reweighting as in covMcd()
covW$raw.weights <- weights
covW$mah <- mahalanobis(X, covW$center, covW$cov, tol = tolSolve)
wgtFUN(mah)
} else # no re-weighting
weights
structure(class = "comed",
c(list(Z = out$Z, raw.cov = out$S., raw.center = mx, raw.mah = mah,
wgtFUN=wgtFUN),
covW))
}
##' Martin Maechler's simple proposal for an *adaptive* cutoff
##' i.e., one which does *not* reject outliers in good samples asymptotically
.COM.adaptWgt.c <- function(n,p, eps = 0.2 / n^0.3) {
## default eps ==> 1-eps(n=100) ~= 0.95; 1-eps(n=10) ~= 0.90
## using upper tail:
1.4826 * qchisq(eps, p, lower.tail=FALSE) / qchisq(0.5, p)
}
## Default wgtFUN() constructors for covComed():
.wgtFUN.covComed <-
list("01.original" = function(p, ...) {
cMah <- .COM.adaptWgt.c(p=p, eps = 0.05)# 1 - eps = 0.95
function(d) as.numeric(d < median(d)*cMah) },
"01.flex" = function(p, n, control) { ## 'beta' instead of 0.95
stopifnot(is.1num(beta <- control$beta), 0 <= beta, beta <= 1)
cMah <- 1.4826 * qchisq(beta, p) / qchisq(0.5, p)
function(d) as.numeric(d < median(d)*cMah) },
"01.adaptive" = function(p, n, ...) { ## 'beta_n' instead of 0.975
cMah <- .COM.adaptWgt.c(n,p)
function(d) as.numeric(d < cMah) },
"sm1.flex" = function(p, n, control) { ## 'beta' / smooth weight
stopifnot(is.1num(beta <- control$beta), 0 <= beta, beta <= 1)
cMah <- 1.4826 * qchisq(beta, p) / qchisq(0.5, p)
function(d) smoothWgt(d / median(d), c=cMah, h = 1) },
"sm1.adaptive" = function(p, n, ...) {
cMah <- .COM.adaptWgt.c(n=n, p=p)
function(d) smoothWgt(d / median(d), c = cMah, h = 1) },
"sm2.adaptive" = function(p, n, ...) {
cMah <- .COM.adaptWgt.c(n=n, p=p)
function(d) smoothWgt(d / median(d), c = cMah, h = 2) }
)
comedian <- function (rho, Z, X)
{
p <- ncol(X)
U <- svd(rho, nv = 0L)$u
madX <- apply(X, 2, mad)
I.mad <- 1/madX
## D <- diag(madX)
## Q <- D %*% U
Q <- madX * U
## invQ <- solve(Q)
t.inv.Q <- I.mad * U # = t(solve(Q)) = t(t(U) * D) == t(D) U = D U
Z <- X %*% t.inv.Q ## for (i in 1:n) Z[i,] <- invQ %*% X[i,]
madZ <- apply(Z, 2, mad)
list(Q=Q, Z=Z, S. = tcrossprod(Q * rep(madZ, each=p))) ## better than
## S. = Q %*% diag(madZ)^2 %*% t(Q)
}
COM <- function(X)
{
## Comedian *with* consistency factor. Falk(1997) was without it.
stopifnot(is.1num(p <- ncol(X)), p >= 1)
med <- colMedians(X)
Y <- sweep(X, 2L, med, `-`)
COM <- matrix(0., p,p)
madY <- numeric(p)
for(i in 1:p) {
madY[i] <- madYi <- mad(Yi <- Y[,i])
for(j in seq_len(i-1)) { # j <= i ==> madY[j] "exists"
COM[j,i] <- COM[i,j] <- median(Yi * Y[,j]) / (madYi * madY[j])
## COM[i,j] <- median((Y[,i])*(Y[,j]))
## COM[i,j] <- (1.4826^2)*median((Y[,i])*(Y[,j]))
}
## j == i :
COM[i,i] <- median(Yi^2) / (madYi^2)
}
## return [ 1.4826 = formals(mad)$constant = consistency factor of mad()]
1.4826^2 * COM
}
|