File: comedian.R

package info (click to toggle)
robustbase 0.99-7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,596 kB
  • sloc: fortran: 3,245; ansic: 3,243; sh: 15; makefile: 2
file content (164 lines) | stat: -rw-r--r-- 6,159 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
### -*- mode: R ; delete-old-versions: never -*-

## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, a copy is available at
## http://www.r-project.org/Licenses/

### From package 'Biobase' (has only rowMedians + rowQ) / 'matrixStats'
### MM: all type checking now in C
## ---  TODO: implement  hasNA=NA ==> do check maybe differently than = TRUE
##  --> ../src/rowMedians.c +  ../src/rowMedians_TYPE-template.h
colMedians <- function(x, na.rm=FALSE, hasNA=TRUE, keep.names=TRUE)
  .Call(R_rowMedians, x, na.rm, hasNA, FALSE, keep.names)

rowMedians <- function(x, na.rm=FALSE, hasNA=TRUE, keep.names=TRUE)
  .Call(R_rowMedians, x, na.rm, hasNA, TRUE, keep.names)




### Maria Anna di Palma, without consistency factor 15.11.2014
### Fixes by Valentin Todorov
### Martin Maechler: added mad() consistency factor, 27.11.2014
###     new name, class; more compatible to 'covMcd'

covComed <- function (X, n.iter = 2, reweight = FALSE,
                      tolSolve = control$ tolSolve,# had 1e-10 hardwired {now 1e-14 default}
                      trace = control$ trace,
                      wgtFUN = control$ wgtFUN,
                      control = rrcov.control())
{
    ## ATTENTION ##
    ## Med(abs(X))^2=Med(X*X) only if the number of rows is odd
    d <- dim(X <- as.matrix(X))
    n <- d[1]
    p <- d[2]

    if(is.character(wgtFUN))
	wgtFUN <- .wgtFUN.covComed[[wgtFUN]](p=p, n=n, control)
    if(!is.function(wgtFUN))
	stop("'wgtFUN' must be a function or a string specifying such a function")

    madX <- apply(X, 2, mad)
    I.mad <- 1/madX
    rho <- I.mad * COM(X) * rep(I.mad, each = p)
    ## better than
    ## D <- diag(1/madX)
    ## rho <- D %*% COM(X) %*% t(D)

    U <- svd(rho, p, nv = 0L)$u
    ## DD <- diag(madX)
    ## Q <- DD %*% U
    ## invQ <- solve(Q) ##  == t(U) %*% D -- since  U is orthogonal!
    t.inv.Q <- I.mad * U # = t(solve(Q)) = t(t(U) * D) == t(D) U = D U
    Z <- X %*% t.inv.Q ## much faster than for (i in 1:n) Z[i,] <- invQ %*% X[i,]
    out <- comedian(rho, Z, X)

    ## Mahalanobis distance
    for(it in seq_len(n.iter))# allow n.iter = 0
        out <- comedian(out$S., out$Z, X)

    mm <- colMedians(out$Z)
    mx <- drop(out$Q %*% mm)
    ## MM: These are "raw" distances compared to covMcd()
    mah <- mahalanobis(X, mx, out$S., tol = tolSolve)

    ## compute weights
    weights <- wgtFUN(mah)
    covW <- cov.wt(X, wt=weights)[c("cov", "center", "n.obs")]
    covW$weights <-
	if(reweight) { ## above 'mah' = 'raw.mah' .. ==> allow another reweighting as in covMcd()
	    covW$raw.weights <- weights
	    covW$mah <- mahalanobis(X, covW$center, covW$cov, tol = tolSolve)
	    wgtFUN(mah)
	} else # no re-weighting
	    weights
    structure(class = "comed",
	      c(list(Z = out$Z, raw.cov = out$S., raw.center = mx, raw.mah = mah,
		     wgtFUN=wgtFUN),
		covW))
}


##' Martin Maechler's simple proposal for an *adaptive* cutoff
##' i.e., one which does *not* reject outliers in good samples asymptotically
.COM.adaptWgt.c <- function(n,p, eps = 0.2 / n^0.3) {
    ## default eps ==>  1-eps(n=100) ~= 0.95; 1-eps(n=10) ~= 0.90
    ## using upper tail:
    1.4826 * qchisq(eps, p, lower.tail=FALSE) / qchisq(0.5, p)
}

## Default wgtFUN() constructors for covComed():
.wgtFUN.covComed <-
    list("01.original" = function(p, ...) {
	     cMah <- .COM.adaptWgt.c(p=p, eps = 0.05)# 1 - eps = 0.95
	     function(d) as.numeric(d < median(d)*cMah) },
	 "01.flex" = function(p, n, control) { ## 'beta' instead of 0.95
	     stopifnot(is.1num(beta <- control$beta), 0 <= beta, beta <= 1)
	     cMah <- 1.4826 * qchisq(beta, p) / qchisq(0.5, p)
	     function(d) as.numeric(d < median(d)*cMah) },
	 "01.adaptive" = function(p, n, ...) { ## 'beta_n' instead of 0.975
	     cMah <- .COM.adaptWgt.c(n,p)
	     function(d) as.numeric(d < cMah) },
	 "sm1.flex" = function(p, n, control) { ## 'beta' / smooth weight
	     stopifnot(is.1num(beta <- control$beta), 0 <= beta, beta <= 1)
	     cMah <- 1.4826 * qchisq(beta, p) / qchisq(0.5, p)
	     function(d) smoothWgt(d / median(d), c=cMah, h = 1) },
	 "sm1.adaptive" = function(p, n, ...) {
	     cMah <- .COM.adaptWgt.c(n=n, p=p)
	     function(d) smoothWgt(d / median(d), c = cMah, h = 1) },
	 "sm2.adaptive" = function(p, n, ...) {
	     cMah <- .COM.adaptWgt.c(n=n, p=p)
	     function(d) smoothWgt(d / median(d), c = cMah, h = 2) }
	 )


comedian <- function (rho, Z, X)
{
    p <- ncol(X)
    U <- svd(rho, nv = 0L)$u
    madX <- apply(X, 2, mad)
    I.mad <- 1/madX
    ## D <- diag(madX)
    ## Q <- D %*% U
    Q <- madX * U
    ## invQ <- solve(Q)
    t.inv.Q <- I.mad * U # = t(solve(Q)) = t(t(U) * D) == t(D) U = D U
    Z <- X %*% t.inv.Q ## for (i in 1:n)  Z[i,] <- invQ %*% X[i,]
    madZ <- apply(Z, 2, mad)
    list(Q=Q, Z=Z, S. = tcrossprod(Q * rep(madZ, each=p))) ## better than
    ##             S. = Q %*% diag(madZ)^2 %*% t(Q)
}

COM <- function(X)
{
    ## Comedian *with* consistency factor.  Falk(1997) was without it.

    stopifnot(is.1num(p <- ncol(X)), p >= 1)
    med <- colMedians(X)
    Y <- sweep(X, 2L, med, `-`)
    COM <- matrix(0., p,p)
    madY <- numeric(p)
    for(i in 1:p) {
        madY[i] <- madYi <- mad(Yi <- Y[,i])
        for(j in seq_len(i-1)) { # j <= i ==> madY[j] "exists"
            COM[j,i] <- COM[i,j] <- median(Yi * Y[,j]) / (madYi * madY[j])
            ## COM[i,j] <- median((Y[,i])*(Y[,j]))
            ## COM[i,j] <- (1.4826^2)*median((Y[,i])*(Y[,j]))
        }
        ## j == i :
        COM[i,i] <- median(Yi^2) / (madYi^2)
    }
    ## return [ 1.4826 = formals(mad)$constant = consistency factor of mad()]
    1.4826^2 * COM
}