1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
#### This is from the R package
####
#### rrcov : Scalable Robust Estimators with High Breakdown Point
####
#### by Valentin Todorov
### This program is free software; you can redistribute it and/or modify
### it under the terms of the GNU General Public License as published by
### the Free Software Foundation; either version 2 of the License, or
### (at your option) any later version.
###
### This program is distributed in the hope that it will be useful,
### but WITHOUT ANY WARRANTY; without even the implied warranty of
### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
### GNU General Public License for more details.
###
### You should have received a copy of the GNU General Public License
### along with this program; if not, a copy is available at
## http://www.r-project.org/Licenses/
## I would like to thank Peter Filzmoser for providing the initial code of
## this function.
plot.mcd <-
function(x,
which=c("all", "dd","distance","qqchi2","tolEllipsePlot","screeplot"),
classic= FALSE,
ask = (which[1] == "all" && dev.interactive()),
cutoff = NULL, id.n, labels.id = rownames(x$X), cex.id = 0.75,
label.pos = c(4,2), tol = 1e-7, ...)
{
if (!inherits(x, "mcd"))
stop("Use only with 'mcd' objects")
covPlot(x$X, which= which, classic= classic, ask= ask, m.cov = x,
cutoff= cutoff, id.n = id.n, labels.id, cex.id = cex.id,
label.pos = label.pos, tol = tol, ...)
}
covPlot <-
function(x, which = c("all", "dd", "distance", "qqchi2",
"tolEllipsePlot", "screeplot"),
classic = FALSE,
ask = (which[1] == "all" && dev.interactive()),
m.cov = covMcd(x), cutoff = NULL,
id.n, labels.id = rownames(x), cex.id = 0.75,
label.pos = c(4,2), tol = 1e-7, ...)
{
##@bdescr
## Make plots based on the covariance structure of a data set:
## dd - distance-distance plot: Robust distances versus
## Mahalanobis distances
## distance - a plot of the robust distances
## qqchi2 - a qq-plot of the robust distances versus the
## quantiles of the chi-squared distribution
## tolEllipsePlot- a tolerance ellipse
## screeplot- a screeplot of the eigenvalues ov the covariance matrix
##
## Distance Plot:
## Draw a Distance-Distance Plot: Plots the robust distances
## versus the classical Mahalanobis distances as introduced by
## Rousseeuw, P. J., and van Zomeren, B. C. (1990). Unmasking
## Multivariate Outliers and Leverage Points. Journal of the American
## Statistical Association, 85, 633-639.
##
## The dashed line is the set of points where the robust distance is
## equal to the classical distance.
## The horizontal and vertical dotted lines are drawn at values equal cutoff
## which defaults to square root of the 97.5% quantile of a chi-squared
## distribution with p degrees of freedom. Points beyond these lines can
## be considered outliers.
##
##@edescr
##
##@in x : [matrix] A data.frame or matrix, n > 2*p
##@in which : [character] A plot option, one of:
## classic: index plot of the classical mahalanobis distances
## robust : index plot of the robust mahalanobis distances
## dd : distance-distance plot
## index : parallel index plot of classical and robust distances
## all : all three plots --- this is the default
##
##@in classic : [logical] If true the classical plot will be displayed too
## default is classic = FALSE
##@in m.cov : [list] An object like class "mcd" - only its attributes
## center and cov will be used
##@in cutoff : [number] The cutoff value for the distances
##@in id.n : [number] number of observations to be identified with a label.
## Defaults to the number of observations with
## distance larger than cutoff -- missing is propagated
##@in tol : [number] tolerance to be used for computing the inverse
## - see 'solve'. defaults to 1e-7
## NOTE: The default tolerance 1e-7, will not work for some example
## data sets, like milk or aircraft
myscreeplot <- function(x, m.cov = covMcd(x))
{
erob <- eigen(m.cov$cov,symmetric = TRUE, only.values = TRUE)$values
eclass <- eigen(var(x), symmetric = TRUE, only.values = TRUE)$values
leg.txt <- c("Robust", "Classical")
leg.col <- c("green", "red")
leg.pch <- c(1,24)
leg.lty <- c("solid", "dotted")
eall <- c(erob,eclass)
ylim <- c( min(eall), max(eall))
plot(erob, ylim=ylim, ylab="Eigenvalues", xlab="Index", type="n")
legend("topright", leg.txt, pch = leg.pch, lty = leg.lty, col = leg.col)
lines(erob, type="o", pch= leg.pch[1], lty= leg.lty[1], col=leg.col[1])
lines(eclass, type="o", pch= leg.pch[2], lty= leg.lty[2], col=leg.col[2])
title(main = "Scree plot")
}
mydistplot <- function(x, cutoff, classic = FALSE, id.n) {
## Index Plot:
## Plot the vector x (robust or mahalanobis distances) against
## the observation indexes. Identify by a label the id.n
## observations with largest value of x. If id.n is not supplied,
## calculate it as the number of observations larger than cutoff.
## Use cutoff to draw a horisontal line.
## Use classic = FALSE/TRUE to choose the label of the vertical axes
n <- length(x)
if(missing(id.n)) # maybe propagated
id.n <- length(which(x > cutoff))
ylab <- paste("Square Root of",
if(classic) "Mahalanobis" else "Robust",
"distance")
plot(x, type = "p", ylab = ylab, xlab = "Index",
main = "Distance Plot")
label(1:n, x, id.n)
abline(h = cutoff)
}
myddplot <- function(md, rd, cutoff, id.n) {
## Distance-Distance Plot:
## Plot the vector y = rd (robust distances) against
## x = md (mahalanobis distances). Identify by a label the id.n
## observations with largest rd. If id.n is not supplied, calculate
## it as the number of observations larger than cutoff. Use cutoff
## to draw a horisontal and a vertical line. Draw also a dotted line
## with a slope 1.
n <- length(md)
if(missing(id.n)) # maybe propagated
id.n <- length(which(rd > cutoff))
xlab <- "Mahalanobis distance"
ylab <- "Robust distance"
plot(md, rd, type = "p", xlab = xlab, ylab = ylab,
main = "Distance-Distance Plot")
label(md, rd, id.n)
abline(0, 1, lty = 2)
abline(v = cutoff, h = cutoff)
}
qqplot <- function(x, p, cutoff = sqrt(qchisq(0.975, p)),
classic = FALSE, id.n)
{
## Chisquare QQ-Plot:
## Plot the vector x (robust or mahalanobis distances) against
## the square root of the quantiles of the chi-squared distribution
## with p degrees of freedom.
## Identify by a label the id.n observations with largest value of x.
## If id.n is not supplied, calculate it as the number of observations
## larger than cutoff.
## Use classic = FALSE/TRUE to choose the label of the vertical axes
## parameters and preconditions
n <- length(x)
if(missing(id.n)) # maybe propagated
id.n <- length(which(x > cutoff))
qq <- sqrt(qchisq(((1:n)-1/3)/(n+1/3), p))
x <- sort(x, index.return = TRUE)
ix <- x$ix
x <- x$x
ylab <- paste(if(classic) "Mahalanobis" else "Robust", "distance")
xlab <- "Square root of the quantiles of the chi-squared distribution"
plot(qq, x, xlab = xlab, ylab = ylab, main = "Chisquare QQ-Plot")
label(qq, x, id.n, ind = (n-id.n+1):n, labs = ix)
abline(0, 1, lty = 2)
} ## end{qqplot}
label <- function(x, y, id.n,
ind = sort.list(y, decreasing = TRUE)[1:id.n],
labs = labels.id, adj.x = TRUE)
{
if(id.n > 0) { ## label the largest 'id.n' y-values
labpos <-
if(adj.x) label.pos[1+ as.numeric(x > mean(range(x)))] else 3
text(x[ind], y[ind], labs[ind],
cex = cex.id, xpd = TRUE, pos = labpos, offset = 0.25)
}
}
## Begin{covPlot} -- arguments checking of preconditions
if(is.data.frame(x))
x <- data.matrix(x)
if(!is.matrix(x) || !is.numeric(x))
stop("x is not a numeric dataframe or matrix.")
n <- dim(x)[1]
p <- dim(x)[2]
if(!is.numeric(m.cov$center) || !is.numeric(m.cov$cov))
stop("argument 'm.cov' must have numeric components 'center' and 'cov'")
if(length(m.cov$center) != p)
stop("Data set and provided center have different dimensions!")
## ?covPlot says it only needs 'cov' and 'center'
## Maybe should be smarter and *test* for non-singularity
if(is.numeric(m.cov$crit) && m.cov$crit == 0)
stop( "The covariance matrix is singular!")
if(is.null(cutoff))
cutoff <- sqrt(qchisq(0.975, p))
## now "more in line" with plot.lm()'s labeling:
if(is.null(labels.id))
labels.id <- as.character(1:n)
if(!missing(id.n) && !is.null(id.n)) {
id.n <- as.integer(id.n)
if(id.n < 0 || id.n > n)
stop(sQuote("id.n")," must be in {1,..,",n,"}")
}
which <- match.arg(which)
md <- sqrt(mahalanobis(x, colMeans(x), var(x), tol = tol))
rd <- sqrt(mahalanobis(x, m.cov$center, m.cov$cov, tol = tol))
## *Never* here : par(mfrow = c(1,1), pty = "m")
op <- if (ask) par(ask = TRUE) else list()
on.exit(par(op))
if(which == "all" || which == "distance") {
if(classic) {
opr <- if(prod(par("mfrow")) == 1)
par(mfrow = c(1,2), pty = "m") else list()
}
## index plot of mahalanobis distances:
mydistplot(rd, cutoff, id.n = id.n)
if(classic) {
## index plot of robust distances:
mydistplot(md, cutoff, classic = TRUE, id.n = id.n)
par(opr)
}
}
if(which == "all" || which == "dd") {
myddplot(md, rd, cutoff = cutoff, id.n = id.n) # distance-distance plot
}
if(which == "all" || which == "qqchi2") {
if(classic) {
opr <- if(prod(par("mfrow")) == 1)
par(mfrow = c(1,2), pty = "m") else list()
}
## qq-plot of the robust distances versus the
## quantiles of the chi-squared distribution
qqplot(rd, p, cutoff = cutoff, id.n = id.n)
if(classic) { ## qq-plot of the mahalanobis distances
qqplot(md, p, cutoff = cutoff, classic = TRUE, id.n = id.n)
par(opr)
}
}
if(which == "all" || which == "tolEllipsePlot") {
if(p == 2)
tolEllipsePlot(x, m.cov = m.cov, cutoff = cutoff,
id.n = id.n, classic = classic, tol = tol)
else if(which != "all")
warning("For tolerance ellipses the dimension 'p' must be 2!")
}
if(which == "all" || which == "screeplot") {
myscreeplot(x, m.cov = m.cov)
}
} ## end { covPlot }
## ddplot <- function(x,...) {
## covPlot(x, which="dd", ...)
## }
## distplot <- function(x,...) {
## covPlot(x, which="distance", ...)
## }
## chi2qqplot <- function(x,...) {
## covPlot(x, which="qqchi2", ...)
## }
## ellipse() exists in other packages
## ellipse <- function(x,...) {
## covPlot(x, which="tolEllipsePlot", ...)
## }
|