File: glmrobMqle.R

package info (click to toggle)
robustbase 0.99-7-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,596 kB
  • sloc: fortran: 3,245; ansic: 3,243; sh: 15; makefile: 2
file content (545 lines) | stat: -rw-r--r-- 17,849 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
#### Mallows quasi-likelihood estimator of E. Cantoni and E. Ronchetti (2001)
#### based originally on Eva Cantoni's S-plus code "robGLM"

## FIXME{MM}: All these expression()s  and  eval()s -- once were really slick and fast.
## -----  Nowadays, with 'codetools' and the byte-compiler, they "just don't fit anymore"
## including those globalVariables() {also in other places!}:
globalVariables(c("residP", "residPS", "dmu.deta", "snu"), add=TRUE)

##' @title
##' @param wts a character string \dQuote{weights.on.x} specifying how weights should be computed
##'            *or* a numeric vector of final weights in which case nothing is computed.
##' @param X  n x p  design matrix aka model.matrix()
##' @param intercept logical, if true, X[,] has an intercept column which should
##'                  not be used for rob.wts
##' @return n-vector of non-negative weights
##' @author Martin Maechler
robXweights <- function(wts, X, intercept=TRUE) {
    stopifnot(length(d <- dim(X)) == 2, is.logical(intercept))
    nobs <- d[1]
    if(d[2]) { ## X has >= 1 column, and hence there *are* coefficients in the end
        if(is.character(wts)){
	    switch(wts,
		   "none" = rep.int(1, nobs),
		   "hat" = wts_HiiDist(X)^2, # = (1 - Hii)^2
		   "robCov" = wts_RobDist(X, intercept, covFun = MASS::cov.rob),
		   ## MCD is currently problematic: many singular subsamples
		   "covMcd" = wts_RobDist(X, intercept, covFun = covMcd),
		   stop("Weighting method", sQuote(wts),
			" is not implemented"))
	}
	## (new; 2013-07-05; -> robustbase 0.9-9)
	else if(is.list(wts)) {
	    if(length(wts) == 1 && is.function(covF <- wts[[1]]))
		wts_RobDist(X, intercept, covFun = covF)
	    else stop("if a list, weights.on.x must contain a covariance function such as covMcd()")
	}
	else if(is.function(wts)) {
	    wts(X, intercept)
	}
	else {
	    if(!is.numeric(wts) || length(wts) != nobs)
		## FIXME: "when not a string, a list, or a function, then ..."
		stop(gettextf("weights.on.x needs %d none-negative values",
			      nobs), domain=NA)
            if(any(wts) < 0)
                stop("All weights.on.x must be none negative")
        }
    }
    else ## p = ncoef == 0 {maybe intercept, but that's not relevant here}
        rep.int(1,nobs)
}


##' @param intercept logical, if true, X[,] has an intercept column which should
##'                  not be used for rob.wts
glmrobMqle <-
    function(X, y, weights = NULL, start = NULL, offset = NULL,
	     family, weights.on.x = "none",
	     control = glmrobMqle.control(), intercept = TRUE,
             trace = FALSE)
{
    ## To DO:
    ## o weights are not really implemented as *extra* user weights; rather as "glm-weights"
    ## o offset is not fully implemented (really? -- should have test case!)

    if(!is.matrix(X)) X <- as.matrix(X)
## never used:
##     xnames <- dimnames(X)[[2]]
##     ynames <- if (is.matrix(y)) rownames(y) else names(y)
    nobs <- NROW(y)
    stopifnot(nobs == nrow(X))
    if (is.null(weights))
	weights <- rep.int(1, nobs)
    else if(any(weights <= 0))
	stop("All weights must be positive")
    if (is.null(offset))
	offset <- rep.int(0, nobs) else if(!all(offset==0))
	    warning("'offset' not fully implemented")
    variance <- family$variance
    linkinv <- family$linkinv
    if (!is.function(variance) || !is.function(linkinv))
	stop("illegal 'family' argument")
    mu.eta <- family$mu.eta
    if (is.null(valideta <- family$valideta)) valideta <- function(eta) TRUE
    if (is.null(validmu	 <- family$validmu))  validmu <-  function(mu) TRUE

    ncoef <- ncol(X)
    w.x <- robXweights(weights.on.x, X=X, intercept=intercept)

### Initializations
    stopifnot(control$maxit >= 1, (tcc <- control$tcc) >= 0)

    ## note that etastart and mustart are used to make 'family$initialize' run
    etastart <- NULL;  mustart <- NULL
    ## note that 'weights' are used and set by binomial()$initialize !
    eval(family$initialize) ## --> n, mustart, y and weights (=ni)
    ni <- as.vector(weights)# dropping attributes for computation
    ##
    if(is.null(start))
	start <- glm.fit(x = X, y = y, weights = weights, offset = offset,
			 family = family)$coefficients
    if(any(ina <- is.na(start))) {
	cat("initial start 'theta' has NA's; eliminating columns X[, j];",
	    "j = ", pasteK(which(ina)),"\n")
	theta.na <- start
	X <- X[, !ina, drop = FALSE]
	start <- glm.fit(x = X, y = y, weights = weights, offset = offset,
			 family = family)$coefficients
	if(any(is.na(start)))
	    stop("start 'theta' has still NA's .. badly singular x\n")
	## FIXME
	ncoef <- length(start)
    }

    thetaOld <- theta <- as.vector(start) # as.v*(): dropping attributes
    eta <- as.vector(X %*% theta)
    mu <- linkinv(eta) # mu estimates pi (in [0,1]) at the binomial model
    if (!(validmu(mu) && valideta(eta)))
	stop("Cannot find valid starting values: You need help")
    ##
    switch(family$family,
	   "binomial" = {
	       Epsi.init <- EpsiBin.init
	       Epsi <- EpsiBin
	       EpsiS <- EpsiSBin
	       Epsi2 <- Epsi2Bin
               phiEst <- phiEst.cl <- 1
	   },
	   "poisson" = {
	       Epsi.init <- EpsiPois.init
	       Epsi <- EpsiPois
	       EpsiS <- EpsiSPois
	       Epsi2 <- Epsi2Pois
               phiEst <- phiEst.cl <- expression({1})
	   },
           "gaussian" = {
               Epsi.init <- EpsiGaussian.init
               Epsi <- EpsiGaussian
               EpsiS <- EpsiSGaussian
               Epsi2 <- Epsi2Gaussian
               phiEst.cl <- phiGaussianEst.cl
               phiEst <- phiGaussianEst
           },
          "Gamma" = { ## added by ARu
             Epsi.init <- EpsiGamma.init
             Epsi <- EpsiGamma
             EpsiS <- EpsiSGamma
             Epsi2 <- Epsi2Gamma
             phiEst.cl <- phiGammaEst.cl
             phiEst <- phiGammaEst
           },
           ## else
           stop(gettextf("family '%s' not yet implemented", family$family),
                domain=NA)
	   )

    sV <- NULL # FIXME workaround for codetools

    comp.V.resid <- expression({
	Vmu <- variance(mu)
	if (any(is.na(Vmu)))  stop("NAs in V(mu)")
	if (any(Vmu == 0))    stop("0s in V(mu)")
	sVF <- sqrt(Vmu)   # square root of variance function
	residP <- (y - mu)* sni/sVF  # Pearson residuals
    })

    comp.scaling <- expression({
      sV <- sVF * sqrt(phi)
      residPS <- residP/sqrt(phi) # scaled Pearson residuals
    })

    comp.Epsi.init <- expression({
	## d mu / d eta :
	dmu.deta <- mu.eta(eta)
	if (any(is.na(dmu.deta))) stop("NAs in d(mu)/d(eta)")
	## "Epsi init" :
	H <- floor(mu*ni - tcc* sni*sV)
	K <- floor(mu*ni + tcc* sni*sV)
	eval(Epsi.init)
    })


### Iterations

    if(trace && ncoef) {
        cat("Initial theta: \n")
        local({names(theta) <- names(start); print(theta) })

        digits <- max(1, getOption("digits") - 5)
	w.th.1 <- 6+digits # width of one number; need 8 for 2 digits: "-4.8e-11"
	width.th <- ncoef*(w.th.1 + 1) - 1
	cat(sprintf("%3s | %*s | %12s\n",
		    "it", width.th, "d{theta}", "rel.change"))
	mFormat <- function(x, wid) {
	    r <- formatC(x, digits=digits, width=wid)
	    sprintf("%*s", wid, sub("e([+-])0","e\\1", r))
	}
    }

    sni <- sqrt(ni)
    eval(comp.V.resid) #-> (Vmu, sVF, residP)
    phi <- eval(phiEst.cl)
    ## Determine the range of phi values based on the distribution of |residP|
    Rphi <- c(1e-12, 3*median(abs(residP)))^2
    conv <- FALSE
    if(ncoef) for (nit in 1:control$maxit) {
        eval(comp.scaling) #-> (sV, residPS)
        eval(comp.Epsi.init)
	## Computation of alpha and (7) using matrix column means:
	cpsi <- pmax.int(-tcc, pmin.int(residPS,tcc)) - eval(Epsi)
	EEq <- colMeans(cpsi * w.x * sni/sV * dmu.deta * X)
	##
	## Solve  1/n (t(X) %*% B %*% X) %*% delta.coef	  = EEq
	DiagB <- eval(EpsiS) /(sni*sV) * w.x * (ni*dmu.deta)^2
        if(any(n0 <- ni == 0)) DiagB[n0] <- 0 # instead of NaN
	Dtheta <- solve(crossprod(X, DiagB*X)/nobs, EEq)
	if (any(!is.finite(Dtheta))) {
	    warning("Non-finite coefficients at iteration ", nit)
	    break
	}
	theta <- thetaOld + Dtheta
	eta <- as.vector(X %*% theta) + offset
	mu <- linkinv(eta)

        ## estimation of the dispersion parameter
        eval(comp.V.resid)
        phi <- eval(phiEst)

	## Check convergence: relative error < tolerance
	relE <- sqrt(sum(Dtheta^2)/max(1e-20, sum(thetaOld^2)))
	conv <- relE <= control$acc
        if(trace) {
            cat(sprintf("%3d | %*s | %12g\n", nit, width.th,
                        paste(mFormat(Dtheta, w.th.1),
                              collapse=" "), relE))
        }
	if(conv)
	    break
	thetaOld <- theta
    } ## end of iteration
    else { ## ncoef == 0
	conv <- TRUE
	nit <- 0
    }
    if (!conv)
	warning("Algorithm did not converge")

    eps <- 10 * .Machine$double.eps
    switch(family$family,
	   "binomial" = {
	       if (any(mu/weights > 1 - eps) || any(mu/weights < eps))
		   warning("fitted probabilities numerically 0 or 1 occurred")
	   },
	   "poisson" = {
	       if (any(mu < eps))
		   warning("fitted rates numerically 0 occurred")
	   })

    eval(comp.V.resid) #-> (Vmu, sVF, residP)
    eval(comp.scaling) #-> (sV, residPS)

    ## Estimated asymptotic covariance of the robust estimator
    if(ncoef) {
	eval(comp.Epsi.init)
	alpha <- colMeans(eval(Epsi) * w.x * sni/sV * dmu.deta * X)
	DiagA <- eval(Epsi2) / (ni*sV^2)* w.x^2* (ni*dmu.deta)^2
	matQ  <- crossprod(X, DiagA*X)/nobs - tcrossprod(alpha, alpha)

	DiagB <- eval(EpsiS) / (sni*sV)* w.x * (ni*dmu.deta)^2
        if(any(n0 <- ni == 0)) DiagB[n0] <- 0 # instead of NaN
	matM <- crossprod(X, DiagB*X)/nobs
	matMinv <- solve(matM)
	asCov <-  matMinv %*% matQ %*% matMinv / nobs
    } else { ## ncoef == 0
	matM <- matQ <- asCov <- matrix(NA_real_, 0,0)
    }

    if(any(ina)) {# put NA's back, extending theta[] to "original length"
	ok <- !ina
	theta.na[ok] <- theta ; theta <- theta.na
	## also extend the "p x p" matrices with NA's --
	##No : lm() and glm() also do *not* do this
	##No  p <- length(theta)
	##No  nm <- names(theta)
	##No  M <- matrix(NA_real_, p, p, dimnames = list(nm,nm))
	##No  Mn <- M; Mn[ok, ok] <- asCov ; asCov <- Mn
	##No  Mn <- M; Mn[ok, ok] <- matM  ; matM  <- Mn
	##No  Mn <- M; Mn[ok, ok] <- matQ  ; matQ  <- Mn
    }

    w.r <- pmin(1, tcc/abs(residPS)) # = \psi(r_i) / r_i
    names(mu) <- names(eta) <- names(residPS) # re-add after computation
    list(coefficients = theta, residuals = residP, # s.resid = residPS,
         fitted.values = mu,
	 w.r = w.r, w.x = w.x, ni = ni, dispersion = phi, cov = asCov,
         matM = matM, matQ = matQ, tcc = tcc, family = family,
         linear.predictors = eta, deviance = NULL, iter = nit, y = y,
         converged = conv)
}


## NB: X  is model.matrix() aka design matrix used; typically including an intercept
wts_HiiDist <- function(X) {
    ## Hii := diag( tcrossprod( qr.Q(qr(X)) ) ) == rowSums( qr.Q(qr(X)) ^2 ) :
    x <- qr(X)
    Hii <- rowSums(qr.qy(x, diag(1, nrow = NROW(X), ncol = x$rank))^2)
    (1-Hii)
}

##' Compute robustness weights depending on the design 'X' only,
##' using robust(ified) Mahalanobis distances.
##' This is an auxiliary function for robXweights() activated typically by
##' weights.on.x = "..." from regression functions
##' @title Compute Robust Weights based on Robustified Mahalanobis - Distances
##' @param X n x p  numeric matrix
##' @param intercept logical; should be true iff  X[,1] is a column with the intercept
##' @param covFun function for computing a \bold{robust} covariance matrix;
##'        e.g., MASS::cov.rob(), or covMcd().
##' @return n-vector of non-negative weights.
##' @author Martin Maechler
wts_RobDist <- function(X, intercept, covFun)
{
    D2 <- if(intercept) { ## X[,] has intercept column which should not be used for rob.wts
	X <- X[, -1, drop=FALSE]
	Xrc <- covFun(X)
	mahalanobis(X, center = Xrc$center, cov = Xrc$cov)
    }
    else { ## X[,]  can be used directly
	if(!is.matrix(X)) X <- as.matrix(X)
	Xrc <- covFun(X)
	S <- Xrc$cov + tcrossprod(Xrc$center)
	mahalanobis(X, center = FALSE, cov = S)
    }
    p <- ncol(X) ## E[chi^2_p] = p
    1/sqrt(1+ pmax.int(0, 8*(D2 - p)/sqrt(2*p)))
}


## MM: 'acc' seems a misnomer to me, but it's inherited from  MASS::rlm
glmrobMqle.control <-
    function(acc = 1e-04, test.acc = "coef", maxit = 50, tcc = 1.345)
{
    if (!is.numeric(acc) || acc <= 0)
	stop("value of acc must be > 0")
    if (test.acc != "coef")
	stop("Only 'test.acc = \"coef\"' is currently implemented")
    ## if (!(any(test.vec == c("coef", "resid"))))
    ##	  stop("invalid argument for test.acc")
    if (!is.numeric(maxit) || maxit <= 0)
	stop("maximum number of iterations must be > 0")
    if (!is.numeric(tcc) || tcc <= 0)
	stop("value of the tuning constant c (tcc) must be > 0")
    list(acc = acc, test.acc = test.acc, maxit = maxit, tcc = tcc)
}


### ----------------- E[ f(psi ( X ) ) ] -------------------------------

## MM: These are now expressions instead of functions
##   since 'Epsi*' and 'Epsi2*' are *always* called together
##   and 'EpsiS*' when called is always after the other two
## ==> do common computations only once in Epsi*.init  ==> more efficient!
##
##   FIXME(2): Some of these fail when Huber's "c", 'tcc' is = +Inf
##   -----    --> ../../robGLM1/R/rglm.R

## FIXME:  Do use a "robFamily", a  *list* of functions
## ------  which all have the same environment
##   ===> can get same efficiency as expressions, but better OOP


### --- Poisson -- family ---

EpsiPois.init <- expression(
{
    dpH <- dpois(H, mu); dpH1 <- dpois(H-1, mu)
    dpK <- dpois(K, mu); dpK1 <- dpois(K-1, mu)
    pHm1 <- ppois(H-1, mu) ; pH <- pHm1 + dpH # = ppois(H,*)
    pKm1 <- ppois(K-1, mu) ; pK <- pKm1 + dpK # = ppois(K,*)
    E2f <- mu*(dpH1 - dpH - dpK1 + dpK) + pKm1 - pHm1
})

EpsiPois <- expression(
{
    tcc*(1 - pK - pH) + mu*(dpH - dpK)/sV
})

Epsi2Pois <- expression(
{
    ## Calculation of E(psi^2) for the diagonal elements of A in matrix Q:
    tcc^2 * (pH + 1 - pK) + E2f
})

EpsiSPois <- expression(
{
    ## Calculation of E(psi*s) for the diagonal elements of B in the
    ## expression matrix M = 1/n t(X) %*% B %*% X:
    tcc*(dpH + dpK) + E2f / sV
})


### --- Binomial -- family ---

EpsiBin.init <- expression({
    pK <- pbinom(K, ni, mu)
    pH <- pbinom(H, ni, mu)
    pKm1 <- pbinom(K-1, pmax.int(0, ni-1), mu)
    pHm1 <- pbinom(H-1, pmax.int(0, ni-1), mu)
    pKm2 <- pbinom(K-2, pmax.int(0, ni-2), mu)
    pHm2 <- pbinom(H-2, pmax.int(0, ni-2), mu)

    ## QlV = Q / V, where Q = Sum_j (j - mu_i)^2 * P[Y_i = j]
    ## i.e.  Q =	     Sum_j j(j-1)* P[.] +
    ##		 (1- 2*mu_i) Sum_j   j	 * P[.] +
    ##		     mu_i^2  Sum_j	   P[.]
    QlV <- mu/Vmu*(mu*ni*(pK-pH) +
		   (1 - 2*mu*ni) * ifelse(ni == 1, (H <= 0)*(K >= 1), pKm1 - pHm1) +
		   (ni - 1) * mu * ifelse(ni == 2, (H <= 1)*(K >= 2), pKm2 - pHm2))
})

EpsiBin <- expression(
{
    tcc*(1 - pK - pH) +
	ifelse(ni == 1, (- (H < 0) + (K >= 1) ) * sV,
	       (pKm1 - pHm1 - pK + pH) * mu * sni/sV)
})

Epsi2Bin <- expression(
{
    ## Calculation of E(psi^2) for the diagonal elements of A in matrix Q:
    tcc^2*(pH + 1 - pK) + QlV
})

EpsiSBin <- expression(
{
    ## Calculation of E(psi*s) for the diagonal elements of B in the
    ## expression matrix M = (X' B X)/n
    mu/Vmu*(tcc*(pH - ifelse(ni == 1, H >= 1, pHm1)) +
	    tcc*(pK - ifelse(ni == 1, K > 0,  pKm1))) + ifelse(ni == 0, 0, QlV / (sni*sV))
})

### --- Gaussian -- family ---

EpsiGaussian.init <- expression({
    dc <- dnorm(tcc)
    pc <- pnorm(tcc)
})

EpsiGaussian <- expression( 0 )

EpsiSGaussian <- expression( 2*pc-1 )

Epsi2Gaussian <- expression( 2*tcc^2*(1-pc)-2*tcc*dc+2*pc-1 )

phiGaussianEst.cl <- expression(
{
    ## Classical estimation of the dispersion paramter phi = sigma^2
    sum(((y - mu)/mu)^2)/(nobs - ncoef)
})

phiGaussianEst <- expression(
{
    sphi <- mad(residP, center=0)^2
})

### --- Gamma -- family ---

Gmn <- function(t, nu) {
    ## Gm corrresponds to G * nu^((nu-1)/2) / Gamma(nu)
    snu <- sqrt(nu)
    snut <- snu+t
    r <- numeric(length(snut))
    ok <- snut > 0
    r[ok] <- {
	nu <- nu[ok]; snu <- snu[ok]; snut <- snut[ok]
	exp((nu-1)/2*log(nu) - lgamma(nu) - snu*snut + nu*log(snut))
    }
    r
}

EpsiGamma.init <- expression({

    nu <- 1/phi      ## form parameter nu
    snu <- 1/sqrt(phi) ## == sqrt (nu)

    pPtc <- pgamma(snu + c(-tcc,tcc), shape=nu, rate=snu)
    pMtc <- pPtc[1]
    pPtc <- pPtc[2]

    aux2 <- tcc*snu
    GLtcc <- Gmn(-tcc,nu)
    GUtcc <- Gmn( tcc,nu)
})

EpsiGamma <- expression( tcc*(1-pPtc-pMtc) + GLtcc - GUtcc )

EpsiSGamma <- expression( ((GLtcc - GUtcc) + snu*(pPtc-pMtc))/mu )

Epsi2Gamma <- expression({
    (tcc^2*(pMtc+1-pPtc) + (pPtc-pMtc) +
     (GLtcc*(1-aux2) - GUtcc*(1+aux2))/snu )
})


phiGammaEst.cl <- expression(
{
    ## Classical moment estimation of the dispersion parameter phi
    sum(((y - mu)/mu)^2)/(nobs-ncoef)
})

phiGammaEst <- expression(
{
    ## robust estimation of the dispersion parameter by
    ## Huber's proposal 2
    sphi <- uniroot(Huberprop2, interval=Rphi,
                    ns.resid=residP, mu=mu, Vmu=Vmu, tcc=tcc)$root
})

Huberprop2 <- function(phi, ns.resid, mu, Vmu, tcc)
{
    eval(EpsiGamma.init)
    compEpsi2 <- eval(Epsi2Gamma)
    nobs <- length(mu)
    ## return h :=
    sum(pmax.int(-tcc, pmin.int(ns.resid*snu, tcc))^2) -  nobs*compEpsi2
}

if(FALSE) ## no-eval version
Huberprop2 <- function(phi, ns.resid, mu, Vmu, tcc)
{
    nobs <- length(mu)
    nu <- 1/phi         ## form parameter  nu
    snu <- 1/sqrt(phi)  ## sqrt (nu)
    pPtc <- pgamma(snu + c(-tcc,tcc), shape=nu, rate=snu)
    pMtc <- pPtc[1]
    pPtc <- pPtc[2]

    ts <- tcc*snu
    GLtcc <- Gmn(-tcc,nu) *(1-ts)/snu
    GUtcc <- Gmn( tcc,nu) *(1+ts)/snu
    ##
    compEpsi2 <- tcc^2 + (pPtc - pMtc)*(1-tcc^2) + GLtcc - GUtcc
    ## return h :=
    sum(pmax.int(-tcc, pmin.int(ns.resid*snu, tcc))^2) -  nobs*compEpsi2
}