1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
|
## The "regularized" psi-function names:
## .R: the redescending ones:
.Mpsi.R.names <- c('bisquare', 'lqq', 'welsh', 'optimal', 'hampel', 'ggw')
## .M: the monotone ones:
.Mpsi.M.names <- c('huber')
## Note: there could be more: non-redescending, non-monotone {such as Cauchy score}
.Mpsi.names <- c(R= .Mpsi.R.names, M= .Mpsi.M.names)
##' This allows synonyms as "Tukey" *and* partial matches such as "opt" :
.regularize.Mpsi <- function(psi, redescending = TRUE) {
stopifnot(is.character(psi), length(psi) == 1)
psi <- tolower(psi)
psi <- switch(psi,
'tukey'= , 'biweight'= "bisquare",
## otherwise keep
psi)
nms <- if(redescending) .Mpsi.R.names else .Mpsi.names
if (is.na(i <- pmatch(psi, nms)))
stop(gettextf("'psi' should be one of %s",
pasteK(dQuote(c('tukey', 'biweight', nms)))),
domain = NA)
nms[i]
}
.Mpsi.tuning.defaults <- list(
'huber' = 1.345
## NB: These must be the same values as used in lmrob.tau(*, fast=TRUE), see below !
, 'bisquare' = 4.685061
, 'welsh' = 2.11
, 'ggw' = c(-0.5, 1.5, .95, NA) ## (min{slope}, b , eff, bp)
, 'lqq' = c(-0.5, 1.5, .95, NA) ## (min{slope}, b/c, eff, bp)
, 'optimal' = 1.060158
, 'hampel' = c(1.5, 3.5, 8) * 0.9016085 ## a, b, r [NB: "true" factor = 0.9014437818636579; ../misc/experi-psi-rho-funs.R]
)
.Mpsi.tuning.default <- function(psi) {
if(is.null(p <- .Mpsi.tuning.defaults[[psi]]))
stop(gettextf("invalid 'psi'=%s; possibly use .regularize.Mpsi(%s)",
psi, "psi, redescending=FALSE"), domain=NA)
p
}
.Mchi.tuning.defaults <- list(
## Here, psi must be redescending! -> 'huber' not possible
'bisquare' = 1.54764
, 'welsh' = 0.5773502
, 'ggw' = c(-0.5, 1.5, NA, .50) ## (min{slope}, b , eff, bp)
, 'lqq' = c(-0.5, 1.5, NA, .50) ## (min{slope}, b/c, eff, bp)
, 'optimal' = 0.4047
, 'hampel' = c(1.5, 3.5, 8) * 0.2119163 ## a, b, r
)
.Mchi.tuning.default <- function(psi) {
if(is.null(p <- .Mchi.tuning.defaults[[psi]]))
stop(gettextf("invalid 'psi'=%s; possibly use .regularize.Mpsi(%s)",
psi, "psi"), domain=NA)
p
}
lmrob.control <-
function(setting, seed = NULL, nResample = 500,
tuning.chi = NULL, bb = 0.5,
tuning.psi = NULL, max.it = 50,
groups = 5, n.group = 400, k.fast.s = 1L, best.r.s = 2L,
k.max = 200L, maxit.scale = 200L, k.m_s = 20L,
## ^^^^^^^^^^^ had MAX_ITER_FIND_SCALE 200 in ../src/lmrob.c
refine.tol= 1e-7,
rel.tol = 1e-7,
scale.tol = 1e-10, # new, was hardcoded to EPS_SCALE = 1e-10 in C code
solve.tol = 1e-7, # hardcoded to TOL_INVERSE 1e-7 in ../src/lmrob.c
zero.tol = 1e-10, # new, was hardcoded to EPS_SCALE = 1e-10 in C code
trace.lev = 0, # both for init.est. lmrob.S() *and* lmrob.fit
mts = 1000L,
subsampling = c("nonsingular", "simple"),
compute.rd = FALSE,
method = 'MM',
psi = 'bisquare',
numpoints = 10L, cov = NULL,
split.type = c("f", "fi", "fii"),
fast.s.large.n = 2000,
## only for outlierStats() [2014]:
eps.outlier = function(nobs) 0.1 / nobs,
eps.x = function(maxx) .Machine$double.eps^(.75)*maxx,
compute.outlier.stats = method,
warn.limit.reject = 0.5,
warn.limit.meanrw = 0.5,
...)
{
p.ok <- missing(psi) # if(p.ok) psi does not need regularization
if (!missing(setting)) {
if (setting %in% c('KS2011', 'KS2014')) {
if (missing(method)) method <- 'SMDM'
psi <- if(p.ok) 'lqq' else .regularize.Mpsi(psi) ; p.ok <- TRUE
if (missing(max.it)) max.it <- 500L
if (missing(k.max)) k.max <- 2000L
if (missing(cov) || is.null(cov)) cov <- '.vcov.w'
if (setting == 'KS2014') {
if (missing(best.r.s)) best.r.s <- 20L
if (missing(k.fast.s)) k.fast.s <- 2L
if (missing(nResample)) nResample <- 1000L
}
} else {
warning("Unknown setting '", setting, "'. Using defaults.")
}
} else {
if(p.ok && grepl('D', method)) psi <- 'lqq'
if (missing(cov) || is.null(cov))
cov <- if(method %in% c('SM', 'MM')) ".vcov.avar1" else ".vcov.w"
}
if(!p.ok) psi <- .regularize.Mpsi(psi)
subsampling <- match.arg(subsampling)
## in ggw, lqq: if tuning.{psi|chi} are non-standard, calculate coefficients:
compute.const <- (psi %in% c('ggw', 'lqq'))
if(is.null(tuning.chi))
tuning.chi <- .Mchi.tuning.default(psi)
else ## wd like to compute.const *always* -- but slightly changes KS2011/14 !!
if(compute.const)
tuning.chi <- .psi.const(tuning.chi, psi)
if(is.null(tuning.psi))
tuning.psi <- .Mpsi.tuning.default(psi)
else ## wd like to compute.const *always* -- but slightly changes KS2011/14 !!
if(compute.const)
tuning.psi <- .psi.const(tuning.psi, psi)
`class<-`(
c(list(setting = if (missing(setting)) NULL else setting,
seed = as.integer(seed), nResample=nResample, psi=psi,
tuning.chi=tuning.chi, bb=bb, tuning.psi=tuning.psi,
max.it=max.it, groups=groups, n.group=n.group,
best.r.s=best.r.s, k.fast.s=k.fast.s,
k.max=k.max, maxit.scale=maxit.scale, k.m_s=k.m_s, refine.tol=refine.tol,
rel.tol=rel.tol, scale.tol=scale.tol, solve.tol=solve.tol, zero.tol=zero.tol,
trace.lev=trace.lev, mts=mts,
subsampling=subsampling,
compute.rd=compute.rd, method=method, numpoints=numpoints,
cov=cov, split.type = match.arg(split.type),
fast.s.large.n=fast.s.large.n,
eps.outlier = eps.outlier, eps.x = eps.x,
compute.outlier.stats = sub("^MM$", "SM", compute.outlier.stats),
warn.limit.reject = warn.limit.reject,
warn.limit.meanrw = warn.limit.meanrw),
list(...)), "lmrobCtrl")
}
## base within.list, used in ../NAMESPACE :
## S3method(within, lmrobCtrl, within.list) fails unless it is in *our* namespace:
## R bug fixed in svn rev 84463 - for R 4.4.0
within.list <- within.list
print.lmrobCtrl <- function(x, ...) {
cat("lmrob.control() --> \"lmrobCtrl\" object with", length(x),"components:\n")
str(x, no.list=TRUE, ...)
invisible(x)
}
##' e.g. update(<lmrobCtrl>, maxit.scale = 400)
update.lmrobCtrl <- function(object, ...) {
stopifnot(is.list(object)
## all updating args must be named:
, length(dNms <- ...names()) == ...length()
## all updating names must exist in lmrobCtrl object
, dNms %in% names(object)
)
dots <- list(...)
if("setting" %in% dNms && !identical(object[["setting"]], dots[["setting"]]))
stop("update(*, setting = <changed setting>) is not allowed")
do.psi <- (hPsi <- "psi" %in% dNms) && object[["psi"]] != (psi <- dots[["psi"]])
if("method" %in% dNms && object[["method"]] != (method <- dots[["method"]])) {
## new method --> possibly update psi *and* cov
if(!do.psi && grepl('D', method)) {
psi <- 'lqq'
do.psi <- TRUE
}
do.cov <- any(ic <- dNms == "cov") && object[["cov"]] != (cov <- dots[["cov"]])
if (!do.cov || is.null(cov))
cov <- if(method %in% c('SM', 'MM')) ".vcov.avar1" else ".vcov.w"
object[["cov"]] <- cov # and drop from "to do":
dNms <- dNms[!ic]
dots <- dots[!ic]
}
if(do.psi) { # new psi --> update
compute.const <- (psi %in% c('ggw', 'lqq'))
if(!("tuning.chi" %in% dNms)) { # update
tuning.chi <- .Mchi.tuning.default(psi)
if(compute.const)
tuning.chi <- .psi.const(tuning.chi, psi)
object[["tuning.chi"]] <- tuning.chi
}
if(!("tuning.psi" %in% dNms)) {
tuning.psi <- .Mpsi.tuning.default(psi)
if(compute.const)
tuning.psi <- .psi.const(tuning.psi, psi)
object[["tuning.psi"]] <- tuning.psi
}
object[["psi"]] <- psi # and possibly drop from "to do":
if(hPsi) {
dNms <- dNms[i <- dNms != "psi"]
dots <- dots[i]
}
}
object[dNms] <- dots
object
}
##' Modify a \code{\link{lmrob.control}} list to contain only parameters that
##' were actually used. Currently used for \code{\link{print}()}ing of lmrob
##' objects.
##'
##' @title Minimize lmrob control to non-redundant parts
##' @param cl a list, typically the 'control' component of a
##' \code{\link{lmrob}()} call, or the result of \code{\link{lmrob.control}()}.
##' @param n number of observations == nobs(<fitted model) == length(residuals(<fit>)) ..
##' @return list: the (typically) modified \code{cl}
##' @author Martin Maechler {from Manuel's original code}
lmrob.control.minimal <- function(cl, nobs, oStats = TRUE) {
if(!length(cl)) return(cl)
shrtM <- sub("^(S|M-S).*", "\\1", cl$method)
p.MS <- c("k.m_s", "split.type")
p.Lrg.n <- c("groups", "n.group")
p.fastS <- c(p.Lrg.n, "refine.tol", "best.r.s", "k.fast.s")
## outlierStats() parts:
p.oStat <- c("eps.outlier", "eps.x", "compute.outlier.stats", "warn.limit.reject", "warn.limit.meanrw")
if(!oStats) ## e.g., for lmrob.S() but *NOT* for lmrob(*, method="S")
cl[p.oStat] <- NULL
switch(shrtM,
"S" = { # remove all M-S specific control pars
cl[p.MS] <- NULL
# if large_n is not used, remove corresp control pars
if (nobs <= cl$fast.s.large.n)
cl[p.Lrg.n] <- NULL
},
"M-S" = # remove all fast S specific control pars
cl[p.fastS] <- NULL,
## else: do not keep parameters used by initial ests. only
cl[c("tuning.chi", "bb", "nResample", p.fastS,
"k.max", p.MS, "mts", "subsampling")] <- NULL
)
if (!grepl("D", meth <- cl$method)) {
cl$numpoints <- NULL
if(meth == 'SM') cl$method <- 'MM'
}
cl
}
lmrob.fit.MM <- function(x, y, control) ## defunct
.Defunct("lmrob.fit(*, control) with control$method = 'SM'")
## .Deprecated() till robustbase 0.92-6 (2016-05-28)
lmrob.fit <- function(x, y, control, init=NULL, mf=NULL, bare.only=FALSE) {
if(!is.matrix(x)) x <- as.matrix(x)
if(!missing(mf)) .Defunct("'mf' argument is now defunct")
## old notation: MM -> SM
if (control$method == "MM") control$method <- "SM"
## Assumption: if(is.null(init)) method = "S..." else method = "..."
## --------- where "..." consists of letters {"M", "D"}
## NB: Now, we are transforming `init` iteratively into the final fit:
est <- if (is.null(init)) {
## --- initial S estimator
if ((M1 <- substr(control$method,1,1)) != 'S') {
warning(gettextf("Initial estimator '%s' not supported; using S-estimator instead",
M1), domain = NA)
substr(control$method,1,1) <- 'S'
}
init <- lmrob.S(x, y, control = control)
'S'
} else {
stopifnot(is.list(init))
if (is.null(init$converged)) init$converged <- TRUE
if (is.null(init$control)) {
init$control <- control
M <- init$control$method <- 'l'
} else if(!length(M <- init$control$method) || !nzchar(M))
M <- "l"
M
}
stopifnot(is.numeric(init$coef), length(init$coef) == ncol(x),
is.numeric(init$scale), init$scale >= 0)
if (est != 'S' && control$cov == '.vcov.avar1') {
warning(
".vcov.avar1 can only be used when initial estimator is S; using .vcov.w instead")
control$cov <- ".vcov.w"
}
trace.lev <- control$trace.lev
if (init$converged) {
## --- loop through the other estimators; build up 'est' string
method <- sub(paste0("^", est), '', control$method)
if(trace.lev) {
cat(sprintf("init converged (remaining method = \"%s\") -> coef=\n", method))
print(init$coef) }
for (step in strsplit(method,'')[[1]]) {
## now we have either M or D steps
est <- paste0(est, step)
init <- switch(step, ## 'control' may differ from 'init$control' when both (init, control) are spec.
## D(AS)-Step
D = lmrob..D..fit(init, x,
control=control, method = init$control$method),
## M-Step
M = lmrob..M..fit(x = x, y = y, obj = init,
control=control, method = init$control$method),
stop('only M and D are steps supported after "init" computation'))
if(trace.lev) { cat(sprintf("step \"%s\" -> new coef=\n", step)); print(init$coef) }
## break if an estimator did not converge
if (!init$converged) {
warning(gettextf(
"%s-step did NOT converge. Returning unconverged %s-estimate",
step, est),
domain = NA)
break
}
}
} else {
if(trace.lev) {
cat(sprintf("init *NOT* converged; init$scale = %g, init$coef:\n ",
init$scale))
print(init$coef)
}
warning("initial estim. 'init' not converged -- will be return()ed basically unchanged")
}
if(bare.only) # e.g. when we only need $coefficients
return(init)
## << FIXME? qr(.) should be available from earlier
if (is.null(init$qr)) init$qr <- qr(x * sqrt(init$rweights))
if (is.null(init$rank)) init$rank <- init$qr$rank
control$method <- est ## ~= original 'method', but only with the steps executed.
init$control <- control
## --- covariance estimate
init$cov <-
if (init$scale == 0) { ## exact fit
matrix(0, ncol(x), ncol(x),
dimnames=list(colnames(x), colnames(x)))
} else if (!init$converged || is.null(x)) {
NA
} else {
if (is.null(control$cov) || control$cov == "none")
NA
else {
lf.cov <- if (!is.function(control$cov))
get(control$cov, mode='function') else control$cov
lf.cov(init, x=x)
}
}
df <- NROW(y) - init$rank ## sum(init$r?weights)-init$rank
init$degree.freedom <- init$df.residual <- df
init
}## end{lmrob.fit}
globalVariables("r", add=TRUE) ## below and in other lmrob.E() expressions
.vcov.w <- function(obj, x=obj$x,
complete = FALSE, # <- differing from vcov.lmrob()s default
scale=obj$scale, cov.hubercorr=ctrl$cov.hubercorr,
cov.dfcorr=ctrl$cov.dfcorr, cov.resid=ctrl$cov.resid,
cov.corrfact=ctrl$cov.corrfact,
cov.xwx=ctrl$cov.xwx)
{
## set defaults
ctrl <- obj$control
if (is.null(cov.hubercorr)) cov.hubercorr <- !grepl('D', ctrl$method)
else if (!is.logical(cov.hubercorr))
stop(':.vcov.w: cov.hubercorr must be logical (or NULL)')
valid.corrfact <- c('tau', 'empirical', 'asympt', 'hybrid', 'tauold')
if (is.null(cov.corrfact)) {
cov.corrfact <- if (cov.hubercorr) 'empirical' else 'tau'
} else if(length(cov.corrfact) != 1 || is.na(match(cov.corrfact, valid.corrfact)))
stop(":.vcov.w: cov.corrfact must be one of ", pasteK(dQuote(valid.corrfact)))
valid.dfcorr <- c("mean", "none", "mn.vc", "varc", "mn.df")
## old: cov.dfcorr = -1 | 0 | 1 | 2 | 3
if (is.null(cov.dfcorr)) {
cov.dfcorr <- if (cov.hubercorr || cov.corrfact %in% c('tau', 'hybrid')) "mn.vc" else "mean"
} else if(length(cov.dfcorr) != 1 || is.na(match(cov.dfcorr, valid.dfcorr)))
stop(":.vcov.w: cov.dfcorr must be one of ", pasteK(dQuote(valid.dfcorr)))
valid.cov.resid <- c('final', 'initial', 'trick')
if (is.null(cov.resid)) cov.resid <- 'final' ## do warn only for *specified* cov.resid:
else if (cov.resid == 'final' && (class(obj)[1] == 'lmrob.S'))
warning("ignoring cov.resid == 'final' since est != final")
else if (length(cov.resid) != 1L || is.na(match(cov.resid, valid.cov.resid)))
stop("cov.resid must be one of ", pasteK(dQuote(valid.cov.resid)))
if (is.null(cov.xwx)) cov.xwx <- TRUE # == _THE_ typical case: not part of 'obj$control'
else if (!is.logical(cov.xwx))
stop(':.vcov.w: cov.xwx must be logical (or NULL)')
if (is.null(x)) x <- model.matrix(obj)
## set psi and c.psi
psi <- ctrl$psi
if (is.null(psi)) stop('parameter psi is not defined')
c.psi <- if (cov.resid == 'initial')
ctrl$tuning.chi
else if (ctrl$method %in% c('S', 'SD'))
ctrl$tuning.chi
else ctrl$tuning.psi
if (!is.numeric(c.psi)) stop("parameter 'tuning.psi' is not numeric")
## MM: lmrob(..., method = "S") triggers this wrongly
if (is.null(scale)) {
warning(":.vcov.w: scale missing, using D scale")
scale <- lmrob..D..fit(obj)$scale
}
n <- NROW(x)
## --- calculations: matrix part
## weighted xtx.inv matrix
w <- if (cov.xwx) obj$rweights else rep(1,n)
## use qr-decomposition from lm.wfit (this already includes the robustness weights)
## update qr decomposition if it is missing or we don't want the robustness weights
if (!is.qr(obj$qr) || !cov.xwx) obj$qr <- qr(x * sqrt(w))
p <- if (is.null(obj$rank)) obj$qr$rank else obj$rank
cinv <- if(is.qr(obj$qr)) tryCatch(tcrossprod(solve(qr.R(obj$qr))),
error = function(e)e)
if(inherits(cinv, 'error')) cinv <- matrix(NA,p,p)
## --- calculation: correction factor
if (cov.corrfact == 'asympt') { ## asympt correction factor
if(cov.hubercorr)
warning("option 'cov.hubercorr' is ignored for cov.corrfact = \"asympt\"")
## precalculated default values if applicable
corrfact <-
if (psi == 'ggw') {
if ( isTRUE(all.equal(c.psi, c(-.5, 1.0, 0.95, NA)))) 1.052619
else if (isTRUE(all.equal(c.psi, c(-.5, 1.5, 0.95, NA)))) 1.0525888644
else if (isTRUE(all.equal(c.psi, c(-.5, 1.0, 0.85, NA)))) 1.176479
else if (isTRUE(all.equal(c.psi, c(-.5, 1.5, 0.85, NA)))) 1.176464
else lmrob.E(psi(r)^2, ctrl) / lmrob.E(r*psi(r), ctrl)^2
## MK: using r*psi(r) instead of psi'(r) is much more accurate
## when using Gauss-Hermite quadrature (= default in lmrob.E())
## but integrate(.) is more accurate
} else if (isTRUE(all.equal(c.psi, .Mpsi.tuning.default(psi)))) {
switch(psi,
bisquare = 1.0526317574,
welsh = 1.0526704649,
optimal = 1.0526419204,
hampel = 1.0526016980,
lqq = 1.0526365291,
stop(':.vcov.w: unsupported psi function'))
} else lmrob.E(psi(r)^2, ctrl) / lmrob.E(r*psi(r), ctrl)^2 ## r*psi(r): see above
varcorr <- 1
} else { ## empirical, approx or hybrid correction factor
rstand <- if (cov.resid == 'initial') {
## if the last estimator was a D or T estimator
## then use obj$init$init otherwise use obj$init
## that way for SMD we use the S residuals (and S scale)
## and for SMDM we use the M residuals (and D scale)
lobj <-
if (grepl('[DT]$',ctrl$method)) obj$init$init else obj$init
resid(lobj) / lobj$scale
} else if (cov.resid == 'trick') {
## residuals are in fact from earlier estimator, use its scale to standardize them
obj$init$resid / obj$init$scale
} else obj$resid / scale
tau <- if (cov.corrfact %in% c('tau', 'hybrid', 'tauold')) { ## added hybrid here
if (!is.null(obj$tau)) obj$tau
else if (!is.null(obj$init$tau)) obj$init$tau
else stop("(tau / hybrid / tauold): tau not found in 'obj'") } else rep(1,n)
rstand <- rstand / tau
r.psi <- Mpsi(rstand, c.psi, psi)
r.psipr <- Mpsi(rstand, c.psi, psi, deriv = 1)
if (any(is.na(r.psipr))) warning(":.vcov.w: Caution. Some psi'() are NA")
## mpp = E[ psi'(.) ] mpp2 = mpp^2
mpp2 <- (mpp <- mean(r.psipr, na.rm=TRUE))^2
## Huber's correction
hcorr <-
if (cov.hubercorr) {
vpp <- sum((r.psipr - mpp)^2) / n # vpp := var[psi.prime]
## ~= var(r.psipr, na.rm=TRUE) ~= Var[ psi'( e_i / (sigma * tau_i) ) ]
(1 + p/n * vpp/mpp2)^2
} else 1
## sample size correction for var(r.psi^2)
## use tau if 'tau' correction factor, but only if it is available
varcorr <- if (cov.corrfact == 'tau' && any(tau != 1))
1 / mean(tau^2) else n / (n - p) ## changed from 1 / mean(tau)
## if hybrid: replace B^2 (= mpp2) by asymptotic value
if (cov.corrfact == 'hybrid') {
mpp2 <- if (psi == 'ggw') {
if ( isTRUE(all.equal(c.psi, c(-.5, 1.0, 0.95, NA)))) 0.7598857
else if (isTRUE(all.equal(c.psi, c(-.5, 1.5, 0.95, NA)))) 0.6817983
else if (isTRUE(all.equal(c.psi, c(-.5, 1.0, 0.85, NA)))) 0.4811596
else if (isTRUE(all.equal(c.psi, c(-.5, 1.5, 0.85, NA)))) 0.411581
else lmrob.E(r*psi(r), ctrl)^2 ## more accurate than psi'(r)
} else if (isTRUE(all.equal(c.psi, .Mpsi.tuning.default(psi))))
switch(psi,
bisquare = 0.5742327, welsh = 0.5445068, optimal = 0.8598825,
hampel = 0.6775217, lqq = 0.6883393,
stop(':.vcov.w: unsupported psi for "hybrid" correction factor'))
else lmrob.E(r*psi(r), ctrl)^2 ## more accurate than psi'(r)
}
## A / B^2 * Huber.corr :
corrfact <- mean({ if (cov.corrfact == 'tauold') 1 else tau^2 } * r.psi^2)/mpp2 * hcorr
}
## simple sample size correction
sscorr <- switch(cov.dfcorr, # old: codes in {-1, 0, 1,2,3 }
"mean" = mean(w), # -1
"mn.vc" = mean(w) * varcorr, # 1
"none" = 1, # 0
"varc" = varcorr, # 2
"mn.df" = mean(w)^2 / (1 - p / sum(w)), # 3
stop("invalid 'cov.dfcorr': ", cov.dfcorr))
structure(scale^2 * sscorr * corrfact *
.vcov.aliased(aliased = is.na(coef(obj)), vc=cinv, complete=complete),
## scale^2 * a/b2 * Huber's correction * Cinv -- with attributes
weights = w,
scale = scale,
scorr = sscorr,
corrfact = corrfact)
}## end{.vcov.w}
.vcov.avar1 <- function(obj, x=obj$x,
complete = FALSE, # <- differing from vcov.lmrob()s default
posdef.meth = c("posdefify", "orig"))
{ ## was .vcov.MM
stopifnot(is.list(ctrl <- obj$control))
## works only for MM & SM estimates:
if (!is.null(ctrl$method) && !ctrl$method %in% c('SM', 'MM'))
stop('.vcov.avar1() supports only SM or MM estimates')
## set psi and chi constants
psi <- chi <- ctrl$psi
if (is.null(psi)) stop('parameter psi is not defined')
stopifnot(is.numeric(c.chi <- ctrl$tuning.chi),
is.numeric(c.psi <- ctrl$tuning.psi))
## need (r0, r, scale, x, c.psi,c.chi, bb)
r0 <- obj$init$resid
r <- resid(obj)
scale <- obj$scale
if (is.null(x)) x <- model.matrix(obj)
bb <- 1/2 ## this is always 1/2 for S estimates by convention
### --- start code from .vcov.MM ---
## scaled residuals
n <- length(r)
stopifnot(is.matrix(x), n == nrow(x))
if(n != length(r0))
stop("initial estimate residuals length differs from final ones. Typically must refit w/ lmrob()")
r.s <- r / scale # final scaled residuals
r0.s <- r0 / scale # initial scaled residuals
w <- Mpsi(r.s, cc = c.psi, psi = psi, deriv = 1)
w0 <- Mchi(r0.s, cc = c.chi, psi = chi, deriv = 1)
p <- ncol(x) # possibly p > rankMatrix(x) in singular/aliased case
## 'complete' handling for singular/aliased case
if(is.na(complete)) {
## previous default: work with full rank-deficient 'x'
} else {
aliased <- is.na(coef(obj))
if(any(aliased))
x <- x[, !aliased]
if(isTRUE(complete)) {
## nothing
} else { ## isFALSE(complete) :
p <- obj$rank
}
}
## FIXME for multivariate y :
x.wx <- crossprod(x, x * w)
if(inherits(A <- tryCatch(solve(x.wx) * scale,
error=function(e)e), "error")) {
warning("X'WX is almost singular. Consider using cov = \".vcov.w\"")
A <- tryCatch(solve(x.wx, tol = 0) * scale, error=function(e)e)
if(inherits(A, "error"))
stop("X'WX is singular. Rather use cov = \".vcov.w\"")
}
a <- A %*% (crossprod(x, w * r.s) / mean(w0 * r0.s))
w <- Mpsi( r.s, cc = c.psi, psi = psi)
## 3) now the standard part (w, x, r0.s, n, A,a, c.chi, bb)
w0 <- Mchi(r0.s, cc = c.chi, psi = chi) # rho()
Xww <- crossprod(x, w * w0)
u1 <- A %*% crossprod(x, x * w^2) %*% (n * A)
u2 <- a %*% crossprod(Xww, A)
u3 <- A %*% tcrossprod(Xww, a)
u4 <- mean(w0^2 - bb^2) * tcrossprod(a)
## list(cov = matrix((u1 - u2 - u3 + u4)/n, p, p),
## wt = w / r.s, a = a)
### --- end code from .vcov.MM ---
ret <- (u1 - u2 - u3 + u4)/n
## this might not be a positive definite matrix
## check eigenvalues (symmetric: ensure non-complex)
ev <- eigen(ret, symmetric = TRUE)
if (any(neg.ev <- ev$values < 0)) { ## there's a problem
posdef.meth <- match.arg(posdef.meth)
if(ctrl$trace.lev)
message("fixing ", sum(neg.ev),
" negative eigen([",p,"])values")
Q <- ev$vectors
switch(posdef.meth,
"orig" = {
## remove negative eigenvalue:
## transform covariance matrix into eigenbasis
levinv <- solve(Q)
cov.eb <- levinv %*% ret %*% Q
## set vectors corresponding to negative ev to zero
cov.eb[, neg.ev] <- 0
## cov.eb[cov.eb < 1e-16] <- 0
## and transform back
ret <- Q %*% cov.eb %*% levinv
},
"posdefify" = {
## Instead of using require("sfsmisc") and
## ret <- posdefify(ret, "someEVadd",eigen.m = ev,eps.ev = 0)
lam <- ev$values
lam[neg.ev] <- 0
o.diag <- diag(ret)# original one - for rescaling
dn <- dimnames(ret)# to preserve
ret <- Q %*% (lam * t(Q)) ## == Q %*% diag(lam) %*% t(Q)
## rescale to the original diagonal values
## D <- sqrt(o.diag/diag(ret)) where they are >= 0 :
if(any(o.diag < 0))
warning(".vcov.avar1: negative diag(<vcov>) fixed up; consider 'cov=\".vcov.w.\"' instead")
D <- sqrt(pmax.int(0, o.diag)/diag(ret))
ret <- D * ret * rep(D, each = nrow(Q)) ## == diag(D) %*% ret %*% diag(D)
if(!is.null(dn)) dimnames(ret) <- dn
},
stop("invalid 'posdef.meth': ", posdef.meth))
}
if(isTRUE(complete))
ret <- .vcov.aliased(aliased, ret)
attr(ret,"weights") <- w / r.s
if(!any(neg.ev))
attr(ret,"eigen") <- ev
ret
}## end{.vcov.avar1}
lmrob..M..fit <- function (x = obj$x, y = obj$y, beta.initial = obj$coef,
scale = obj$scale, control = obj$control,
obj,
mf,
method = obj$control$method) #<- also when 'control' is not obj$control
{
c.psi <- .psi.conv.cc(control$psi, control$tuning.psi)
ipsi <- .psi2ipsi(control$psi)
stopifnot(is.matrix(x))
if(!missing(mf)) .Defunct("'mf' argument is now defunct")
n <- nrow(x)
p <- ncol(x)
if (is.null(y) && !is.null(obj$model))
y <- model.response(obj$model, "numeric")
stopifnot(length(y) == n,
length(c.psi) > 0, c.psi >= 0,
scale >= 0, length(beta.initial) == p)
trace.lev <- as.integer(control$trace.lev)
ret <- .C(R_lmrob_MM,
x = as.double(x),
y = as.double(y),
n = as.integer(n),
p = as.integer(p),
beta.initial = as.double(beta.initial),
scale = as.double(scale),
coefficients = double(p),
residuals = double(n),
iter = as.integer(control$max.it),
c.psi = as.double(c.psi),
ipsi = as.integer(ipsi),
loss = double(1),
rel.tol = as.double(control$rel.tol),
converged = logical(1)
, trace.lev = trace.lev
)[c("coefficients", "scale", "residuals", "loss", "converged", "iter")]
## FIXME?: Should rather warn *here* in case of non-convergence
ret$fitted.values <- drop(x %*% ret$coefficients)
names(ret$coefficients) <- colnames(x)
names(ret$residuals) <- rownames(x)
ret$rweights <- lmrob.rweights(ret$residuals, scale, control$tuning.psi, control$psi)
ret$control <- control
if (!missing(obj)) { ## "copy" from 'obj' to the return value 'ret' :
if(trace.lev) cat("lmrob..MM..fit(*, obj) --> updating .. ")
if (!grepl('M$', method)) {
## update method if it's not there already
method <- paste0(method, 'M')
}
if (!is.null(obj$call)) {
ret$call <- obj$call
ret$call$method <- method
}
if (method %in% c('SM', 'MM')) {
ret$init.S <- obj
} else {
ret$init <-
obj[intersect(names(obj),
c("coefficients", "scale", "residuals", "loss", "converged",
"iter", "rweights", "fitted.values", "control", "ostats",
"init.S", "init", "kappa", "tau"))]
class(ret$init) <- 'lmrob'
ret <- c(ret,
obj[intersect(names(obj),
c("df.residual", "degree.freedom",
"xlevels", "terms", "model", "x", "y",
"na.action", "contrasts", "MD"))])
}
ret$qr <- qr(x * sqrt(ret$rweights))
ret$rank <- ret$qr$rank
if(trace.lev) cat(" qr(x * rweights) -> rank=", ret$rank)
## if there is a covariance matrix estimate available in obj
## update it, if possible, else replace it by the default .vcov.w
if (!is.null(obj$cov)) {
if (!method %in% c('SM', 'MM') &&
ret$control$cov == '.vcov.avar1')
ret$control$cov <- '.vcov.w'
lf.cov <- if (!is.function(ret$control$cov))
get(ret$control$cov, mode='function') else ret$control$cov
if(trace.lev) cat(", cov() matrix ")
ret$cov <- lf.cov(ret, x=x)
}
if (!is.null(obj$assign)) ret$assign <- obj$assign
if (method %in% control$compute.outlier.stats) { ## only true for last step in lmrob.fit()
if(trace.lev) cat(", outlierStats() ")
ret$ostats <- outlierStats(ret, x, control)
}
if(trace.lev) cat("\n")
}
class(ret) <- "lmrob"
ret
}## --- lmrob..M..fit
##' Compute S-estimator for linear model -- using "fast S" algorithm --> ../man/lmrob.S.Rd
lmrob.S <- function (x, y, control, trace.lev = control$trace.lev,
only.scale = FALSE, mf)
{
if (!is.matrix(x)) x <- as.matrix(x)
n <- nrow(x)
p <- ncol(x)
if(!missing(mf)) .Defunct("'mf' argument is now defunct")
nResample <- if(only.scale) 0L else as.integer(control$nResample)
groups <- as.integer(control$groups)
nGr <- as.integer(control$n.group)
large_n <- (n > control$fast.s.large.n)
if (large_n) {
if (nGr <= p)
stop("'control$n.group' must be larger than 'p' for 'large_n' algorithm")
if (nGr * groups > n) # {NB: integer overflow here *also* signals error}
stop("'groups * n.group' must be smaller than 'n' for 'large_n' algorithm")
if (nGr <= p + 10) ## FIXME (be smarter ..)
warning("'control$n.group' is not much larger than 'p', probably too small")
}
if (length(seed <- control$seed) > 0) { # not by default
if(length(seed) < 3L || seed[1L] < 100L)
stop("invalid 'seed'. Must be a valid .Random.seed !")
if(!is.null(seed.keep <- get0(".Random.seed", envir = .GlobalEnv, inherits = FALSE)))
on.exit(assign(".Random.seed", seed.keep, envir = .GlobalEnv))
assign(".Random.seed", seed, envir = .GlobalEnv)
if(trace.lev) {
cat("Assigning .Random.seed to .GlobalEnv: "); str(seed)
stopifnot(identical(seed, globalenv()$.Random.seed))
}
}
bb <- as.double(control$bb)
c.chi <- .psi.conv.cc(control$psi, control$tuning.chi)
best.r <- as.integer(control$best.r.s)
stopifnot(length(c.chi) > 0, c.chi >= 0, length(bb) > 0,
length(best.r) > 0, best.r >= 1, length(y) == n, n > 0)
b <- .C(R_lmrob_S, # --> ../src/lmrob.c
x = as.double(x),
y = as.double(y),
n = as.integer(n),
p = as.integer(p),
nResample = nResample,
scale = if(only.scale) mad(y, center=0) # initial scale
else double(1),
coefficients = double(p),
as.double(c.chi),
.psi2ipsi(control$psi),
bb,
best_r = best.r,
groups = groups,
n.group = nGr,
k.fast.s = as.integer(control$k.fast.s),
k.iter = as.integer(control$k.max),
maxit.scale = as.integer(control$maxit.scale),
refine.tol= as.double(control$refine.tol),
inv.tol = as.double(control$solve.tol),
scale.tol = as.double(control$scale.tol),
zero.tol = as.double(control$zero.tol),
converged = logical(1),
trace.lev = as.integer(trace.lev),
mts = as.integer(control$mts),
ss = .convSs(control$subsampling),
fast.s.large.n = as.integer(if (large_n) control$fast.s.large.n else n+1L)
## avoids the use of NAOK = TRUE for control$fast.s.large.n == Inf
)[if(only.scale) "scale" else c("y", # the residuals (on return)
"coefficients", "scale", "k.iter", "converged")]
scale <- b$scale
if (scale < 0)
stop("C function R_lmrob_S() exited prematurely")
if (scale == 0)
warning("S-estimated scale == 0: Probably exact fit; check your data")
if(trace.lev)
if(only.scale)
cat(sprintf("lmrob.S(): scale = %g\n", scale))
else {
cat(sprintf("lmrob.S(): scale = %g; coeff.=\n", scale)); print(b$coefficients)
}
if(only.scale) return(scale)
## --- -----
b$residuals <- setNames(b$y, rownames(x))
b$fitted.values <- y - b$y # y = fitted + res
b$y <- NULL # rm'it
names(b$coefficients) <- colnames(x)
## robustness weights
b$rweights <- lmrob.rweights(b$residuals, scale, control$tuning.chi, control$psi)
## set method argument in control
control$method <- 'S'
b$control <- control
## add call if called from toplevel
if (identical(parent.frame(), .GlobalEnv))
b$call <- match.call()
class(b) <- 'lmrob.S'
if ("S" %in% control$compute.outlier.stats)# not by default
b$ostats <- outlierStats(b, x, control)
b
}## --- lmrob.S()
lmrob..D..fit <- function(obj, x=obj$x, control = obj$control, mf,
method = obj$control$method) #<- also when 'control' is not obj$control
{
if (is.null(control)) stop('lmrob..D..fit: control is missing')
if (!obj$converged)
stop('lmrob..D..fit: prior estimator did not converge, stopping')
if(!missing(mf)) .Defunct("'mf' argument is now defunct")
if (is.null(x)) x <- model.matrix(obj)
w <- obj$rweights
if (is.null(w)) stop('lmrob..D..fit: robustness weights undefined')
if (is.null(obj$residuals)) stop('lmrob..D..fit: residuals undefined')
r <- obj$residuals
psi <- control$psi
if (is.null(psi)) stop('lmrob..D..fit: parameter psi is not defined')
c.psi <- .psi.conv.cc(psi, if (method %in% c('S', 'SD'))
control$tuning.chi else control$tuning.psi)
if (!is.numeric(c.psi)) stop('lmrob..D..fit: parameter tuning.psi is not numeric')
obj$init <- obj[names(obj)[na.omit(match(
c("coefficients","scale", "residuals", "loss", "converged", "iter", "ostats",
"rweights", "fitted.values", "control", "init.S", "init"), names(obj)))]]
obj$init.S <- NULL
if (is.null(obj$kappa))
obj$kappa <- lmrob.kappa(obj, control)
kappa <- obj$kappa
if (is.null(obj$tau))
obj$tau <- lmrob.tau(obj, x, control)
tau <- obj$tau
## get starting value for root search (to keep breakdown point!)
scale.1 <- sqrt(sum(w * r^2) / kappa / sum(tau^2*w))
ret <- .C(R_find_D_scale,
r = as.double(r),
kappa = as.double(kappa),
tau = as.double(tau),
length = as.integer(length(r)),
scale = as.double(scale.1),
c = as.double(c.psi),
ipsi = .psi2ipsi(psi),
type = 3L, ## dt1 as only remaining option
rel.tol = as.double(control$rel.tol),
k.max = as.integer(control$k.max),
converged = logical(1))[c("converged", "scale")]
obj$scale <- if(ret$converged) ret$scale else NA
obj$converged <- ret$converged
if (!grepl('D$', method)) {
## append "D" to method if it's not there already
method <- method
if (method == 'MM') method <- 'SM'
method <- paste0(method, 'D')
}
## update call
if (!is.null(obj$call)) obj$call$method <- method
obj$control <- control
class(obj) <- "lmrob"
## if there is a covariance matrix estimate available in obj
## update it, if possible, else replace it by the default
## .vcov.w
if (!is.null(obj$cov)) {
if (control$cov == '.vcov.avar1')
control$cov <- '.vcov.w'
lf.cov <- if (!is.function(control$cov))
get(control$cov, mode='function') else control$cov
obj$cov <- lf.cov(obj, x=x)
}
if (method %in% control$compute.outlier.stats)
obj$ostats <- outlierStats(obj, x, control)
obj
}## --- lmrob..D..fit
globalVariables(c("psi", "wgt", "r"), add=TRUE) ## <- lmrob.E( <expr> )
lmrob.kappa <- function(obj, control = obj$control)
{
if (is.null(control)) stop('control is missing')
if (control$method %in% c('S', 'SD')) control$tuning.psi <- control$tuning.chi
fun.min <- function(kappa) lmrob.E(psi(r)*r - kappa*wgt(r), control = control)
uniroot(fun.min, c(0.1, 1))$root
}
## "FIXME" How to get \hat{tau} for a simple *M* estimate here ??
## lmrob.tau() is called from lmrob..D..fit() {above}
## and also from ../vignettes/lmrob_simulation.Rnw {if all is recomputed!}
## 2024-08-12: new arg. 'rel.tol' (left at default eps_C^{1/4} = 0.000122.. for now
##
## NB: see Koller & Stahel (2014) -- Appendix "Details on the design adapative scale .." (p. 2514)
lmrob.tau <- function(obj, x = obj$x, control = obj$control, h, fast = TRUE,
subdivisions = 100L, rel.tol = .Machine$double.eps^0.25, ...)
{
if(is.null(control)) stop("'control' is missing")
if(missing(h))
h <- if (is.null(obj$qr))
.lmrob.hat(x, obj$rweights)
else
.lmrob.hat(wqr = obj$qr)
## speed up - use approximation {pre-computed via lmrob.tau.fast.coefs()} if possible:
if (fast && !control$method %in% c('S', 'SD')) {
c.psi <- control$tuning.psi
tfact <- tcorr <- NA
## NB: {psi, c.psi} combinations must correspond to those in .Mpsi.tuning.defaults (above)
switch(control$psi,
optimal = if (isTRUE(all.equal(c.psi, 1.060158))) {
tfact <- 0.94735878
tcorr <- -0.09444537
},
bisquare = if (isTRUE(all.equal(c.psi, 4.685061))) {
tfact <- 0.9473684
tcorr <- -0.0900833
},
welsh = if (isTRUE(all.equal(c.psi, 2.11))) {
tfact <- 0.94732953
tcorr <- -0.07569506
},
ggw = if (isTRUE(all.equal(c.psi, c(-.5, 1.0, 0.95, NA)))) {
tfact <- 0.9473787
tcorr <- -0.1143846
} else if (isTRUE(all.equal(c.psi, c(-.5, 1.5, 0.95, NA)))) {
tfact <- 0.94741036
tcorr <- -0.08424648
},
lqq = if (isTRUE(all.equal(c.psi, c(-.5, 1.5, 0.95, NA)))) {
tfact <- 0.94736359
tcorr <- -0.08594805
},
hampel = if (isTRUE(all.equal(c.psi, c(1.5, 3.5, 8) * 0.9016085))) {
tfact <- 0.94739770
tcorr <- -0.04103958
},
{})
if (!is.na(tfact))
return(sqrt(1 - tfact*h) * (tcorr*h + 1))
}
## else "non-fast" -- need to compute the integrals :
## kappa
kappa <- if(is.null(obj$kappa)) lmrob.kappa(obj, control) else obj$kappa
## local variables
## n <- length(h)
## set psi and cpsi
psi <- control$psi
if (is.null(psi)) stop('parameter psi is not defined')
cpsi <- if (control$method %in% c('S', 'SD'))
control$tuning.chi else control$tuning.psi
cpsi <- .psi.conv.cc(psi, cpsi)# has its test
ipsi <- .psi2ipsi(psi)
## constant for stderr of u_{-i} part and other constants
intA <- function(r) .Mpsi(r, cpsi, ipsi)^2 * dnorm(r)
intB <- function(r) .Mpsi(r, cpsi, ipsi, deriv = 1) * dnorm(r)
## intc <- function(r) .Mpsi(r, cpsi, ipsi) * r * dnorm(r)
# changed from psi/e to psi*e
tA <- integrate(intA, -Inf,Inf, subdivisions=subdivisions, rel.tol=rel.tol, ...)$value
tB <- integrate(intB, -Inf,Inf, subdivisions=subdivisions, rel.tol=rel.tol, ...)$value
## tE <- integrate(intc, -Inf,Inf)$value
## calculate tau for unique h
hu <- unique(h)
nu <- length(hu)
## Initialize tau vector
tau <- numeric(length=nu)
tc <- tA/tB^2 # = asymp. variance = "avar"
## --- Gauss-Hermite integration
gh <- ghq(control$numpoints)
ghz <- gh$nodes
ghw <- gh$weights
## Calulate each tau_i
for (i in 1:nu) {
## stderr of u_{-i} part
s <- sqrt(tc*(hu[i]-hu[i]^2))
tc2 <- hu[i]/tB
## function to be integrated
fun <- function(w, v, sigma.i) {
t <- (v - tc2*.Mpsi(v, cpsi, ipsi) + w*s)/sigma.i
psi.t <- .Mpsi(t, cpsi, ipsi)
(psi.t*t - kappa*psi.t/t) * dnorm(v)*dnorm(w)
}
## integrate over w
wint <- function(v, sigma.i) {
## sapply(v,function(v.j) integrate(fun,-Inf,Inf,v.j,sigma.i)$value)
sapply(v, function(v.j) sum(fun(ghz, v.j, sigma.i)*ghw))
}
## integrate over v
vint <- function(sigma.i) {
## integrate(wint,-Inf,Inf,sigma.i)$value
sum(wint(ghz, sigma.i)*ghw)
}
## find tau
tau[i] <- uniroot(vint, c(if (hu[i] < 0.9) 3/20 else 1/16, 1.1), tol = rel.tol)$root
}
tau[match(h, hu)]
}
lmrob.tau.fast.coefs <- function(cc, psi, trace.lev = 0, ...) {
## function that calculates the coefficients for 'fast' mode of lmrob.tau
ctrl <- lmrob.control(tuning.psi = cc, psi = psi)
levs <- seq(0, 0.8, length.out = 80)
## calculate taus
taus <- lmrob.tau(list(), control=ctrl, h=levs, fast=FALSE)
## calculate asymptotic approximation of taus
A <- lmrob.E(psi(r)^2, ctrl, use.integrate = TRUE, ...)
B <- lmrob.E(psi(r, 1), ctrl, use.integrate = TRUE, ...)
tfact <- 2 - A/B^2
taus.0 <- sqrt(1 - tfact * levs)
## calculate correction factor
tcorr <- lmrob.fit(x = levs, y = taus / taus.0 - 1, bare.only = TRUE,
control = lmrob.control(trace.lev = trace.lev))$coefficients
c(tfact = tfact, tcorr = tcorr)
}
lmrob.hatmatrix <- function(x, w = rep(1, NROW(x)), wqr = qr(sqrt(w) * x), names = FALSE)
{
H <- tcrossprod(qr.qy(wqr, diag(1, NROW(x), x$rank)))
if(names && !is.null(rnms <- dimnames(wqr$qr)[[1L]]))
dimnames(H) <- list(rnms,rnms)
H
}
.lmrob.hat <- function(x, w = rep(1, NROW(x)), wqr = qr(sqrt(w) * x), names = TRUE)
{
if (missing(wqr) && !is.matrix(x)) x <- as.matrix(x)
## Faster than computing the whole hat matrix, and then diag(.) :
## == diag(lmrob.hatmatrix(x, w, ...))
h <- pmin(1, rowSums(qr.qy(wqr, diag(1, NROW(wqr$qr), wqr$rank))^2))
if(names && !is.null(rnms <- dimnames(wqr$qr)[[1L]]))
names(h) <- rnms
h
}
hatvalues.lmrob <- function(model, ...)
{
if (is.null(wqr <- model$qr))
.lmrob.hat(model$x, model$rweights)
else
.lmrob.hat(wqr = wqr)
}
##' psi |--> ipsi \in \{0,1,...6} : integer codes used in C
.psi2ipsi <- function(psi)
{
psi <- .regularize.Mpsi(psi, redescending=FALSE)
i <- match(psi, c(
'huber', 'bisquare', 'welsh', 'optimal',
## 0 1 2 3
'hampel', 'ggw', 'lqq'
## 4 5 6
))
if(is.na(i)) stop("internal logic error in psi() function name: ", psi,
" Please report!")
i - 1L
}
##' Given psi() fn (as string), possibly convert the tuning-constant vector cc
##' such that it "fits" to psi().
##'
##' @param psi a string such as \code{"lqq"}.
##' @param cc numeric tuning-constant vector, for "ggw" and "lqq", ideally
##' with an \code{\link{attr}}ibute \code{"constants"} as from
##' \code{\link{lmrob.control}(.)$tuning.psi} or from
##' \code{\link{.psi.const}(psi, *)}.
.psi.conv.cc <- function(psi, cc)
{
if (!is.character(psi) || length(psi) != 1)
stop("argument 'psi' must be a string (denoting a psi function)")
if(!is.numeric(cc))
stop("tuning constant 'cc' is not numeric")
## "FIXME": For (ggw, lqq) this is much related to .psi.const() below
switch(tolower(psi),
'ggw' = {
## Input: 4 parameters, (minimal slope, b, efficiency, breakdown point) _or_ c(0, a,b,c, m.rho)
## Output 'k': either k in {1:6} or k = c(0, k[2:5])
## prespecified 6 cases all treated in C ( ../src/lmrob.c ) via these codes:
if ( isTRUE(all.equal(cc, c(-.5, 1 , 0.95, NA)))) return(1)
else if (isTRUE(all.equal(cc, c(-.5, 1 , 0.85, NA)))) return(2)
else if (isTRUE(all.equal(cc, c(-.5, 1. , NA, 0.5)))) return(3)
else if (isTRUE(all.equal(cc, c(-.5, 1.5, 0.95, NA)))) return(4)
else if (isTRUE(all.equal(cc, c(-.5, 1.5, 0.85, NA)))) return(5)
else if (isTRUE(all.equal(cc, c(-.5, 1.5, NA, 0.5)))) return(6)
else if (length(cc) == 5 && cc[1] == 0 ||
(length(cc <- attr(cc, 'constants')) == 5 && cc[1] == 0))
return(cc)
else stop('Coefficients for ',psi,' function incorrectly specified.\n',
'Use c(minimal slope, b, efficiency, breakdown point) [6 hard-coded special cases]\n',
' or c(0, a,b,c, max_rho) as from .psi.const(',psi,', cc).')
},
'lqq' = {
## Input: 4 parameters, (minimal slope, b/c, efficiency, breakdown point) _or_ (b, c, s) [length 3]
## Output: k[1:3] = (b, c, s)
if (isTRUE(all.equal(cc, c(-.5, 1.5, 0.95, NA))))
return(c(1.4734061, 0.9822707, 1.5))
else if (isTRUE(all.equal(cc, c(-.5, 1.5, NA, 0.5))))
return(c(0.4015457, 0.2676971, 1.5))
else if (length(cc) == 3 || length(cc <- attr(cc, 'constants')) == 3)
return(cc)
else stop('Coefficients for ',psi,' function incorrectly specified.\n',
'Use c(minimal slope, b, efficiency, breakdown point) [2 special cases]\n',
' or c(b, c, s) as from .psi.const(',psi,', cc).')
},
'hampel' = {
## just check length of coefficients
if (length(cc) != 3)
stop('Coef. for Hampel psi function not of length 3')
}, {
## otherwise: should have length 1
if (length(cc) != 1)
stop('Coef. for psi function ', psi,' not of length 1')
})
return(cc)
}
##' @title For GGW's psi(), find x with minimal slope, and the min.slope
##' @param a "scale" of GGW's psi
##' @param b exponent of GGW's psi
##' @param c "huber-cutoff" of GGW's psi
##' @param ... further arguments passed to optimize(), notably 'tol'
##' @return the return value of optimize(): list(minimum, objective)
##' @author Manuel Kohler and Martin Maechler
.psi.ggw.mxs <- function(a, b, c, tol = .Machine$double.eps^0.25) {
ipsi <- .psi2ipsi('ggw')
ccc <- c(0, a, b, c, 1) ## == .psi.conv.cc('ggw', cc=c(0, a, b, c, 1))
optimize(.Mpsi, c(c, max(a+b+2*c, 0.5)), ccc=ccc, ipsi=ipsi, deriv = 1,
tol = tol)
}
.psi.ggw.ms <- function(a, b, c, tol = .Machine$double.eps^0.25) ## find minimal slope
.psi.ggw.mxs(a, b, c, tol=tol)[["objective"]]
.psi.ggw.finda <- function(ms, b, c, tol = .Machine$double.eps^0.25, maxiter = 1000,
ms.tol = tol / 64,...) ## find constant 'a' (reparametrized to 1/o scale).
{
val <- uniroot(function(a) .psi.ggw.ms(1/a, b, c, tol=ms.tol) - ms,
c(200, if (b > 1.4) 1/400 else if (b > 1.3) 1/50 else 1/20),
tol=tol, maxiter=maxiter)
1/val$root
}
.psi.ggw.eff <- function(a, b, c) ## calculate asymptotic efficiency
{
ipsi <- .psi2ipsi('ggw')
ccc <- c(0, a, b, c, 1)
lmrob.E(.Mpsi(r, ccc, ipsi, deriv=1), use.integrate = TRUE)^2 /
lmrob.E(.Mpsi(r, ccc, ipsi) ^2, use.integrate = TRUE)
}
.psi.ggw.bp <- function(a, b, c, ...) { ## calculate kappa
ipsi <- .psi2ipsi('ggw')
abc <- c(0, a, b, c)
nc <- integrate(.Mpsi, 0, Inf, ccc = c(abc, 1), ipsi=ipsi, ...)$value
lmrob.E(.Mchi(r, ccc = c(abc, nc), ipsi), use.integrate = TRUE)
}
.psi.ggw.findc <- function(ms, b, eff = NA, bp = NA,
subdivisions = 100L,
rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
tol = .Machine$double.eps^0.25, ms.tol = tol/64, maxiter = 1000) {
## find c by eff for bp
c. <- if (!is.na(eff)) {
if (!is.na(bp))
warning('tuning constants for ggw psi: both eff and bp specified, ignoring bp')
## find c by matching eff
tryCatch(uniroot(function(x) .psi.ggw.eff(.psi.ggw.finda(ms, b, x, ms.tol=ms.tol),
b, x) - eff,
c(0.15, if (b > 1.61) 1.4 else 1.9), tol=tol, maxiter=maxiter)$root,
error=function(e)e)
} else {
if (is.na(bp))
stop("neither breakdown point 'bp' nor efficiency 'eff' specified")
## find c by matching bp
tryCatch(uniroot(function(x) .psi.ggw.bp(.psi.ggw.finda(ms, b, x, ms.tol=ms.tol),
b, x) - bp,
c(0.08, if (ms < -0.4) 0.6 else 0.4), tol=tol, maxiter=maxiter)$root,
error=function(e)e)
}
if (inherits(c., 'error'))
stop(gettextf('unable to find constants for "ggw" psi function: %s',
c.$message), domain=NA)
a <- .psi.ggw.finda(ms, b, c., ms.tol=ms.tol)
nc <- integrate(.Mpsi, 0, Inf, ccc= c(0, a, b, c., 1), ipsi = .psi2ipsi('ggw'))$value
## return
c(0, a, b, c., nc)
}
lmrob.efficiency <- function(psi, cc, ccc = .psi.conv.cc(psi, cc=cc), ...) {
ipsi <- .psi2ipsi(psi)
integrate(function(x) .Mpsi(x, ccc=ccc, ipsi=ipsi, deriv=1)*dnorm(x),
-Inf, Inf, ...)$value^2 /
integrate(function(x) .Mpsi(x, ccc=ccc, ipsi=ipsi)^2 *dnorm(x),
-Inf, Inf, ...)$value
}
lmrob.bp <- function(psi, cc, ccc = .psi.conv.cc(psi, cc=cc), ...) {
ipsi <- .psi2ipsi(psi)
integrate(function(x) .Mchi(x, ccc=ccc, ipsi=ipsi)*dnorm(x), -Inf, Inf, ...)$value
}
##' @title Find tuning constant 'c' for "lqq" psi function ---> ../man/psiFindc.Rd
##' @param cc numeric vector = c(min_slope, b/c, eff, bp) ;
##' typically 'eff' or 'bp' are NA and will be computed
##' ....
##' @return constants for c function: (b, c, s) == (b/c * c, c, s = 1 - min_slope)
.psi.lqq.findc <-
function(ms, b.c, eff = NA, bp = NA,
interval = c(0.1, 4), subdivisions = 100L,
rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
tol = .Machine$double.eps^0.25, maxiter = 1000)
{
## b.c == b/c
bcs <- function(cc) c(b.c*cc, cc, 1-ms)
t.fun <- if (!is.na(eff)) { ## 'eff' specified
if (!is.na(bp))
warning("tuning constants for \"lqq\" psi: both 'eff' and 'bp' specified, ignoring 'bp'")
## find c by b, s and eff
function(c)
lmrob.efficiency('lqq', bcs(c), subdivisions=subdivisions,
rel.tol=rel.tol, abs.tol=abs.tol) - eff
} else {
if (is.na(bp))
stop('Error: neither breakdown point nor efficiency specified')
## breakdown point 'bp' specified
function(c)
lmrob.bp('lqq', bcs(c), subdivisions=subdivisions,
rel.tol=rel.tol, abs.tol=abs.tol) - bp
}
c. <- tryCatch(uniroot(t.fun, interval=interval, tol=tol, maxiter=maxiter)$root,
error=function(e)e)
if (inherits(c., 'error'))
stop(gettextf('unable to find constants for "lqq" psi function: %s',
c.$message), domain=NA)
else bcs(c.)
}
##' For ("ggw", "lqq"), if cc is not one of the predefined ones,
##' compute the tuning constants numerically, from the given specs (eff / bp).
##' Much related to .psi.conv.cc() above
.psi.const <- function(cc, psi)
{
switch(psi,
"ggw" = { ## only calculate for non-standard coefficients
if (isTRUE(all.equal(cc, c(-.5, 1, 0.95, NA))) ||
isTRUE(all.equal(cc, c(-.5, 1, 0.85, NA))) ||
isTRUE(all.equal(cc, c(-.5, 1, NA, 0.5))) ||
isTRUE(all.equal(cc, c(-.5, 1.5, 0.95, NA))) ||
isTRUE(all.equal(cc, c(-.5, 1.5, 0.85, NA))) ||
isTRUE(all.equal(cc, c(-.5, 1.5, NA, 0.5)))) {
## treated with in C code: in ../src/lmrob.c, functions *_ggw()
} else
attr(cc, 'constants') <-
.psi.ggw.findc(ms=cc[[1]], b=cc[[2]], eff=cc[[3]], bp=cc[[4]])
},
"lqq" = { ## use pre-computed values for (the two) "standard" coefficients:
attr(cc, 'constants') <- ## b.c :== b/c
if (isTRUE(all.equal(cc, c(-.5, 1.5, 0.95, NA))))
c(1.4734061, 0.9822707, 1.5) # as in .psi.conv.cc() {FIXME? only in 1 place}
else if (isTRUE(all.equal(cc, c(-.5, 1.5, NA, 0.5))))
c(0.4015457, 0.2676971, 1.5)
else
.psi.lqq.findc(ms=cc[[1]], b.c=cc[[2]], eff=cc[[3]], bp=cc[[4]])
},
stop("method for psi function ", psi, " not implemented"))
cc
}
Mpsi <- function(x, cc, psi, deriv=0) {
x[] <- .Call(R_psifun, x, .psi.conv.cc(psi, cc), .psi2ipsi(psi), deriv)
x
}
.Mpsi <- function(x, ccc, ipsi, deriv=0) .Call(R_psifun, x, ccc, ipsi, deriv)
Mchi <- function(x, cc, psi, deriv=0) {
x[] <- .Call(R_chifun, x, .psi.conv.cc(psi, cc), .psi2ipsi(psi), deriv)
x
}
.Mchi <- function(x, ccc, ipsi, deriv=0) .Call(R_chifun, x, ccc, ipsi, deriv)
Mwgt <- function(x, cc, psi) {
x[] <- .Call(R_wgtfun, x, .psi.conv.cc(psi, cc), .psi2ipsi(psi))
x
}
.Mwgt <- function(x, ccc, ipsi) .Call(R_wgtfun, x, ccc, ipsi)
## only for nlrob() -- and to use instead of MASS:::psi.huber etc:
## returns a *function* a la psi.huber() :
.Mwgt.psi1 <- function(psi, cc = .Mpsi.tuning.default(psi)) {
ipsi <- .psi2ipsi(psi)
ccc <- .psi.conv.cc(psi, cc)
## return function *closure* :
function(x, deriv = 0)
if(deriv) .Mpsi(x, ccc, ipsi, deriv=deriv) else .Mwgt(x, ccc, ipsi)
}
##' The normalizing constant for rho(.) <--> rho~(.)
MrhoInf <- function(cc, psi) {
cc <- .psi.conv.cc(psi, cc)
.Call(R_rho_inf, cc, .psi2ipsi(psi))
}
.MrhoInf <- function(ccc, ipsi) .Call(R_rho_inf, ccc, ipsi)
lmrob.rweights <- function(resid, scale, cc, psi, eps = 16 * .Machine$double.eps) {
stopifnot(is.numeric(scale), length(scale) == 1L, scale >= 0)
if (scale == 0) { ## exact fit
m <- max(ar <- abs(resid), na.rm=TRUE)
if(m == 0) numeric(length(ar)) else as.numeric(ar <= eps * m)# 1 iff res ~= 0
} else
Mwgt(resid / scale, cc, psi)
}
lmrob.E <- function(expr, control, dfun = dnorm, use.integrate = FALSE, obj, ...)
{
expr <- substitute(expr)
if (missing(control) && !missing(obj))
control <- obj$control
lenvir <-
if (!missing(control)) {
psi <- control$psi
if (is.null(psi)) stop('parameter psi is not defined')
c.psi <- control[[if (control$method %in% c('S', 'SD'))
"tuning.chi" else "tuning.psi"]]
if (!is.numeric(c.psi)) stop('tuning parameter (chi/psi) is not numeric')
list(psi = function(r, deriv = 0) Mpsi(r, c.psi, psi, deriv),
chi = function(r, deriv = 0) Mchi(r, c.psi, psi, deriv), ## change?
wgt = function(r) Mwgt(r, c.psi, psi)) ## change?
} else list()
pf <- parent.frame()
FF <- function(r)
eval(expr, envir = c(list(r = r), lenvir), enclos = pf) * dfun(r)
if (isTRUE(use.integrate)) {
integrate(FF, -Inf,Inf, ...)$value
## This would be a bit more accurate .. *AND* faster notably for larger 'numpoints':
## } else if(use.integrate == "GQr") {
## require("Gqr")# from R-forge [part of lme4 project]
## ## initialize Gauss-Hermite Integration
## GH <- GaussQuad(if(is.null(control$numpoints)) 13 else control$numpoints,
## "Hermite")
## ## integrate
## F. <- function(r) eval(expr, envir = c(list(r = r), lenvir), enclos = pf)
## sum(GH$weights * F.(GH$knots))
} else {
## initialize Gauss-Hermite Integration
gh <- ghq(if(is.null(control$numpoints)) 13 else control$numpoints)
## integrate
sum(gh$weights * FF(gh$nodes))
}
}
ghq <- function(n = 1, modify = TRUE) {
## Adapted from gauss.quad in statmod package
## which itself has been adapted from Netlib routine gaussq.f
## Gordon Smyth, Walter and Eliza Hall Institute
n <- as.integer(n)
if(n<0) stop("need non-negative number of nodes")
if(n==0) return(list(nodes=numeric(0), weights=numeric(0)))
## i <- seq_len(n) # 1 .. n
i1 <- seq_len(n-1L)
muzero <- sqrt(pi)
## a <- numeric(n)
b <- sqrt(i1/2)
A <- numeric(n*n)
## A[(n+1)*(i-1)+1] <- a # already 0
A[(n+1)*(i1-1)+2] <- b
A[(n+1)*i1] <- b
dim(A) <- c(n,n)
vd <- eigen(A,symmetric=TRUE)
n..1 <- n:1L
w <- vd$vectors[1, n..1]
w <- muzero * w^2
x <- vd$values[n..1] # = rev(..)
list(nodes=x, weights= if (modify) w*exp(x^2) else w)
}
##' (non)singular subsampling - code to be passed to C, as `ss` in ../src/lmrob.c
.convSs <- function(ss)
switch(ss,
"simple"= 0L,
"nonsingular"= 1L,
stop(gettextf("unknown setting for 'subsampling': %s", ss),
domain=NA))
outlierStats <- function(object, x = object$x,
control = object$control,
epsw = control$eps.outlier,
epsx = control$eps.x
, warn.limit.reject = control$warn.limit.reject
, warn.limit.meanrw = control$warn.limit.meanrw
, shout = NA)
{
stopifnot(is.logical(shout), length(shout) == 1L) # should we "shout"?
## look at all the factors in the model and count
## for each level how many observations were rejected.
## Issue a warning if there is any level where more than
## warn.limit.reject observations were rejected or
## the mean robustness weights was <= warn.limit.meanrw
rw <- object$rweights
## ^^^^^^^^^^^^^^^ not weights(..., type="robustness") as we
## don't want naresid() padding here.
if (NROW(x) != length(rw))
stop("number of rows in 'x' and length of 'object$rweights' must be the same")
if (is.function(epsw)) epsw <- epsw(nobs(object, use.fallback = TRUE))
if (!is.numeric(epsw) || length(epsw) != 1)
stop(gettextf("'%s' must be a number or a function of %s which returns a number",
"epsw", "nobs(obj.)"), domain = NA)
if (is.function(epsx)) epsx <- epsx(max(abs(x)))
if (!is.numeric(epsx) || length(epsx) != 1)
stop(gettextf("'%s' must be a number or a function of %s which returns a number",
"epsx", "max(abs(x))"), domain = NA)
cc <- function(idx) { # (rw, epsw)
nnz <- sum(idx) ## <- if this is zero, 'Ratio' and 'Mean.RobWeight' will be NaN
rj <- abs(rw) < epsw
Fr <- sum(rj[idx])
c(N.nonzero = nnz,
N.rejected = Fr,
Ratio = Fr / nnz,
Mean.RobWeight = mean(rw[idx]))
}
xnz <- abs(x) > epsx
report <- t(apply(cbind(Overall=TRUE, xnz[, colSums(xnz) < NROW(xnz)]), 2, cc))
if(!isFALSE(shout)) { ## NA or TRUE
lbr <- logical(nrow(report)) # == rep(FALSE, ..)
if (!is.null(warn.limit.reject)) {
lbr <- report[, "Ratio"] >= warn.limit.reject
shout <- shout || any(lbr & !is.na(lbr))
}
if (!is.null(warn.limit.meanrw)) {
lbr <- lbr | report[, "Mean.RobWeight"] <= warn.limit.meanrw
shout <- shout || any(lbr & !is.na(lbr))
}
if(!is.na(shout)) { # is true
nbr <- rownames(report)[lbr]
attr(report, "warning") <- paste("Possible local breakdown of",
paste0("'", nbr, "'", collapse=", "))
warning("Detected possible local breakdown of ", control$method, "-estimate in ",
if (length(nbr) > 1) paste(length(nbr), "coefficients") else "coefficient",
" ", paste0("'", nbr, "'", collapse=", "), ".",
if ("KS2014" %in% control$setting) "" else
"\nUse lmrob argument 'setting=\"KS2014\"' to avoid this problem."
)
}
}
report
}
|