1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
# File .../lmrobPredict.R
# Part of the R package 'robustbase', http://www.R-project.org
# Based on predict.lm (cf. src/library/stats/R/lm.R)
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# http://www.r-project.org/Licenses/
# Note that '# *rob' indicate adjustment for the robust case
predict.lmrob <-
function(object, newdata, se.fit = FALSE, scale = NULL, df = NULL, # *rob
interval = c("none", "confidence", "prediction"),
level = .95, type = c("response", "terms"),
terms = NULL, na.action = na.pass, pred.var = res.var/weights,
weights = 1, ...)
{
tt <- terms(object)
if(!inherits(object, "lmrob") && !inherits(object, "glmrob")) # *rob
warning("calling predict.lm(<fake-lmrob-object>) ...") # *rob
if(missing(newdata) || is.null(newdata)) {
mm <- X <- model.matrix.lm(object)
mmDone <- TRUE
offset <- object$offset
}
else {
Terms <- delete.response(tt)
m <- model.frame(Terms, newdata, na.action = na.action,
xlev = object$xlevels)
if(!is.null(cl <- attr(Terms, "dataClasses"))) .checkMFClasses(cl, m)
X <- model.matrix(Terms, m, contrasts.arg = object$contrasts)
offset <- rep.int(0, nrow(X))
if (!is.null(off.num <- attr(tt, "offset")))
for(i in off.num)
offset <- offset + eval(attr(tt, "variables")[[i+1]], newdata)
if (!is.null(object$call$offset))
offset <- offset + eval(object$call$offset, newdata)
mmDone <- FALSE
}
n <- length(object$residuals) # NROW(qr(object)$qr)
p <- object$rank
if(is.null(p)) { # *rob
df <- Inf
p <- sum(!is.na(coef(object)))
piv <- seq_len(p)
} else {
p1 <- seq_len(p)
piv <- if(p) qr(object)$pivot[p1]
}
if(p < ncol(X) && !(missing(newdata) || is.null(newdata)))
warning("prediction from a rank-deficient fit may be misleading")
beta <- object$coefficients
X.piv <- X[, piv, drop = FALSE]
predictor <- drop(X.piv %*% beta[piv])
if (!is.null(offset))
predictor <- predictor + offset
interval <- match.arg(interval)
if (interval == "prediction") {
if (missing(newdata)) { # *rob: this and next if statement are combined
warning("Predictions on current data refer to _future_ responses")
if (missing(weights)) {
w <- weights(object) # *rob
if (!is.null(w)) {
weights <- w
warning("Assuming prediction variance inversely proportional to weights used for fitting")
}
}
}
if (!missing(newdata) && missing(weights) && !is.null(object$weights) && missing(pred.var))
warning("Assuming constant prediction variance even though model fit is weighted")
if (inherits(weights, "formula")){
if (length(weights) != 2L)
stop("'weights' as formula should be one-sided")
d <- if(missing(newdata) || is.null(newdata))
model.frame(object)
else
newdata
weights <- eval(weights[[2L]], d, environment(weights))
}
}## "prediction" interval
type <- match.arg(type)
if(se.fit || interval != "none") {# *rob: whole 'then' statement is different
df <- object$df.residual
res.var <- if (is.null(scale)) object$s^2 else scale^2
ip <- if(type != "terms")
diag(X.piv %*% object$cov %*% t(X.piv)) else rep.int(0, n)
}
if (type == "terms") { ## type == "terms" ------------
if(!mmDone){
mm <- model.matrix.lm(object) # *rob: call of model.matrix.lm
# instead of model.matrix
mmDone <- TRUE
}
aa <- attr(mm, "assign")
ll <- attr(tt, "term.labels")
hasintercept <- attr(tt, "intercept") > 0L
if (hasintercept) ll <- c("(Intercept)", ll)
aaa <- factor(aa, labels = ll)
asgn <- split(order(aa), aaa)
if (hasintercept) {
asgn$"(Intercept)" <- NULL
if(!mmDone){
mm <- model.matrix.lm(object) # *rob: call of model.matrix.lm
# instead of model.matrix
mmDone <- TRUE
}
avx <- colMeans(mm)
termsconst <- sum(avx[piv] * beta[piv])
}
nterms <- length(asgn)
if(nterms > 0) {
predictor <- matrix(ncol = nterms, nrow = NROW(X))
dimnames(predictor) <- list(rownames(X), names(asgn))
if (se.fit || interval != "none") {
ip <- predictor # *rob: just this assignment is needed
}
if(hasintercept)
X <- sweep(X, 2L, avx, check.margin=FALSE)
unpiv <- rep.int(0L, NCOL(X))
unpiv[piv] <- p1
for (i in seq.int(1L, nterms, length.out = nterms)) {
iipiv <- asgn[[i]] # Columns of X, ith term
ii <- unpiv[iipiv] # Corresponding rows of cov
iipiv[ii == 0L] <- 0L
predictor[, i] <-
if(any(iipiv > 0L)) X[, iipiv, drop = FALSE] %*% beta[iipiv]
else 0
if (se.fit || interval != "none"){
ip[, i] <- if(any(iipiv > 0L)){# *rob: next steps modified
h.X <- X[, iipiv, drop = FALSE]
diag(h.X %*% object$cov[ii, ii] %*% t(h.X))
} else 0
}
}
if (!is.null(terms)) {
predictor <- predictor[, terms, drop = FALSE]
if (se.fit)
ip <- ip[, terms, drop = FALSE]
}
} else { # no terms
predictor <- ip <- matrix(0, n, 0L)
}
attr(predictor, 'constant') <- if (hasintercept) termsconst else 0
}
### Now construct elements of the list that will be returned
if(interval != "none") {
tfrac <- qt((1 - level)/2, df)
hwid <- tfrac * switch(interval,
confidence = sqrt(ip),
prediction = sqrt(ip+pred.var)
)
if(type != "terms") {
predictor <- cbind(predictor, predictor + hwid %o% c(1, -1))
colnames(predictor) <- c("fit", "lwr", "upr")
} else {
if (!is.null(terms)) hwid <- hwid[, terms, drop = FALSE]
lwr <- predictor + hwid
upr <- predictor - hwid
}
}
if(se.fit || interval != "none") {
se <- sqrt(ip)
if (type == "terms" && !is.null(terms)) se <- se[, terms, drop = FALSE]
}
if(missing(newdata) && !is.null(na.act <- object$na.action)) {
predictor <- napredict(na.act, predictor)
if(se.fit) se <- napredict(na.act, se)
}
if(type == "terms" && interval != "none") {
if(missing(newdata) && !is.null(na.act)) {
lwr <- napredict(na.act, lwr)
upr <- napredict(na.act, upr)
}
list(fit = predictor, se.fit = se, lwr = lwr, upr = upr,
df = df, residual.scale = sqrt(res.var))
} else if (se.fit)
list(fit = predictor, se.fit = se,
df = df, residual.scale = sqrt(res.var))
else predictor
}
|