File: ltsPlot.R

package info (click to toggle)
robustbase 0.99-7-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,596 kB
  • sloc: fortran: 3,245; ansic: 3,243; sh: 15; makefile: 2
file content (291 lines) | stat: -rw-r--r-- 10,066 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#### This is from the R package
####
####  rrcov : Scalable Robust Estimators with High Breakdown Point
####
#### by Valentin Todorov

### This program is free software; you can redistribute it and/or modify
### it under the terms of the GNU General Public License as published by
### the Free Software Foundation; either version 2 of the License, or
### (at your option) any later version.
###
### This program is distributed in the hope that it will be useful,
### but WITHOUT ANY WARRANTY; without even the implied warranty of
### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
### GNU General Public License for more details.
###
### You should have received a copy of the GNU General Public License
### along with this program; if not, a copy is available at
### http://www.r-project.org/Licenses/
plot.lts <- function(x,
		   which = c("all", "rqq","rindex", "rfit", "rdiag"),
		   classic = FALSE,
		   ask = (which[1] == "all" && dev.interactive()),
		   id.n, ...) {
    if (!inherits(x, "lts"))
	stop("Use only with 'lts' objects")

    ltsPlot(x, which, classic, ask, id.n, ...)
}

ltsPlot <- function(x,
		   which = c("all", "rqq","rindex", "rfit", "rdiag"),
		   classic = FALSE,
		   ask = FALSE,
		   id.n, ...)
{
    ##@bdescr
    ##	Make plots for model checking and outlier detection based on
    ##	    the LTS regression estimates:
    ##	rqq	 -  normal quantile plot of the LTS and LS residuals
    ##	rindex	 -  standardized LTS/LS Residuals versus index
    ##	rfit	 -  standardized LTS/LS Residuals versus fitted values
    ##	rdiag	 -  regression diagnostic plot
    ##
    ##@edescr
    ##
    ##@in  x		   : [object] An lts object
    ##@in  which	  : [character] A plot option, one of:
    ##				  rqq:
    ##				  rdiag:
    ##				  rfit:
    ##				  rindex:
    ##				default is "rqq"
    ##@in  classic	     : [logical] If true the classical plot will be displayed too
    ##					 default is classic=FALSE
    ##@in  id.n		      : [number] number of observations to be identified with a label.

    label <- function(x, y, ord, lab, id.n, ...)
    {
	if(id.n) {
	    n <- length(y)
	    which <- order(ord)[(n - id.n + 1):n]
	    lab <- if(missing(lab)) which else lab[which]
	    ## how to adjust the labels?
	    ## a) adj=0.1
	    ## b) x=x+xrange
	    ## c) pos=4 (to the left of the observation)
	    ## d) additionaly to pos specify offset=0.2 (fraction of a character)
	    xrange <- par("usr")
	    xrange <- (xrange[2] - xrange[1])/50
	    text(x[which], y[which], pos = 4, offset = 0.2, lab, ...)
	}
    }

    ## The R function 'qqline' (package::stats) adds a line to a
    ## normal quantile-quantile plot which passes through the
    ## first and third quartiles. In S this function returns the
    ## slope and intercept of the line, but not in R.
    ## Here we need the slope and intercept in order to sort the
    ## residuals according to their distance from the line.

    myqqline <- function(y, datax = FALSE, ...) {
	y <- quantile(y[!is.na(y)],c(0.25, 0.75))
	x <- qnorm(c(0.25, 0.75))
	if(datax) {
	    slope <- diff(x)/diff(y)
	    int <- x[1] - slope*y[1]
	} else {
	    slope <- diff(y)/diff(x)
	    int <- y[1]-slope*x[1]
	}
	abline(int, slope, ...)
	invisible(list(int = int, slope = slope))
    }

    myqqplot <- function(r, classic = FALSE, lab, id.n, ...) {
	##  Normal QQ-plot of residuals:
	##  Produces a Quantile-Quantile plot in which the vector r is plotted
	##  against the quantiles of a standard normal distribution.

	xlab <- "Quantiles of the standard normal distribution"
        ylab <- if(classic)
                    "Standardized LS residual"
                else "Standardized LTS residual"
	qq <- qqnorm(r, mgp = mgp, xlab = xlab, ylab = ylab, ...)
	ll <- myqqline(r, lty = 2, ...)
	ord <- abs(qq$y - ll$int - ll$slope * qq$x)
	label(qq$x, qq$y, ord, lab, id.n, ...)
    }

    indexplot <- function(r, scale, classic = FALSE, lab, id.n, ...) {
	##  Index plot of standardized residuals:
	##  Plot the vector r (LTS or LS residuals) against
	##  the observation indexes. Identify by a label the id.n
	##  observations with largest value of r.
	##  Use classic=FALSE/TRUE to choose the label of the vertical axes

	## VT:: 26.12.2004
	if(scale == 0)
	    stop("Index plot of standardized residuals is not avalable if scale = 0")

	xlab <- "Index"
	ylab <-
	    if(classic)
		"Standardized LS residual"
	    else "Standardized LTS residual"
	x <- 1:length(r)
	y <- r/scale
	ylim <- c(min(-3, min(y)), max(3, max(y)))

	plot(x, y, ylim = ylim, mgp = mgp, xlab = xlab, ylab = ylab, ...)
	label(x, y, ord = abs(y), lab, id.n, ...)
	abline(h = 0, lty = 4, ...)
	abline(h = c(-2.5, 2.5), ...)
	mtext(c("-2.5","2.5"), side = 4, line = 1.2, at = c(-2.5, 2.5), ...)
	title(main = "Residuals vs Index")
    }

    ##' Tukey-Anscombe Plot  (rename ?!)
    fitplot <- function(obj, classic = FALSE, lab, id.n, ...) {
	##  Standardized residuals vs Fitted values plot:
	##  Plot the vector r (LTS or LS residuals) against
	##  the corresponding fitted values. Identify by a
	##  label the id.n observations with largest value of r.
	##  Use classic=FALSE/TRUE to choose the label of the vertical axes

	## VT:: 26.12.2004
	if(obj$scale == 0)
	    stop("Standardized residuals vs Fitted values plot is not avalable if scale = 0")

	##    x <- obj$X %*% as.matrix(obj$coef)
	x <- obj$fitted.values
	y <- obj$residuals/obj$scale
	ylim <- c(min(-3, min(y)), max(3, max(y)))
	yname <- names(obj$scale)
	xlab <- paste("Fitted :", yname)
	ylab <- if(classic)
		    "Standardized LS residual"
		else "Standardized LTS residual"
	plot(x, y, ylim = ylim, mgp = mgp, xlab = xlab, ylab = ylab, ...)
	label(x, y, ord = abs(y), lab, id.n, ...)
	abline(h = 0, lty = 4, ...)
	abline(h = c(-2.5, 2.5), ...)
	mtext(c("-2.5","2.5"), side = 4, line = 1.2, at = c(-2.5, 2.5), ...)
	title(main = "Residuals vs Fitted")
    } ## fitplot()


    rdiag <- function(obj, classic = FALSE, lab, id.n, ...) {
	##  Regression diagnostic plot:
	##  Plot the vector of the standardized residuals against
	##  the robust distances of the predictor variables
	##  Identify by a label the id.n observations with largest value of r.
	##  Use classic=FALSE/TRUE to choose the label of the vertical axes

	p <- if(obj$intercept) length(obj$coef) - 1 else length(obj$coef)
	if(p <= 0)
	    warning("Diagnostic plot is not available for univar\niate location and scale estimation")

	## VT:: 26.12.2004
	if(obj$scale <= 0)
	    stop("Regression Diagnostic plot is not avalable if scale = 0")

	if(is.null(obj$RD))
	    stop("Regression Diagnostic plot is not avalable: option mcd=F was set in ltsReg().")
	if(obj$RD[1] == "singularity")
	    stop("The MCD covariance matrix was singular.")

	if(classic) {
	    xlab <- "Mahalanobis distance"
	    ylab <- "Standardized LS residual"
	} else {
            xlab <- "Robust distance computed by MCD"
            ylab <- "Standardized LTS residual"
        }

	## VT:: 18.01.20045
	## set id.n to the number of all outliers:
	##  regression outliers (weight==0)+ leverage points (RD > cutoff)
	if(missing(id.n)) {
	    id.n <- length(unique(c(which(obj$RD > sqrt(qchisq(0.975, p))),
                                    which(obj$lts.wt == 0))))
	}

	quant <- max(c(sqrt(qchisq(0.975, p)), 2.5))
	x <- obj$RD
	y <- obj$residuals/obj$scale
	## xlim <- c(0, max(quant + 0.1, max(x)))
	ylim <- c(min(-3, min(y)), max(3, max(y)))

	plot(x, y, ylim = ylim, mgp = mgp, xlab = xlab, ylab = ylab,
             main = "Regression Diagnostic Plot", ...)
	ord <- apply(abs(cbind(x/2.5, y/quant)), 1, max)
	label(x, y, ord = ord, lab, id.n, ...)
	abline(v = quant, h = c(-2.5, 2.5), ...)
	mtext(c("-2.5","2.5"), side = 4, line = 1.2, at = c(-2.5, 2.5), ...)

    } ## rdiag()

    ##	parameters and preconditions

    which <- match.arg(which)
    r <- residuals(x)
    n <- length(r)

    id.n.missing <- missing(id.n) || is.null(id.n)
    ## if id.n is missing, it will be set to a default for each plot.
    if(!id.n.missing) {
	id.n <- as.integer(id.n)
	if(id.n < 0 || id.n > n)
	    stop("'id.n' must be in {1,..,",n,"}")
    }

    mgp <-  c(2.5, 1, 0) # set the margin line (in 'mex' units) for the:
    ## - axis title,
    ## - axis labels and
    ## - axis line.
    ## The default is 'c(3, 1, 0)'.
    if(!classic)
	par(pty = "m")
    else {
	opar <- par(mfrow = c(1,2), pty = "m")
    on.exit(par(opar))
    
	## calculate the LS regression (using LTS with alpha = 1)
	## if intercept, obj$X is augmented with a column of 1s - remove it

	if(x$intercept &&		# model with intercept
	   length(dim(x$X)) == 2 &&	# X is 2-dimensional
	   (nc <- ncol(x$X)) > 1 &&	# X has more than 1 column
	   all(x$X[,1] == 1))       # the first column of X is all 1s
	    X <- x$X[, -1]
	else
	    X <- x$X
	obj.cl <- ltsReg(X, x$Y, intercept = x$intercept, alpha = 1)
    }

    if (ask) {
	op <- par(ask = TRUE)
	on.exit(par(op))
    }

    ## set id.n to the number of regression outliers (weight==0):
    nx <- if(id.n.missing) length(which(x$lts.wt == 0)) else id.n
    if(which == "all" || which == "rqq") {
        ##  VT::20.12.2006 - the standardized residuals are in x$resid
        ##   - no change for the other plot functions - the residuals will be standardized
        ##          inside indexplot(), fitplot(), etc
        myqqplot(x$resid, id.n = nx, ...) # normal QQ-plot of the LTS residuals
        if(classic) # normal QQ-plot of the LS residuals
            myqqplot(obj.cl$resid, classic = TRUE, id.n = nx, ...)
    }

    if(which == "all" || which == "rindex") {
	indexplot(x$residuals, x$scale, id.n = nx, ...) # index plot of the LTS residuals
	if(classic) # index plot of the LS residuals
	    indexplot(obj.cl$residuals, obj.cl$scale, classic = TRUE, id.n = nx, ...)
    }

    if(which == "all" || which == "rfit") {
	fitplot(x, id.n = nx, ...)
	if(classic)
	    fitplot(obj.cl, classic = TRUE, id.n = nx, ...)
    }

    if(which == "all" || which == "rdiag") {
	rdiag(x, id.n = id.n, ...)
	if(classic)
	    rdiag(obj.cl, classic = TRUE, id.n = id.n, ...)
    }
}