File: estimating.functions.R

package info (click to toggle)
robustbase 0.99-7-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,596 kB
  • sloc: fortran: 3,245; ansic: 3,243; sh: 15; makefile: 2
file content (596 lines) | stat: -rw-r--r-- 23,048 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
## Called from ./lmrob_simulation.Rnw
##              ~~~~~~~~~~~~~~~~~~~~~

###########################################################################
## Prediction
###########################################################################

f.predict <- function (object, newdata = NULL, scale = sigma(object),
                       se.fit = FALSE, df = object$df.residual,
                       interval = c('none', 'confidence', 'prediction'),
                       level = 0.95, type = c('response'),
                       terms = NULL, na.action = na.pass,
                       pred.var = res.var/weights, weights = 1,
                       cov = covariance.matrix(object), ...)
{
  ## Purpose: replace predict.lmrob from robustbase package
  ## ----------------------------------------------------------------------
  ## Arguments: See ?predict.lm
  ##            type = 'presponse' ('term' is not supported)
  ##            terms argument is ignored
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  6 Sept 2009, 12:16
  ## take as much from predict.lm as possible
  ## check arguments
  if (!missing(terms)) stop('predict.lmrob: terms argument is ignored')
  ## set data
  tt <- terms(object)
  if (missing(newdata) || is.null(newdata)) {
    mm <- X <- model.matrix(object)
    mmDone <- TRUE
    offset <- object$offset
  }
  else {
    Terms <- delete.response(tt)
    m <- model.frame(Terms, newdata, na.action = na.action,
                     xlev = object$xlevels)
    if (!is.null(cl <- attr(Terms, "dataClasses")))
      .checkMFClasses(cl, m)
    X <- model.matrix(Terms, m, contrasts.arg = object$contrasts)
    offset <- rep(0, nrow(X))
    if (!is.null(off.num <- attr(tt, "offset")))
      for (i in off.num) offset <- offset +
        eval(attr(tt, "variables")[[i + 1]], newdata)
    if (!is.null(object$call$offset))
      offset <- offset + eval(object$call$offset, newdata)
    mmDone <- FALSE
  }
  n <- length(object$residuals)
  p <- object$rank
  if (p < ncol(X) && !(missing(newdata) || is.null(newdata)))
    warning("prediction from a rank-deficient fit may be misleading")
  beta <- coef(object)
  ## ignoring piv here
  predictor <- drop(X %*% beta)
  if (!is.null(offset))
    predictor <- predictor + offset
  interval <- match.arg(interval)
  type <- match.arg(type)
  if (se.fit || interval != "none") {
    res.var <- scale^2
    if (type != "terms") {
      if (p > 0) {
        ## this is probably not optimal...
        ## cov <- covariance.matrix(object) ## set as argument
        ip <- diag(X %*% tcrossprod(cov, X))
      }
      else ip <- rep(0, n)
    }
  }
  if (interval != "none") {
    tfrac <- qt((1 - level)/2, df)
    hwid <- tfrac * switch(interval, confidence = sqrt(ip),
                           prediction = sqrt(ip + pred.var))
    if (type != "terms") {
      predictor <- cbind(predictor, predictor + hwid %o%
                         c(1, -1))
      colnames(predictor) <- c("fit", "lwr", "upr")
    }
  }
  if (se.fit || interval != "none")
    se <- sqrt(ip)
  if (missing(newdata) && !is.null(na.act <- object$na.action)) {
    predictor <- napredict(na.act, predictor)
    if (se.fit)
      se <- napredict(na.act, se)
  }
  if (se.fit)
    list(fit = predictor, se.fit = se, df = df, residual.scale = sqrt(res.var))
  else predictor
}

## predict(obj, pred, interval = 'prediction')
## f.predict(obj, pred, interval = 'prediction')

predict.lmRob <- function(object, newdata = NULL, scale = NULL, ...) {
  ## Purpose: extend predict() functionality to lmRob objects
  ## ----------------------------------------------------------------------
  ## Arguments:
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  6 Sept 2009, 12:16

  class(object) <- c(class(object), "lm")
  object$qr <- qr(sqrt(weights(object)) * model.matrix(object))
  if (missing(scale)) scale <- object$scale
  predict.lm(object, newdata = newdata, scale = scale, ...)
}

###########################################################################
## some helper functions
###########################################################################

f.lmRob <- function(...)
{
  ## Purpose: wrapper for lmRob
  ## ----------------------------------------------------------------------
  ## Arguments: see ?lmRob
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  8 Oct 2009, 10:28
  ## get arguments
  args <- list(...)
  ## update defaults:
  if (is.null(args$mxr)) args$mxr <- 2000
  if (is.null(args$mxf)) args$mxf <- 500
  if (is.null(args$mxs)) args$mxs <- 2000
  ## get all arguments except the arguments of lmRob:
  uw <- c('formula', 'data', 'weights', 'subset', 'na.action', 'model',
          'x', 'y', 'contrasts', 'nrep', 'genetic.control')
  ind <-
    if (is.null(names(args))) rep(FALSE, length(args))
    else names(args) != '' & !names(args) %in% uw
  ## they go into control:
  control <- do.call("lmRob.control", args[ind])
  ## now call lmRob
  do.call("lmRob", c(args[!ind], list(control = control)))
}

## lmRob(y ~ x, d.data, control = lmRob.control(initial.alg = 'fast', efficiency = 0.95, weight = c('bisquare', 'bisquare')))
## lmRob(y ~ x, d.data, initial.alg = 'fast', efficiency = 0.95, weight = c('bisquare', 'bisquare'))
## f.lmRob(y ~ x, d.data, initial.alg = 'fast', efficiency = 0.95, weight = c('bisquare', 'bisquare'))

f.lmRob.S <- function(... , robust.control = lmRob.control()) {
  ## Purpose: call the S estimation procedure of lmRob
  ## ----------------------------------------------------------------------
  ## Arguments: x: design matrix x
  ##            y: vector of observations
  ##            robust.control: control list of lmRob.control()
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date: 29 Oct 2009, 14:54
  ## code: from lmRob.fit.compute, robust package version 0.3-9

  robust.control$initial.alg = 'random'
  robust.control$estim = 'Initial'

  z <- lmRob(..., control = robust.control)
  class(z) <- 'lmrob.S'
  z
}

## f.lmRob.S(rep(1,10), rnorm(10), lmRob.control(weight = c('bisquare', 'bisquare')))

f.eff2c.psi <- function(eff, weight='bisquare') {
  ## Purpose: convert lmRob efficiencies to c.psi
  ## ----------------------------------------------------------------------
  ## Arguments: eff: lmRob efficiency
  ##            weight: type of weight (weight argument in lmRob.control)
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  8 Oct 2009, 15:36

  if(is.null(eff)) return(NULL)

  lw = casefold(weight)

  if (lw == 'bisquare') {
    if (eff == 0.95)      4.685061
    else if (eff == 0.9)  3.882646
    else if (eff == 0.85) 3.443689
    else if (eff == 0.8)  3.136909
    else NA
  } else if (lw == 'optimal') {
    if (eff == 0.95)	  1.060158
    else if (eff == 0.9)  0.9440982
    else if (eff == 0.85) 0.8684
    else if (eff == 0.8)  0.8097795
    else NA
  } else NA
}

f.psi2c.chi <- function(weight) {
  ## Purpose: return lmRob defaults for c.chi
  ## ----------------------------------------------------------------------
  ## Arguments: weight: type of weight
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date: 28 Jan 2010, 10:05

  switch(weight,
         'bisquare' = 1.5477,
         'optimal' = 0.4047)
}


residuals.lmrob.S <- function(obj)
  obj$residuals

robustness.weights <- function(x, ...) UseMethod("robustness.weights")
  ## Purpose: retrieve robustness weights from robust regression return
  ##          object
  ## ----------------------------------------------------------------------
  ## Arguments: obj: robust regression output object
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  6 Oct 2009, 13:42

robustness.weights.lmrob <- robustness.weights.default <- function(obj)
  naresid(obj$na.action, obj$w)

robustness.weights.lm <- function(obj) {
  if (any(class(obj) %in% c('lmrob', 'f.lmrob')))
    stop('Caution: returning incorrect weights')
  naresid(obj$na.action, rep(1, length(obj$resid)))
}
robustness.weights.rlm <- function(obj)
  naresid(obj$na.action, obj$w)

robustness.weights.lmRob <- function(obj) {
  if (obj$robust.control$weight[2] != 'Optimal') {
    c.psi <- f.eff2c.psi(obj$robust.control$efficiency, obj$robust.control$weight[2])
    rs <- obj$residuals / obj$scale
    obj$M.weights <- Mwgt(rs, c.psi, obj$robust.control$weight[2])
  }
  naresid(obj$na.action, obj$M.weights)
}

## t <- f.lmRob(y ~ x, d.data)
## t <- f.lmrob(y ~ x, d.data, method = 'SM')
## t <- f.lmRob(y ~ x, d.data, initial.alg = 'fast', efficiency = 0.95, weight = c('bisquare', 'bisquare'))
## t <- lmRob(y ~ x, d.data, control = lmRob.control(initial.alg = 'fast', efficiency = 0.95, weight = c('bisquare', 'bisquare')))
## robustness.weights(t)

robustness.weights.lmrob.S <- function(obj) {
  rstand <- resid(obj)/sigma(obj)
  Mwgt(rstand, obj$control$tuning.chi, obj$control$psi)
}

## MM: Why on earth is this called  covariance.matrix() ?? -- S and R standard is vcov() !!
## -- For lm, they are indeed identical;  for  lmrob, too
## HOWEVER, the *.rlm() method of cov..matrix() *differs* from vcov.rlm() -- why?

covariance.matrix <- function(x, ...) UseMethod("covariance.matrix")
  ## Purpose: retrieve covariance matrix from robust regression return
  ##          object
  ## ----------------------------------------------------------------------
  ## Arguments: obj: robust regression output object
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  6 Oct 2009, 13:42

covariance.matrix.lmrob <- covariance.matrix.default <- function(obj) obj$cov

covariance.matrix.rlm <- function(obj, method = 'XtWX')
  summary(obj, method)$cov

covariance.matrix.lm <- function(obj) {
  s <- summary(obj)
  s$cov * s$sigma^2
}

sigma <- function(x, ...) UseMethod("sigma")
  ## Purpose: retrieve scale estimate from robust regression return
  ##          object
  ## ----------------------------------------------------------------------
  ## Arguments: obj: robust regression output object
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  6 Oct 2009, 13:42

sigma.lmrob <- sigma.default <- function(obj)
  obj$scale

sigma.lm <- function(obj)
  summary(obj)$sigma

sigma.rlm <- function(obj)
  obj$s

converged <- function(x, ...) UseMethod("converged")
  ## Purpose: check convergence status of return object
  ## ----------------------------------------------------------------------
  ## Arguments: obj: robust regression output object
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date:  6 Oct 2009, 13:42

converged.default <- function(obj) is.list(obj) && !is.null(obj$converged) && obj$converged
converged.lm <- function(obj)
  if (is.null(obj$converged)) TRUE else obj$converged
converged.lmRob <- function(obj) is.list(obj) && !is.null(obj$est) && obj$est == 'final'

###########################################################################
## alternative estimation methods
###########################################################################

lmrob.u <- function(formula, data, subset, weights, na.action, ..., start)
{
  ## Purpose: update lmrob object if possible
  ## ----------------------------------------------------------------------
  ## Arguments: (lmrob arguments)
  ##            start: object to update
  ## ----------------------------------------------------------------------
  ## Author: Manuel Koller, Date: 28 Jul 2010, 08:30

  args <- as.list(match.call())[-1]
  args$start <- NULL
  if (!missing(start)) {
    ## if start is a string, get start from parent
    if (is.character(start)) start <- get(start, envir=parent.frame())
    if (class(start) == 'lmrob') {
      ## check whether we can update start easily
      oldargs <- as.list(start$call)[-1]
      if (isTRUE(all.equal(args, oldargs))) return(start)
      else {
        ret <- start
        ## check method argument (ignore cov argument)
        if (is.null(oldargs$method)) oldargs$method <- start$control$method
        if (oldargs$method == 'MM') oldargs$method <- 'SM'
        if (is.null(args$method) || args$method == 'MM') args$method <- 'SM'
        rest.ok <-
          isTRUE(all.equal(oldargs[!names(oldargs) %in% c('method', 'cov')],
                           args[!names(args) %in% c('method', 'cov')]))
        if (is.null(start$x))
          stop('x matrix not found. Use lmrob(..., x = TRUE).')
        if (args$method != oldargs$method && rest.ok) {
          ## method is different, but the rest is the same
          oldsteps <- strsplit(oldargs$method, "")[[1]]
          steps    <- strsplit(args   $method, "")[[1]]
          ## reduce start to largest common initial estimator
          while(length(oldsteps) > length(steps) ||
                any(oldsteps != steps[seq_along(oldsteps)])) {
            elems <- c('na.action', 'offset', 'contrasts',
                       'xlevels', 'terms', 'model', 'x', 'y',
                       'degree.freedom', 'df.residual', 'call')
            ret <- c(ret$init, start[elems[elems %in% names(ret)]])
            class(ret) <- 'lmrob'
            oldsteps <- oldsteps[-length(oldsteps)]
          }
          ret$call$method <- args$method
          steps <- steps[- seq_along(oldsteps)]
          if (length(steps) > 0) {
            ret$cov <- NULL
            for (step in steps) {
              ret <- switch(step, D = lmrob..D..fit(ret),
                            M = lmrob..M..fit(obj = ret),
                            N = {
                              y <- model.response(ret$model)
                              ## taus are standardized because otherwise
                              ## the resulting efficiency is lower
                              tau <- ret$tau / mean(ret$tau)
                              tmp <- lmrob..M..fit(x = ret$x/tau, y = y/tau,
                                                   obj = ret)
                              tmp$residuals <- y - ret$x %*% ret$coef
                              tmp$qr <- NULL
                              tmp
                            },
                            stop("only M or D steps supported"))
              if (!ret$converged) {
                warning(step, "-step did NOT converge.")
                break
              }
            }
          } else {
            if (is.null(ret$qr))  ret$qr <- qr(ret$x * sqrt(ret$weights))
            ret$rank <- ret$qr$rank
          }
        }
        ## update covariance matrix
        if (rest.ok) {
          if (is.null(args$cov))
            args$cov <- lmrob.control(method=ret$control$method)$cov
          ret$cov <- vcov(ret, args$cov)
          ret$control$cov <- args$cov
          ret$call$cov <- args$cov

          return(ret)
        }
      }
    }
  }
  ## if we're here, update failed or there was no start
  cl <- match.call()
  cl$start <- NULL
  cl[[1]] <- as.symbol("lmrob")
  eval(cl, envir = parent.frame())
}

## lmrob.u <- function(formula, data, subset, weights, na.action, ..., start)
## {
##   cl <- match.call()
##   cl$start <- NULL
##   cl[[1]] <- as.symbol("lmrob")
##   eval(cl, envir = parent.frame())
##   ## do.call('lmrob', args, envir = parent.frame())
## }

## set.seed(0); d.data <- data.frame(y = rnorm(10), x = 1:10)

## lres <- lmrob(y ~ x, d.data, method = 'SM', psi = 'lgw', cov = '.vcov.avar1')
## obj1 <- lmrob(y ~ x, d.data, method = 'SM', psi = 'lgw', cov = '.vcov.w')
## test <- lmrob.u(y ~ x, d.data, method = 'SM', psi = 'lgw', cov = '.vcov.w',
##                 start = 'lres')
## all.equal(obj1, test)

## obj2 <- lmrob(y ~ x, d.data, method = 'SMD', psi = 'lgw', cov = '.vcov.w')
## test <- lmrob.u(y ~ x, d.data, method = 'SMD', psi = 'lgw',
##                 start = 'lres')
## all.equal(obj2, test[names(obj2)], check.attr = FALSE)

## obj3 <- lmrob(y ~ x, d.data, method = 'SMDM', psi = 'lgw', cov = '.vcov.w')
## test <- lmrob.u(y ~ x, d.data, method = 'SMDM', psi = 'lgw',
##                 start = 'lres')
## all.equal(obj3, test[names(obj3)], check.attr = FALSE)

## test <- lmrob.u(y ~ x, d.data, method = 'SMDM', psi = 'lgw',
##                 start = 'obj2')
## all.equal(obj3, test[names(obj3)], check.attr = FALSE)

## test <- lmrob.u(y ~ x, d.data, method = 'SM', psi = 'lgw', cov = '.vcov.w',
##                 start = obj3)
## all.equal(obj1, test[names(obj1)], check.attr = FALSE)

##' Compute the MM-estimate with corrections qE or qT as in
##' 	Maronna, R. A., Yohai, V. J., 2010.
##' 	Correcting MM estimates for "fat" data sets.
##' 	Computational Statistics & Data Analysis 54 (12), 3168–3173.
##' @title MM-estimate with Maronna-Yohai(2010) corrections
##' @param formula
##' @param data
##' @param subset
##' @param weights
##' @param na.action
##' @param ...
##' @param type
##' @return
##' @author Manuel Koller
lmrob.mar <- function(formula, data, subset, weights, na.action, ...,
                      type = c("qE", "qT"))
{
  ## get call and modify it so that
  ## lmrob returns the appropriate S-estimate
  cl <- match.call()
  method <- if (is.null(cl$method)) {
    if (!is.null(cl$control)) list(...)[["control"]]$method else 'MM'
  } else cl$method
  cl$type <- NULL
  cl$method <- 'S'
  cov <- if(!is.null(cl$cov)) cl$cov else '.vcov.w'
  cl$cov <- 'none'
  cl[[1]] <- as.symbol("lmrob")
  ## get S-estimate
  obj <- eval(cl, envir = parent.frame())
  ## correct S-scale estimate according to formula
  n <- length(obj$resid)
  p <- obj$rank
  type <- match.arg(type)
  ## for type qE: adjust tuning.chi (h0) to account for different delta
  if (type == 'qE') {
    if (obj$control$psi != 'bisquare')## FIXME: "tukey" should work, too
      stop('lmrob.mar: type qE is only available for bisquare psi')
    h0 <- uniroot(function(c) robustbase:::lmrob.bp('bisquare', c) - (1-p/n)/2,
                  c(1, 3))$root
    ## update scale
    obj$scale <- obj$scale * obj$control$tuning.chi / h0
    obj$control$tuning.chi <- h0
  }
  ## calculate q
  q <- switch(type,
              "qT" = {
                  rs <- obj$resid / obj$scale
                  ## \hat a = \mean \rho(r/sigma)^2
                  ## obj$control$tuning.chi == h_0
                  ahat <- mean(Mpsi(rs, obj$control$tuning.chi,
                                    obj$control$psi)^2)
                  ## \hat b = \mean \rho''(r/sigma)
                  bhat <- mean(Mpsi(rs, obj$control$tuning.chi,
                                    obj$control$psi, 1))
                  ## \hat c = \mean \rho'(r/sigma) * r/sigma
                  chat <- mean(Mpsi(rs, obj$control$tuning.chi,
                                    obj$control$psi)*rs)
                  ## qT:
                  1 + p*ahat/n/2/bhat/chat
              },
              "qE" = 1 / (1 - (1.29 - 6.02/n)*p/n)
              ,
              stop("unknown type ", type))
  ## update scale
  obj$scale.uncorrected <- obj$scale
  obj$scale <- q * obj$scale
  ## add M step if requested
  if (method %in% c('MM', 'SM')) {
    obj$control$cov <- cov
    obj <- lmrob..M..fit(obj = obj)
    ## construct a proper lmrob object
    elems <- c('na.action', 'offset', 'contrasts',
               'xlevels', 'terms', 'model', 'x', 'y')
    obj <- c(obj, obj$init.S[elems[elems %in% names(obj$init.S)]])
    obj$degree.freedom <- obj$df.residual <- n - obj$rank
  } else if (method != 'S')
    stop("lmrob.mar: Only method = S, SM and MM supported.")
  ## update class
  class(obj) <- 'lmrob'
  ## return
  obj
}

## summary(lmrob(y ~ x, d.data))
## summary(lmrob.mar(y ~ x, d.data, type = 'qE'))
## summary(tmp <- lmrob.mar(y ~ x, d.data, type = 'qT'))

## this function calculates M-estimate of scale
## with constants as used for S-estimate with maximum breakdown point
lmrob.mscale <- function(e, control, p = 0L) {
  ret <- .C("R_lmrob_S",
            x = as.double(e), ## this is ignored
            y = as.double(e),
            n = as.integer(length(e)),
            p = as.integer(p), ## divide the sum by n - p
            nResample = 0L, ## find scale only
            scale = as.double(mad(e)),
            coef = double(1),
            as.double(control$tuning.chi),
            as.integer(.psi2ipsi(control$psi)),
            as.double(control$bb), ## delta
            best_r = as.integer(control$best.r.s),
            groups = as.integer(control$groups),
            n.group = as.integer(control$n.group),
            k.fast.s = as.integer(control$k.fast.s),
            k.max = as.integer(control$k.max),
            maxit.scale = as.integer(control$maxit.scale),
            refine.tol = as.double(control$refine.tol),
            inv.tol = as.double(control$solve.tol),
            converged = logical(1),
            trace.lev = as.integer(0),
            mts = as.integer(control$mts),
            ss = robustbase:::.convSs(control$subsampling),
            fast.s.large.n = as.integer(length(e)+1),
            PACKAGE = 'robustbase')

  ret$scale
}

lmrob.dscale <- function(r, control,
                         kappa = robustbase:::lmrob.kappa(control = control)) {
  tau <- rep.int(1, length(r))
  w <- Mwgt(r, control$tuning.psi, control$psi)
  scale <- sqrt(sum(w * r^2) / kappa / sum(tau^2*w))
  psi <- control$psi
  c.psi <- robustbase:::.psi.conv.cc(psi, control$tuning.psi)
  ret <- .C("R_find_D_scale",
            r = as.double(r),
            kappa = as.double(kappa),
            tau = as.double(tau),
            length = as.integer(length(r)),
            scale = as.double(scale),
            c = as.double(c.psi),
            ipsi = .psi2ipsi(psi),
            type = 3L, ## dt1 as only remaining option
            rel.tol = as.double(control$rel.tol),
            k.max = as.integer(control$k.max),
            converged = logical(1),
            PACKAGE = 'robustbase')
  ret$scale
}



## sd.trim function by Gregor Gorjanc
## from http://ggorjan.blogspot.com/2008/11/trimmed-standard-deviation.html
## with added correction factor to be unbiased at the normal
sd.trim <- function(x, trim=0, na.rm=FALSE, ...)
{
  if(!is.numeric(x) && !is.complex(x) && !is.logical(x)) {
    warning("argument is not numeric or logical: returning NA")
    return(NA_real_)
  }
  if(na.rm) x <- x[!is.na(x)]
  if(!is.numeric(trim) || length(trim) != 1)
    stop("'trim' must be numeric of length one")
  n <- length(x)
  if(trim > 0 && n > 0) {
    if(is.complex(x)) stop("trimmed sd are not defined for complex data")
    if(trim >= 0.5) return(0)
    lo <- floor(n * trim) + 1
    hi <- n + 1 - lo
    x <- sort.int(x, partial = unique(c(lo, hi)))[lo:hi]
  }
  corr <- if (0 < trim && trim < 0.5) {
    z <- qnorm(trim, lower.tail=FALSE)# = Phi^{-1}(1 - tr)
    sqrt(1 - 2/(1-2*trim) *z*dnorm(z))
  } else 1

  sd(x)/corr
}