1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
#### Utility functions for testing covMcd()
#### -------------------------------------- ../tests/tmcd.R
## "workhorse" -- by default *passed* to and called from doMCDdata():
domcd1 <- function(x, xname, nrep = 1,
## These are all got from doMCDdata() [yuck!]
method = get("method", parent.frame()), # compromise
time = get("time", parent.frame()), # compromise
short = get("short", parent.frame()), # compromise
full = get("full", parent.frame()), # compromise
lname = 20)
{
if(short && full)
stop("you should not set both 'full' and 'short' to TRUE")
force(xname)# => evaluate when it is a data(<>, ..) call
n <- dim(x)[1]
p <- dim(x)[2]
if(method == "MASS") {
mcd <- MASS::cov.mcd(x)
mcd$quan <- (n + p + 1) %/% 2 #default: floor((n+p+1)/2)
}
else if(method == "DetMCD") {
mcd <- covMcd(x, nsamp="deterministic") # trace = FALSE
}
else {
mcd <- covMcd(x) # trace = FALSE
}
if(full) {
header <- get("header", parent.frame())
header(time)
}
xres <- sprintf("%*s %3d %3d %3d %12.6f", lname, xname,
n, p, mcd$quan, mcd$crit)
if(time) {
xtime <- system.time(repMCD(x, nrep, method))[1]/nrep
xres <- sprintf("%s %10.1f", xres, 1000 * xtime)
}
cat(xres, "\n")
if(!short) {
cat("Best subsample: \n")
print(mcd$best)
ibad <- which(unname(mcd$mcd.wt) == 0)
nbad <- length(ibad)
cat("Outliers: ",nbad, if(nbad > 0)":", "\n")
if(nbad > 0)
print(ibad)
if(full) {
cat("------------- *MCD() result: --------------------------\n")
print(mcd)
}
cat("--------------------------------------------------------\n")
}
}## {domcd1}
##' Test the function covMcd() on the literature datasets:
##'
##' Call covMcd() for "all" datasets in robustbase / rrcov and print:
##' - execution time (if time is true)
##' - objective function
##' - best subsample found (if short is false)
##' - outliers identified (with cutoff 0.975) (if short is false)
##' - estimated center and covarinance matrix if full is true)
##'
##' @param nrep : [integer] number of repetitions to use for estimating the
##' (average) execution time
##' @param method : [character] select a method: one of (FASTMCD, MASS)
##' @param time : [logical] whether to evaluate the execution time
##' @param short : [logical] whether to do short output (i.e. only the
##' objective function value). If short == FALSE,
##' the best subsample and the identified outliers are
##' printed. See also the parameter full below
##' @param full : [logical] whether to print the estimated cente and covariance matrix
##' @param digits
##' @param domcd workhorse function, to be called e.g. as
##' @examples domcd(starsCYG, data(starsCYG), nrep)
##' @author Valentin Todorov; tweaks by Martin Maechler
##' @note Is called from ../../demo/determinMCD.R and ../../tests/tmcd.R
doMCDdata <- function(nrep = 1, method = c("FASTMCD", "MASS", "DetMCD"),
time = nrep >= 3, short = time, full = !short,
digits=5, domcd = domcd1)
{
stopifnot(is.function(domcd), length(formals(domcd)) >= 3)
options(digits = digits)
method <- match.arg(method) # *is* then accessed from domcd(.)
stopifnot(require("robustbase")) # all data() which do not specify package
data(Animals, package = "MASS")
brain <- Animals[c(1:24, 26:25, 27:28),]
data(list = c("fish", "pottery", "rice", "un86", "wages"), package = "rrcov")
tmp <- sys.call()
cat("\nCall: ", deparse(substitute(tmp)),"\n")
header <- function(time) { ## the string length here require 'lname <- 20' {FIXME}
## 1 2
## 1 3 5 7 901 3 5 7 90 2 4
cat("Data Set n p h(alf) LOG(obj)",if(time)" Time [ms]","\n",
"=============================================",if(time)"===========","\n",
sep="")
}
if(full) {
## header() is called in each domcd()
} else ## here
header(time)
domcd(bushfire, data(bushfire), nrep)
domcd(heart[, 1:2], data(heart), nrep)
domcd(starsCYG, data(starsCYG), nrep)
domcd(stack.x, data(stackloss), nrep)
domcd(data.matrix(subset(phosphor, select= -plant)),data(phosphor), nrep)
domcd(data.matrix(subset(coleman, select = -Y)), data(coleman), nrep)
domcd(data.matrix(subset(salinity, select = -Y)), data(salinity), nrep)
domcd(data.matrix(subset(wood, select = -y)), data(wood), nrep)
domcd(data.matrix(subset(hbk, select = -Y)), data(hbk), nrep)
domcd(brain, "Animals", nrep)
domcd(milk, data(milk), nrep)
domcd(lactic, data(lactic), nrep)
domcd(pension, data(pension), nrep)
domcd(pilot, data(pilot), nrep)
## This is for CovMcdBig ....
## domcd(radarImage, data(radarImage), nrep)
## domcd(NOxEmissions, data(NOxEmissions), nrep)
domcd(data.matrix(subset(vaso, select = -Y)), data(vaso), nrep)
domcd(data.matrix(subset(wagnerGrowth, select = -Period)), data(wagnerGrowth), nrep)
## Obs 14 has missing, column 7 is categorical
domcd(fish[-14,-7], data(fish, package="rrcov"), nrep)
domcd(pottery[,-7], data(pottery, package="rrcov"), nrep)
domcd(rice, data(rice, package="rrcov"), nrep)
domcd(un86, data(un86, package="rrcov"), nrep)
## there are missing values
domcd(wages[-c(29, 31, 38),-9], data(wages, package="rrcov"), nrep)
cat("========================================================\n")
} ## {doMCDdata}
if(FALSE){
data(mortality, package = "riv")
mm <- as.data.frame(lapply(mortality, signif, 3))
for(j in c(1,2,6,7))
mm[,j] <- mm[,j] * 10
mm[,5] <- mm[,5] * 1000
mm[,8] <- mm[,8] / 100
mort3 <- mm
dput(mort3)
}
## which gives the equivalent of
mort3 <-
data.frame(MO70 = c(140, 101, 86, 102, 115, 121, 118, 76.6,
131, 112, 111, 112, 117, 118, 123, 122, 81.7, 108, 111, 109,
92.5, 83.9, 93.8, 135, 124, 126, 122, 120, 127, 115, 156, 95.1,
127, 129, 116, 82.3, 115, 106, 134, 94.9, 119, 111, 131, 85.6,
135, 126, 141, 152, 137, 151, 93.6, 84.2, 78, 50.2, 81.3, 112,
80.1, 125, 120, 143),
MAGE = c(297, 277, 275, 268, 296, 327, 314, 258, 342, 278, 278,
313, 284, 272, 296, 277, 271, 296, 286, 250, 280, 270, 246, 301,
279, 287, 293, 271, 291, 295, 314, 267, 275, 307, 259, 251, 324,
285, 288, 254, 278, 287, 316, 287, 326, 309, 334, 369, 321, 311,
261, 272, 260, 244, 248, 277, 240, 295, 319, 346),
CI68 = c(137, 137, 129, 129, 151, 157, 157, 157, 157, 202, 202, 202,
138, 160, 190, 191, 191, 191, 159, 159, 146, 146, 203, 203, 182, 166,
203, 203, 167, 167, 165, 153, 149, 149, 149, 157, 152, 183, 183, 183,
183, 183, 183, 111, 171, 148, 148, 148, 192, 160, 160, 172, 172,
172, 172, 101, 173, 173, 144, 181),
MDOC = c(142, 80.4, 148, 167, 230, 187, 240, 149, 240, 195, 327,
377, 203, 160, 161, 68.7, 141, 120, 176, 105, 128, 112, 98.9, 160,
209, 200, 153, 126, 157, 157, 145, 160, 158, 102, 195, 188, 250,
143, 157, 186, 114, 129, 129, 143, 186, 207, 144, 112, 157, 121,
168, 155, 144, 144, 120, 194, 93.6, 231, 185, 89.7),
DENS = c(37, 37, 27, 32, 17, 13, 23, 19, 27, 29, 15, 15, 48, 34,
26, 47, 17, 10, 10, 18, 11, 13, 26, 19, 55, 17, 16, 7, 10, 17,
44, 13, 18, 26, 40, 22, 29, 7, 28, 10, 15, 1, 11, 10, 8, 13, 13,
6, 10, 26, 49, 28, 32, 18, 62, 15, 21, 18, 10, 12),
NONW = c(4.22, 3.36, 0.67, 0.52, 2.51, 0.82, 4.07, 1.11,
2.86, 2.92, 2.74, 1.05, 7.23, 5.16, 3.44, 2.84, 1.84,
1.47, 0.62, 0.03, 0.96, 1.07, 1.74, 2.41, 0.45, 4.7, 4.45,
1.2, 0.64, 2.28, 4.13, 1.06, 4.02, 2.22, 5.6, 0.43, 2.34,
1.78, 2.81, 1.9, 3.09, 1.43, 2.58, 1.34, 0.78, 3.44, 2.07,
0.68, 1, 3.6, 3.92, 2.58, 2.66, 0.05, 0.86, 0.32, 3.02,
4.24, 1.26, 1.08),
EDUC = c(454, 516, 601, 631, 565, 620, 661, 653, 661, 591,
568, 499, 685, 534, 539, 536, 560, 542, 680, 546, 648,
632, 601, 469, 458, 446, 521, 540, 661, 601, 480, 627,
506, 363, 551, 662, 518, 556, 484, 607, 562, 517, 521,
582, 629, 506, 534, 433, 459, 476, 492, 548, 517, 517,
468, 685, 483, 471, 678, 528),
IN69 = c(86.9, 99.3, 113, 99.2, 104, 118, 113, 117, 125,
100, 104, 115, 122, 107, 135, 101, 123, 114, 114, 113,
108, 109, 100, 99.8, 102, 100, 110, 112, 111, 113, 92.7,
116, 86.3, 103, 86.4, 109, 116, 112, 104, 108, 103, 116,
99.3, 116, 114, 104, 105, 97, 102, 83.4, 101, 125, 117,
118, 90.3, 108, 92.4, 106, 126, 109))
###'------*Generate* data for benchmarking ----------------------------------------
##' Generates a location contaminated multivariate
##' normal sample of n observations in p dimensions
##' (1-eps) * N_p(0, I_p) + eps * N_(m,I_p)
##' where
##' m = (b,b,...,b)
##' Defaults: eps=0 and b=10
##' @title Generate n x p location contaminated MV data
##' @param n number of observations
##' @param p number of variables
##' @param eps amount of contamination
##' @param b mean of "outliers"
gendata <- function(n,p, eps=0, b=10) {
if(missing(n) || missing(p))
stop("Please specify (n,p)")
if(!is.numeric(eps) || length(eps) != 1 || eps < 0 || eps >= 0.5)
stop("eps must be in [0,0.5)")
X <- matrix(rnorm(n*p), n, p)
nbad <- as.integer(eps * n)
if(nbad > 0) {
b <- rep(b, length = p) # recycle to p-vector
## = E[.] of bad obs.
xind <- sample(n,nbad)
X[xind,] <- X[xind, , drop=FALSE] + rep(b, each=nbad)
}
list(X=X, xind=if(nbad > 0) xind)
}
##' Repeated calls to different MCD algorithms for timing purposes *only*
repMCD <- function(x, nrep = 1, method = "FASTMCD") {
stopifnot(length(nrep) == 1, nrep >= 1)
switch(method,
"FASTMCD" = replicate(nrep, covMcd(x)),
"bestMCD" = replicate(nrep, covMcd(x, nsamp= "best")),
"exactMCD" = replicate(nrep, covMcd(x, nsamp= "exact")),
"DetMCD" = replicate(nrep, covMcd(x, nsamp="deterministic")),
"MASS.best" = replicate(nrep, MASS::cov.mcd(x)),# uses nsamp = "best" ==> up to 5000
## rrcov.control()$nsamp == 500 :
"MASS.500" = replicate(nrep, MASS::cov.mcd(x, nsamp = 500)),
## otherwise:
stop(gettextf("Method '%s' not yet implemented", method)))
}
repMCD.meths <- function() {
switch.expr <- body(repMCD)[[3]]
m <- names(switch.expr)
m[m != ""]
}
if(FALSE)
repMCD.meths()
## [1] "FASTMCD" "bestMCD" "DetMCD" "MASS.best" "MASS.500"
##' calls gendata(), repMCD()
dogen <- function(nrep=1, eps=0.49, method = repMCD.meths(), ## "FASTMCD" is first
p.set = c(2, 5, 10, 20, 30),
n.set = c(100, 500, 1000, 10000, 50000),
n.p.ratio = 5,
seed = 1234)
{
domcd <- function(x, nrep=1){
## system.time() *does* gc()
xtime <- system.time(repMCD(x, nrep, method))[1]/nrep
cat(sprintf("%6d %3d %12.2f\n", dim(x)[1], dim(x)[2], xtime))
xtime
}
set.seed(seed)
method <- match.arg(method)
mkL <- function(ch,m) paste(ch,m,sep="=")
ans <- matrix(NA, length(n.set), length(p.set),
dimnames = list(mkL("n",n.set), mkL("p",p.set)))
cat(sprintf("Method: %-12s; nrep = %d\n", method, nrep),
"------------------------------\n",
" n p Time\n",
"=======================\n", sep="")
for(n in n.set) {
n. <- mkL("n",n)
for(p in p.set) {
if(n.p.ratio * p <= n) {
xx <- gendata(n, p, eps)
ans[n., mkL("p",p)] <- domcd(xx$X, nrep)
}
}
}
cat("=======================\n")
cat(sprintf("Total time: %11.2f\n", nrep * sum(ans, na.rm=TRUE)))
structure(ans, nrep = nrep, method=method)
}## {dogen}
###' ------------------ These can only be used with rrcov :: CovMcd() --------------
docheck <- function(n, p, eps, ...) {
xx <- gendata(n,p,eps)
mcd <- CovMcd(xx$X, ...)
check(mcd, xx$xind)
}
##' check if mcd is robust w.r.t xind, i.e. check how many of xind
##' did not get zero weight
check <- function(mcd, xind){
mymatch <- xind %in% which(mcd@wt == 0)
length(xind) - sum(mymatch)
}
|