File: OGK-ex.Rout.save

package info (click to toggle)
robustbase 0.99-7-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,596 kB
  • sloc: fortran: 3,245; ansic: 3,243; sh: 15; makefile: 2
file content (137 lines) | stat: -rw-r--r-- 4,996 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

R version 2.4.0 Patched (2006-10-03 r39576)
Copyright (C) 2006 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(robustbase)
> 
> ## minimal testing only
> data(ruspini, package = "cluster")
> 
> rub1 <- covOGK(ruspini, 1, scaleTau2, covGK, hard.rejection, consistency=FALSE)
> rub2 <- covOGK(ruspini, 2, scaleTau2, covGK, hard.rejection, consistency=FALSE)
> 
> AE <- function(x,y) all.equal(x,y, tolerance = 2e-15)
> ## The following test is already fulfilled by Kjell Konis'  original code:
> stopifnot(AE(c(rub1$wcov)[c(1,3:4)],
+              c(917.99893333333, 94.9232, 2340.319288888888)),
+           all.equal(rub1$wcov, rub2$wcov, tolerance=0)
+           ,
+           AE(c(rub1$cov)[c(1,3:4)],
+              c(923.5774514441657, 91.5385216376565, 2342.4556232436971))
+           ,
+           AE(c(rub2$cov)[c(1,3:4)],
+              c(927.2465953711782, 91.8009184487779, 2346.5790105548940))
+           )
> 
> data(milk)
> cM1 <- covOGK(milk, 1, sigmamu = scaleTau2, weight.fn = hard.rejection)
> cM2 <- covOGK(milk, 2, sigmamu = scaleTau2, weight.fn = hard.rejection)
> 
> symnum(cov2cor(cM1 $cov))
                    
[1,] 1              
[2,]   1            
[3,] . . 1          
[4,] .   * 1        
[5,] . . * * 1      
[6,] . . * * * 1    
[7,] . . . . . . 1  
[8,]   . , . . . . 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
> symnum(cov2cor(cM2 $cov))
                    
[1,] 1              
[2,]   1            
[3,] . . 1          
[4,] . . B 1        
[5,] . . * * 1      
[6,] . . B * * 1    
[7,] . , . . . . 1  
[8,]   . . . . . . 1
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
> symnum(cov2cor(cM1 $wcov))
   X1 X2 X3 X4 X5 X6 X7 X8
X1 1                      
X2    1                   
X3       1                
X4       B  1             
X5       *  *  1          
X6       *  *  *  1       
X7 .  .              1    
X8    .  .  .  .  .  .  1 
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
> symnum(cov2cor(cM2 $wcov))
   X1 X2 X3 X4 X5 X6 X7 X8
X1 1                      
X2    1                   
X3       1                
X4 .     B  1             
X5       *  B  1          
X6       B  B  B  1       
X7 .  ,  .  .  .  .  1    
X8    .  .  .  .  .  .  1 
attr(,"legend")
[1] 0 ‘ ’ 0.3 ‘.’ 0.6 ‘,’ 0.8 ‘+’ 0.9 ‘*’ 0.95 ‘B’ 1
> 
> cMQn  <- covOGK(milk, sigmamu = s_Qn, weight.fn = hard.rejection)
> cMSn  <- covOGK(milk, sigmamu = s_Sn, weight.fn = hard.rejection)
> cMiqr <- covOGK(milk, sigmamu = s_IQR, weight.fn = hard.rejection)
> cMmad <- covOGK(milk, sigmamu = s_mad, weight.fn = hard.rejection)
> 
> as.dist(round(cov2cor(cMQn$wcov), 3))
      X1    X2    X3    X4    X5    X6    X7
X2 0.091                                    
X3 0.227 0.187                              
X4 0.288 0.176 0.964                        
X5 0.256 0.132 0.943 0.952                  
X6 0.241 0.196 0.954 0.956 0.957            
X7 0.445 0.634 0.360 0.372 0.377 0.370      
X8 0.014 0.452 0.440 0.380 0.340 0.350 0.479
> as.dist(round(cov2cor(cMSn$wcov), 3))
      X1    X2    X3    X4    X5    X6    X7
X2 0.096                                    
X3 0.242 0.219                              
X4 0.305 0.200 0.960                        
X5 0.269 0.142 0.945 0.952                  
X6 0.260 0.233 0.948 0.953 0.964            
X7 0.445 0.636 0.391 0.399 0.395 0.408      
X8 0.020 0.448 0.453 0.384 0.331 0.360 0.484
> as.dist(round(cov2cor(cMiqr$wcov), 3))
      X1    X2    X3    X4    X5    X6    X7
X2 0.162                                    
X3 0.181 0.215                              
X4 0.225 0.199 0.964                        
X5 0.210 0.140 0.945 0.954                  
X6 0.187 0.239 0.950 0.951 0.954            
X7 0.453 0.660 0.350 0.354 0.355 0.367      
X8 0.111 0.454 0.470 0.407 0.345 0.404 0.516
> as.dist(round(cov2cor(cMmad$wcov), 3))
       X1     X2     X3     X4     X5     X6     X7
X2  0.077                                          
X3  0.228  0.175                                   
X4  0.289  0.159  0.962                            
X5  0.257  0.092  0.945  0.952                     
X6  0.238  0.189  0.954  0.956  0.962              
X7  0.451  0.588  0.345  0.358  0.353  0.358       
X8 -0.003  0.392  0.488  0.412  0.353  0.380  0.439
> 
> 
> cat('Time elapsed: ', proc.time(),'\n') # for ``statistical reasons''
Time elapsed:  1.925 0.07 2.512 0 0 
>