1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
### lmrob() with "real data" -----------------------
## testing functions:
source(system.file("xtraR/test-tools.R", package = "robustbase"))
(doExtras <- robustbase:::doExtras())
showProc.time()
library(robustbase)
##' short form to get "pure" robustness weights
rw <- function(fm) unname(weights(fm, type="robustness"))
set.seed(0)
data(salinity)
summary(m0.sali <- lmrob(Y ~ . , data = salinity))
(A1 <- anova(m0.sali, Y ~ X1 + X3))
## -> X2 is not needed
(m1.sali <- lmrob(Y ~ X1 + X3, data = salinity))
(A2 <- anova(m0.sali, m1.sali)) # the same as before
stopifnot(all.equal(A1[2,"Pr(>chisq)"],
A2[2,"Pr(>chisq)"], tolerance=1e-14))
anova(m0.sali, m1.sali, test = "Deviance")
## whereas 'X3' is highly significant:
m2 <- update(m0.sali, ~ . -X3)
(A3 <- anova(m0.sali, m2))
(A4 <- anova(m0.sali, m2, test = "Deviance"))
cX3 <- c(Estimate = -0.627327396, `Std. Error` = 0.15844971,
`t value` = -3.9591577, `Pr(>|t|)` = 0.000584156)
stopifnot(all.equal(cX3, coef(summary(m0.sali))["X3",], tolerance = 1e-6))
showProc.time()
## example(lmrob)
set.seed(7)
data(coleman)
summary( m1 <- lmrob(Y ~ ., data=coleman) )
stopifnot(identical(which(rw(m1) < 0.2), c(3L, 18L)))
if(FALSE) # to find out *why setting = "KS201x" fails
trace(lmrob.S, exit = quote({cat("coef:\n"); print(b$coefficients)}))
if(FALSE) # to find out via setting = "KS201x" fails here in the *initial* estimate
debug(lmrob.S)
data(starsCYG)
lmST <- lm(log.light ~ log.Te, data = starsCYG)
(RlmST <- lmrob(log.light ~ log.Te, data = starsCYG, control=lmrob.control(trace = 1)))
summary(RlmST)
## Least Sq. w/ negative slope, where robust has slope ~= 2.2 :
stopifnot(exprs = {
coef(lmST)[["log.Te"]] < 0
all.equal(coef(RlmST), c("(Intercept)" = -4.969, log.Te=2.253), tol = 1e-3)
identical(which(rw(RlmST) < 0.01), as.integer( c(11,20,30,34) ))
})
showProc.time()
## ==> Now see that "KS2011" and "KS2014" both break down -- and it is the fault of "lqq" *only* :
(RlmST.11 <- update(RlmST, control = lmrob.control("KS2011", trace= 1)))
(RlmST.14 <- update(RlmST, control = lmrob.control("KS2014", trace= 1)))
(RlmSTM11 <- update(RlmST, control = lmrob.control("KS2011", method="MM", trace= 1)))
(RlmSTM14 <- update(RlmST, control = lmrob.control("KS2014", method="MM", trace= 1)))
## using "biweight" instead of "lqq" fixes the problem :
(RlmSTbM11 <- update(RlmST,control = lmrob.control("KS2011", method="MM", psi="biweight",trace= 1)))
(RlmSTbM14 <- update(RlmST,control = lmrob.control("KS2014", method="MM", psi="biweight",trace= 1)))
(RlmSTb.11 <- update(RlmST,control = lmrob.control("KS2011", psi="biweight",trace= 1)))
(RlmSTb.14 <- update(RlmST,control = lmrob.control("KS2014", psi="biweight",trace= 1)))
## NB: RlmST has component 'init.S' the others have "init" -- documented in ?lmrob.fit == ../man/lmrob.fit.Rd
R.ini.cf <- t(sapply(mget(ls(patt = "^RlmST")), function(OB) OB$init$coef))
R..cf <- t(sapply(mget(ls(patt = "^RlmST")), coef))
cbind(R.ini.cf, R..cf) ##---> "lqq" is *NOT* robust enough here -- but "biweight" is !!
showProc.time()
options(digits = 5)# less platform dependence
## Directly look at init.S():
x.s <- model.matrix(~ log.Te, data = starsCYG)
y.s <- model.response(model.frame(log.light ~ log.Te, data = starsCYG))
ini.df <- lmrob.S(x.s, y.s, control=lmrob.control())
ini.11 <- lmrob.S(x.s, y.s, control=lmrob.control("KS2011"))
ini.14 <- lmrob.S(x.s, y.s, control=lmrob.control("KS2014"))
## but these are fine !! :
rbind(deflt = ini.df$coef,
KS.11 = ini.11$coef,
KS.14 = ini.14$coef)
##==> No, it is *not* the init.S()
ini.14$scale # 0.48144
## More clearly shows how M-estimate is converging to *WRONG* solution:
(RlmST.lqq <- update(RlmST, init=ini.14, control = lmrob.control(method="MM", psi="lqq", trace= 4)))
## --> break down
## The 10 largest residuals from the robust init. S-estim:
(i10 <- head(order(abs(residuals(ini.14)), decreasing=TRUE), 10))
residuals(ini.14)[i10]
## ==> and their weights for the different psi() and their default (95% efficiency) tuning:
PSIs <- names(.Mchi.tuning.defaults)
sapply(PSIs, function(PSI)
Mwgt(residuals(ini.14)[i10], cc = .Mpsi.tuning.defaults[[PSI]], psi=PSI))
## All MM:
RlmST.MM <- lapply(setNames(,PSIs), function(PSI)
update(RlmST, init=ini.14, control = lmrob.control(method="MM", psi = PSI)))
cf.MM <- t(sapply(RlmST.MM, coef))
cf.MM[order(cf.MM[,1], cf.MM[,2]),] ## only 'bisquare' and 'optimal' are robust enough
showProc.time()
##=== Werner's analysis: Sensitivity curves for the most-left obs =========================================
dd <- starsCYG
dd <- dd[order(dd[,"log.Te"]),] # ==> leverage points come first (and easier plotting)
(rr <- lmrob(log.light ~ log.Te, data = dd))
(rr14 <- update(rr, control = lmrob.control("KS2014")))
dd[1,2] # 6.05 will be replaced for sensitivity curve
leg.s <- c("default, biweight"
,"KS14, lqq"
,"KS14, biweight"
,"KS14, optimal"
,"KS14, Hampel"
,"KS14, GGW"
,"KS14, Welsh"
)
nEst <- length(leg.s) # == number of estimators used below
nn <- length(y1 <- c(NA, seq(2,9, length=if(doExtras) 64 else 8)))
nCf <- length(coef(rr)) + 1 # +1: sigma
r.coef <- matrix(NA, length(y1), nEst*nCf)
t.d <- dd
oo <- options(warn = 1)
showProc.time()
## vary the left-most observation and fit all three
for (i in seq_along(y1)) {
cat(sprintf("i=%3d, y1[i]=%11.6g: -- ", i, y1[i]))
t.d[1,2] <- y1[i]
## the (old) default does not converge in 4 cases
lr <- update(rr, data=t.d, control = lmrob.control(maxit=500)) ; cat(" 1")
lr14 <- update(rr14, data=t.d, control = lmrob.control("KS2014", psi="lqq") ) ; cat(" 2")
lr14b <- update(rr14, data=t.d, control = lmrob.control("KS2014", psi="biweight") ); cat(" 3")
lr14o <- update(rr14, data=t.d, control = lmrob.control("KS2014", psi="optimal" ) ); cat(" 4")
lr14h <- update(rr14, data=t.d, control = lmrob.control("KS2014", psi="hampel" ) ); cat(" 5")
lr14g <- update(rr14, data=t.d, control = lmrob.control("KS2014", psi="ggw" ) ); cat(" 6")
lr14a <- update(rr14, data=t.d, control = lmrob.control("KS2014", psi="welsh" ) ); cat(" 7")
r.coef[i,] <- c(coef(lr ), sigma(lr),
coef(lr14 ), sigma(lr14),
coef(lr14b), sigma(lr14b),
coef(lr14o), sigma(lr14o),
coef(lr14h), sigma(lr14h),
coef(lr14g), sigma(lr14g),
coef(lr14a), sigma(lr14a))
cat("\n")
}
showProc.time()
options(oo)
## cbind(y=y.1, r.coef)
## y1[1] = where the NA is
pMat <- function(j, main, x.legend, col = 1:8, lty=1:6, lwd = 2, ylab=NA, ...) {
stopifnot(j %in% seq_len(ncol(r.coef)))
matplot(y1, r.coef[, j], type="l", xlab = quote("varying obs." ~ ~ y[1]),
ylab=ylab, main=main, col=col, lty=lty, lwd=lwd, ...)
xx <- par("usr")[1:2]; yL <- .99* xx[1] + .01*xx[2]
matpoints(yL, r.coef[1, j, drop=FALSE], pch = 20, col=col, lwd=lwd)
abline(h = r.coef[1, j, drop=FALSE], col = col, lwd=1, lty=3)
legend(x.legend, leg.s, lty=lty, col=col, lwd=lwd, bty = "n")
abline(v = dd[1,2], col=adjustcolor("tomato", 1/4)) # true y value
}
(jj0 <- nCf*(seq_len(nEst)-1L))
op <- {
if(requireNamespace("sfsmisc", quietly=TRUE))
sfsmisc::mult.fig(2)$old.par
else
par(mfrow = 2:1, mar = .1+ c(4,4,2,1), mgp = c(1.5, 0.6, 0))
}
pMat(j = 2+jj0, main = quote("slope" ~~ hat(beta[2])), "bottomleft")
pMat(j = 3+jj0, main = quote(hat(sigma)), "topleft")
par(op)
showProc.time()
## --------------------------------
set.seed(47)
data(hbk)
m.hbk <- lmrob(Y ~ ., data = hbk)
summary(m.hbk)
stopifnot(1:10 == which(rw(m.hbk) < 0.01))
data(heart)
summary(mhrt <- lmrob(clength ~ ., data = heart)) # -> warning 'maxit.scale=200' too small
stopifnot(8 == which(rw(mhrt) < 0.15),
11 == which(0.61 < rw(mhrt) & rw(mhrt) < 0.62),
c(1:7,9:10,12) == which(rw(mhrt) > 0.90))
iN <- c(3,5,7,11)
heartN <- heart; heartN[iN, "clength"] <- NA
lmN <- lm (clength ~ ., data = heartN) # default na.action=na.omit
mhN <- lmrob(clength ~ ., data = heartN) # default na.action=na.omit
# ==> everything just uses the n=8 complete obs
summary(mhN) # now *does* note the 4 omitted obs.
mhNex <- lmrob(clength ~ ., data = heartN, na.action=na.exclude)
summary(mhNex)
mhNx1 <- update(mhNex, ~ . - weight)
mhNx0 <- update(mhNex, ~ 1)
stopifnot(
length(r.mNex <- resid(mhNex)) == nrow(heartN)
,
iN == which(iNAr <- is.na(r.mNex))
,
identical(iNAr, is.na(r.mN1 <- residuals(mhNx1)))
,
identical(iNAr, is.na(r.mN0 <- residuals(mhNx0)))
)
showProc.time()
data(stackloss)
mSL <- lmrob(stack.loss ~ ., data = stackloss)
summary(mSL)
showProc.time()
|