File: example_sgemm_strided_batched.cpp

package info (click to toggle)
rocblas 5.5.1%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 565,372 kB
  • sloc: cpp: 198,491; python: 44,792; f90: 25,111; sh: 24,429; asm: 8,954; xml: 222; makefile: 147; ansic: 107; awk: 14
file content (652 lines) | stat: -rw-r--r-- 24,019 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
/* ************************************************************************
 * Copyright (C) 2016-2022 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
 * ies of the Software, and to permit persons to whom the Software is furnished
 * to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
 * PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
 * CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * ************************************************************************ */

#include <rocblas/rocblas.h>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <hip/hip_runtime.h>
#include <iostream>
#include <limits>
#include <string>
#include <vector>

#ifndef CHECK_HIP_ERROR
#define CHECK_HIP_ERROR(error)                    \
    if(error != hipSuccess)                       \
    {                                             \
        fprintf(stderr,                           \
                "Hip error: '%s'(%d) at %s:%d\n", \
                hipGetErrorString(error),         \
                error,                            \
                __FILE__,                         \
                __LINE__);                        \
        exit(EXIT_FAILURE);                       \
    }
#endif

#ifndef CHECK_ROCBLAS_ERROR
#define CHECK_ROCBLAS_ERROR(error)                              \
    if(error != rocblas_status_success)                         \
    {                                                           \
        fprintf(stderr, "rocBLAS error: ");                     \
        if(error == rocblas_status_invalid_handle)              \
            fprintf(stderr, "rocblas_status_invalid_handle");   \
        if(error == rocblas_status_not_implemented)             \
            fprintf(stderr, " rocblas_status_not_implemented"); \
        if(error == rocblas_status_invalid_pointer)             \
            fprintf(stderr, "rocblas_status_invalid_pointer");  \
        if(error == rocblas_status_invalid_size)                \
            fprintf(stderr, "rocblas_status_invalid_size");     \
        if(error == rocblas_status_memory_error)                \
            fprintf(stderr, "rocblas_status_memory_error");     \
        if(error == rocblas_status_internal_error)              \
            fprintf(stderr, "rocblas_status_internal_error");   \
        fprintf(stderr, "\n");                                  \
        exit(EXIT_FAILURE);                                     \
    }
#endif

// default sizes
#define DIM1 127
#define DIM2 128
#define DIM3 129
#define BATCH_COUNT 10
#define ALPHA 2
#define BETA 3

void printMatrix(const char* name, float* A, rocblas_int m, rocblas_int n, rocblas_int lda)
{
    printf("---------- %s ----------\n", name);
    int max_size = 3;
    for(int i = 0; i < m && i < max_size; i++)
    {
        for(int j = 0; j < n && j < max_size; j++)
        {
            printf("%f ", A[i + j * lda]);
        }
        printf("\n");
    }
}

void print_strided_batched(const char* name,
                           float*      A,
                           rocblas_int n1,
                           rocblas_int n2,
                           rocblas_int n3,
                           rocblas_int s1,
                           rocblas_int s2,
                           rocblas_int s3)
{
    // n1, n2, n3 are matrix dimensions, sometimes called m, n, batch_count
    // s1, s1, s3 are matrix strides, sometimes called 1, lda, stride_a
    printf("---------- %s ----------\n", name);
    int max_size = 3;

    for(int i3 = 0; i3 < n3 && i3 < max_size; i3++)
    {
        for(int i1 = 0; i1 < n1 && i1 < max_size; i1++)
        {
            for(int i2 = 0; i2 < n2 && i2 < max_size; i2++)
            {
                printf("%8.1f ", A[(i1 * s1) + (i2 * s2) + (i3 * s3)]);
            }
            printf("\n");
        }
        if(i3 < (n3 - 1) && i3 < (max_size - 1))
            printf("\n");
    }
}

template <typename T>
void mat_mat_mult(T        alpha,
                  T        beta,
                  int      M,
                  int      N,
                  int      K,
                  const T* A,
                  int      As1,
                  int      As2,
                  const T* B,
                  int      Bs1,
                  int      Bs2,
                  T*       C,
                  int      Cs1,
                  int      Cs2)
{
    for(int i1 = 0; i1 < M; i1++)
    {
        for(int i2 = 0; i2 < N; i2++)
        {
            T t = 0.0;
            for(int i3 = 0; i3 < K; i3++)
            {
                t += A[i1 * As1 + i3 * As2] * B[i3 * Bs1 + i2 * Bs2];
            }
            C[i1 * Cs1 + i2 * Cs2] = beta * C[i1 * Cs1 + i2 * Cs2] + alpha * t;
        }
    }
}

// cppcheck-suppress constParameter
static void show_usage(char* argv[])
{
    std::cerr << "Usage: " << argv[0] << " <options>\n"
              << "options:\n"
              << "\t-h, --help\t\t\t\tShow this help message\n"
              << "\t-v, --verbose\t\t\t\tverbose output\n"
              << "\t-m \t\t\tm\t\tGEMM_STRIDED_BATCHED argument m\n"
              << "\t-n \t\t\tn\t\tGEMM_STRIDED_BATCHED argument n\n"
              << "\t-k \t\t\tk \t\tGEMM_STRIDED_BATCHED argument k\n"
              << "\t--lda \t\t\tlda \t\tGEMM_STRIDED_BATCHED argument lda\n"
              << "\t--ldb \t\t\tldb \t\tGEMM_STRIDED_BATCHED argument ldb\n"
              << "\t--ldc \t\t\tldc \t\tGEMM_STRIDED_BATCHED argument ldc\n"
              << "\t--trans_a \t\ttrans_a \tGEMM_STRIDED_BATCHED argument trans_a\n"
              << "\t--trans_b \t\ttrans_b \tGEMM_STRIDED_BATCHED argument trans_b\n"
              << "\t--stride_a \t\tstride_a \tGEMM_STRIDED_BATCHED argument stride_a\n"
              << "\t--stride_b \t\tstride_b \tGEMM_STRIDED_BATCHED argument stride_b\n"
              << "\t--stride_c \t\tstride_c \tGEMM_STRIDED_BATCHED argument stride_c\n"
              << "\t--batch_count \t\tbatch_count \tGEMM_STRIDED_BATCHED argument batch count\n"
              << "\t--alpha \t\talpha \t\tGEMM_STRIDED_BATCHED argument alpha\n"
              << "\t--beta \t\t\tbeta \t\tGEMM_STRIDED_BATCHED argument beta\n"
              << "\t--header \t\theader \t\tprint header for output\n"
              << std::endl;
}

static int parse_arguments(int                argc,
                           char*              argv[],
                           int&               m,
                           int&               n,
                           int&               k,
                           int&               lda,
                           int&               ldb,
                           int&               ldc,
                           int&               stride_a,
                           int&               stride_b,
                           int&               stride_c,
                           int&               batch_count,
                           float&             alpha,
                           float&             beta,
                           rocblas_operation& trans_a,
                           rocblas_operation& trans_b,
                           bool&              header,
                           bool&              verbose)
{
    if(argc >= 2)
    {
        for(int i = 1; i < argc; ++i)
        {
            std::string arg = argv[i];

            if((arg.at(0) == '-') || ((arg.at(0) == '-') && (arg.at(1) == '-')))
            {
                if((arg == "-h") || (arg == "--help"))
                {
                    return EXIT_FAILURE;
                }
                if((arg == "-v") || (arg == "--verbose"))
                {
                    verbose = true;
                }
                else if(arg == "--header")
                {
                    header = true;
                }
                else if((arg == "-m") && (i + 1 < argc))
                {
                    m = atoi(argv[++i]);
                }
                else if((arg == "-n") && (i + 1 < argc))
                {
                    n = atoi(argv[++i]);
                }
                else if((arg == "-k") && (i + 1 < argc))
                {
                    k = atoi(argv[++i]);
                }
                else if((arg == "--batch_count") && (i + 1 < argc))
                {
                    batch_count = atoi(argv[++i]);
                }
                else if((arg == "--lda") && (i + 1 < argc))
                {
                    lda = atoi(argv[++i]);
                }
                else if((arg == "--ldb") && (i + 1 < argc))
                {
                    ldb = atoi(argv[++i]);
                }
                else if((arg == "--ldc") && (i + 1 < argc))
                {
                    ldc = atoi(argv[++i]);
                }
                else if((arg == "--stride_a") && (i + 1 < argc))
                {
                    stride_a = atoi(argv[++i]);
                }
                else if((arg == "--stride_b") && (i + 1 < argc))
                {
                    stride_b = atoi(argv[++i]);
                }
                else if((arg == "--stride_c") && (i + 1 < argc))
                {
                    stride_c = atoi(argv[++i]);
                }
                else if((arg == "--alpha") && (i + 1 < argc))
                {
                    alpha = atof(argv[++i]);
                }
                else if((arg == "--beta") && (i + 1 < argc))
                {
                    beta = atof(argv[++i]);
                }
                else if((arg == "--trans_a") && (i + 1 < argc))
                {
                    ++i;
                    if(strncmp(argv[i], "N", 1) == 0 || strncmp(argv[i], "n", 1) == 0)
                    {
                        trans_a = rocblas_operation_none;
                    }
                    else if(strncmp(argv[i], "T", 1) == 0 || strncmp(argv[i], "t", 1) == 0)
                    {
                        trans_a = rocblas_operation_transpose;
                    }
                    else
                    {
                        std::cerr << "error with " << arg << std::endl;
                        std::cerr << "do not recognize value " << argv[i];
                        return EXIT_FAILURE;
                    }
                }
                else if((arg == "--trans_b") && (i + 1 < argc))
                {
                    ++i;
                    if(strncmp(argv[i], "N", 1) == 0 || strncmp(argv[i], "n", 1) == 0)
                    {
                        trans_b = rocblas_operation_none;
                    }
                    else if(strncmp(argv[i], "T", 1) == 0 || strncmp(argv[i], "t", 1) == 0)
                    {
                        trans_b = rocblas_operation_transpose;
                    }
                    else
                    {
                        std::cerr << "error with " << arg << std::endl;
                        std::cerr << "do not recognize value " << argv[i];
                        return EXIT_FAILURE;
                    }
                }
                else
                {
                    std::cerr << "error with " << arg << std::endl;
                    std::cerr << "do not recognize option" << std::endl << std::endl;
                    return EXIT_FAILURE;
                }
            }
            else
            {
                std::cerr << "error with " << arg << std::endl;
                std::cerr << "option must start with - or --" << std::endl << std::endl;
                return EXIT_FAILURE;
            }
        }
    }
    return EXIT_SUCCESS;
}

bool bad_argument(rocblas_operation trans_a,
                  rocblas_operation trans_b,
                  rocblas_int       m,
                  rocblas_int       n,
                  rocblas_int       k,
                  rocblas_int       lda,
                  rocblas_int       ldb,
                  rocblas_int       ldc,
                  rocblas_int       stride_a,
                  rocblas_int       stride_b,
                  rocblas_int       stride_c,
                  rocblas_int       batch_count)
{
    bool argument_error = false;
    if((trans_a == rocblas_operation_none) && (lda < m))
    {
        argument_error = true;
        std::cerr << "ERROR: bad argument lda = " << lda << " < " << m << std::endl;
    }
    if((trans_a == rocblas_operation_transpose) && (lda < k))
    {
        argument_error = true;
        std::cerr << "ERROR: bad argument lda = " << lda << " < " << k << std::endl;
    }
    if((trans_b == rocblas_operation_none) && (ldb < k))
    {
        argument_error = true;
        std::cerr << "ERROR: bad argument ldb = " << ldb << " < " << k << std::endl;
    }
    if((trans_b == rocblas_operation_transpose) && (ldb < n))
    {
        argument_error = true;
        std::cerr << "ERROR: bad argument ldb = " << ldb << " < " << n << std::endl;
    }
    if(stride_a < 0)
    {
        argument_error = true;
        std::cerr << "ERROR: bad argument stride_a < 0" << std::endl;
    }
    if(stride_b < 0)
    {
        argument_error = true;
        std::cerr << "ERROR: bad argument stride_b < 0" << std::endl;
    }
    if(ldc < m)
    {
        argument_error = true;
        std::cerr << "ERROR: bad argument ldc = " << ldc << " < " << m << std::endl;
    }
    if(stride_c < n * ldc)
    {
        argument_error = true;
        std::cerr << "ERROR: bad argument stride_c = " << stride_c << " < " << n * ldc << std::endl;
    }
    if(batch_count < 1)
    {
        argument_error = true;
        std::cerr << "ERROR: bad argument batch_count = " << batch_count << " < 1" << std::endl;
    }

    return argument_error;
}

void initialize_a_b_c(std::vector<float>& ha,
                      rocblas_int         size_a,
                      std::vector<float>& hb,
                      rocblas_int         size_b,
                      std::vector<float>& hc,
                      std::vector<float>& hc_gold,
                      rocblas_int         size_c)
{
    srand(1);
    for(int i = 0; i < size_a; ++i)
    {
        ha[i] = rand() % 17;
        //      ha[i] = i;
    }
    for(int i = 0; i < size_b; ++i)
    {
        hb[i] = rand() % 17;
        //      hb[i] = 1.0;
    }
    for(int i = 0; i < size_c; ++i)
    {
        hc[i] = rand() % 17;
        //      hc[i] = 1.0;
    }
    hc_gold = hc;
}

int main(int argc, char* argv[])
{
    // initialize parameters with default values
    rocblas_operation trans_a = rocblas_operation_none;
    rocblas_operation trans_b = rocblas_operation_transpose;

    // invalid int and float for rocblas_sgemm_strided_batched int and float arguments
    rocblas_int invalid_int   = std::numeric_limits<rocblas_int>::min() + 1;
    float       invalid_float = std::numeric_limits<float>::quiet_NaN();

    // initialize to invalid value to detect if values not specified on command line
    rocblas_int m = invalid_int, lda = invalid_int, stride_a = invalid_int;
    rocblas_int n = invalid_int, ldb = invalid_int, stride_b = invalid_int;
    rocblas_int k = invalid_int, ldc = invalid_int, stride_c = invalid_int;

    rocblas_int batch_count = invalid_int;

    float alpha = invalid_float;
    float beta  = invalid_float;

    bool verbose = false;
    bool header  = false;

    if(parse_arguments(argc,
                       argv,
                       m,
                       n,
                       k,
                       lda,
                       ldb,
                       ldc,
                       stride_a,
                       stride_b,
                       stride_c,
                       batch_count,
                       alpha,
                       beta,
                       trans_a,
                       trans_b,
                       header,
                       verbose))
    {
        show_usage(argv);
        return EXIT_FAILURE;
    }

    // when arguments not specified, set to default values
    if(m == invalid_int)
        m = DIM1;
    if(n == invalid_int)
        n = DIM2;
    if(k == invalid_int)
        k = DIM3;
    if(lda == invalid_int)
        lda = trans_a == rocblas_operation_none ? m : k;
    if(ldb == invalid_int)
        ldb = trans_b == rocblas_operation_none ? k : n;
    if(ldc == invalid_int)
        ldc = m;
    if(stride_a == invalid_int)
        stride_a = trans_a == rocblas_operation_none ? lda * k : lda * m;
    if(stride_b == invalid_int)
        stride_b = trans_b == rocblas_operation_none ? ldb * n : ldb * k;
    if(stride_c == invalid_int)
        stride_c = ldc * n;
    if(alpha != alpha)
        alpha = ALPHA; // check for alpha == invalid_float == NaN
    if(beta != beta)
        beta = BETA; // check for beta == invalid_float == NaN
    if(batch_count == invalid_int)
        batch_count = BATCH_COUNT;

    if(bad_argument(
           trans_a, trans_b, m, n, k, lda, ldb, ldc, stride_a, stride_b, stride_c, batch_count))
    {
        show_usage(argv);
        return EXIT_FAILURE;
    }

    if(header)
    {
        std::cout << "transAB,M,N,K,lda,ldb,ldc,stride_a,stride_b,stride_c,batch_count,alpha,beta,"
                     "result,error";
        std::cout << std::endl;
    }

    int a_stride_1, a_stride_2, b_stride_1, b_stride_2;
    int size_a1, size_b1, size_c1 = ldc * n;
    if(trans_a == rocblas_operation_none)
    {
        std::cout << "N";
        a_stride_1 = 1;
        a_stride_2 = lda;
        size_a1    = lda * k;
    }
    else
    {
        std::cout << "T";
        a_stride_1 = lda;
        a_stride_2 = 1;
        size_a1    = lda * m;
    }
    if(trans_b == rocblas_operation_none)
    {
        std::cout << "N, ";
        b_stride_1 = 1;
        b_stride_2 = ldb;
        size_b1    = ldb * n;
    }
    else
    {
        std::cout << "T, ";
        b_stride_1 = ldb;
        b_stride_2 = 1;
        size_b1    = ldb * k;
    }

    std::cout << m << ", " << n << ", " << k << ", " << lda << ", " << ldb << ", " << ldc << ", "
              << stride_a << ", " << stride_b << ", " << stride_c << ", " << batch_count << ", "
              << alpha << ", " << beta << ", ";

    int size_a = batch_count == 0 ? size_a1 : size_a1 + stride_a * (batch_count - 1);
    int size_b = batch_count == 0 ? size_b1 : size_b1 + stride_b * (batch_count - 1);
    int size_c = batch_count == 0 ? size_c1 : size_c1 + stride_c * (batch_count - 1);

    // Naming: da is in GPU (device) memory. ha is in CPU (host) memory
    std::vector<float> ha(size_a);
    std::vector<float> hb(size_b);
    std::vector<float> hc(size_c);
    std::vector<float> hc_gold(size_c);

    // initial data on host
    initialize_a_b_c(ha, size_a, hb, size_b, hc, hc_gold, size_c);

    if(verbose)
    {
        printf("\n");
        if(trans_a == rocblas_operation_none)
        {
            print_strided_batched("ha initial", &ha[0], m, k, batch_count, 1, lda, stride_a);
        }
        else
        {
            print_strided_batched("ha initial", &ha[0], m, k, batch_count, lda, 1, stride_a);
        }
        if(trans_b == rocblas_operation_none)
        {
            print_strided_batched("hb initial", &hb[0], k, n, batch_count, 1, ldb, stride_b);
        }
        else
        {
            print_strided_batched("hb initial", &hb[0], k, n, batch_count, ldb, 1, stride_b);
        }
        print_strided_batched("hc initial", &hc[0], m, n, batch_count, 1, ldc, stride_c);
    }

    // allocate memory on device
    float *da, *db, *dc;
    CHECK_HIP_ERROR(hipMalloc(&da, size_a * sizeof(float)));
    CHECK_HIP_ERROR(hipMalloc(&db, size_b * sizeof(float)));
    CHECK_HIP_ERROR(hipMalloc(&dc, size_c * sizeof(float)));

    // copy matrices from host to device
    CHECK_HIP_ERROR(hipMemcpy(da, ha.data(), sizeof(float) * size_a, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(db, hb.data(), sizeof(float) * size_b, hipMemcpyHostToDevice));
    CHECK_HIP_ERROR(hipMemcpy(dc, hc.data(), sizeof(float) * size_c, hipMemcpyHostToDevice));

    rocblas_handle handle;
    CHECK_ROCBLAS_ERROR(rocblas_create_handle(&handle));

    CHECK_ROCBLAS_ERROR(rocblas_sgemm_strided_batched(handle,
                                                      trans_a,
                                                      trans_b,
                                                      m,
                                                      n,
                                                      k,
                                                      &alpha,
                                                      da,
                                                      lda,
                                                      stride_a,
                                                      db,
                                                      ldb,
                                                      stride_b,
                                                      &beta,
                                                      dc,
                                                      ldc,
                                                      stride_c,
                                                      batch_count));

    // copy output from device to CPU
    CHECK_HIP_ERROR(hipMemcpy(hc.data(), dc, sizeof(float) * size_c, hipMemcpyDeviceToHost));

    // calculate golden or correct result
    for(int i = 0; i < batch_count; i++)
    {
        float* a_ptr = &ha[i * stride_a];
        float* b_ptr = &hb[i * stride_b];
        float* c_ptr = &hc_gold[i * stride_c];
        mat_mat_mult<float>(alpha,
                            beta,
                            m,
                            n,
                            k,
                            a_ptr,
                            a_stride_1,
                            a_stride_2,
                            b_ptr,
                            b_stride_1,
                            b_stride_2,
                            c_ptr,
                            1,
                            ldc);
    }

    if(verbose)
    {
        print_strided_batched(
            "hc_gold calculated", &hc_gold[0], m, n, batch_count, 1, ldc, stride_c);
        print_strided_batched("hc calculated", &hc[0], m, n, batch_count, 1, ldc, stride_c);
    }

    float max_relative_error = std::numeric_limits<float>::min();
    for(int i = 0; i < size_c; i++)
    {
        float relative_error
            = hc_gold[i] == 0 ? hc_gold[i] - hc[i] : (hc_gold[i] - hc[i]) / hc_gold[i];
        relative_error = relative_error >= 0 ? relative_error : -relative_error;
        max_relative_error
            = relative_error < max_relative_error ? max_relative_error : relative_error;
    }
    float eps       = std::numeric_limits<float>::epsilon();
    float tolerance = 10;
    if(max_relative_error != max_relative_error || max_relative_error > eps * tolerance)
    {
        std::cout << "FAIL, " << max_relative_error << std::endl;
    }
    else
    {
        std::cout << "PASS, " << max_relative_error << std::endl;
    }

    CHECK_HIP_ERROR(hipFree(da));
    CHECK_HIP_ERROR(hipFree(db));
    CHECK_HIP_ERROR(hipFree(dc));
    CHECK_ROCBLAS_ERROR(rocblas_destroy_handle(handle));
    return EXIT_SUCCESS;
}