1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
|
===================
Programmer's Guide
===================
--------------------------------
Library Source Code Organization
--------------------------------
The rocBLAS code is split into three major parts:
- The `library` directory contains all source code for the library.
- The `clients` directory contains all test code and code to build clients.
- Infrastructure.
The `library` Directory
^^^^^^^^^^^^^^^^^^^^^^^
The `library` directory contains all source code for the library.
library/include
'''''''''''''''
Contains C98 include files for the external API. These files also contain Doxygen
comments that document the API.
library/src/blas[1,2,3]
'''''''''''''''''''''''
Source code for Level 1, 2, and 3 BLAS functions in `.cpp` and `.hpp` files.
- The `.cpp` files contain
- External C functions that call templated functions with an `_impl` extension
- The `_impl` functions have argument checking and logging, and they in turn call functions with a `_template` extension
- The `_kernels.cpp` files contain
- `_template` functions that set up the workgroup and call HIP launch to run `_kernel` functions
- `_kernel` functions that run on the device
library/src/blas3/Tensile
'''''''''''''''''''''''''
Code for calling Tensile from rocBLAS, and YAML files with Tensile tuning configurations
library/src/blas_ex
''''''''''''''''''''
Source code for mixed precision BLAS
library/src/include
'''''''''''''''''''
Internal include files for:
- Handle code
- Device memory allocation
- Logging
- Numerical checking
- Utility code
The `clients` Directory
^^^^^^^^^^^^^^^^^^^^^^^
The `clients` directory contains all test code and code to build clients.
clients/gtest
'''''''''''''
Code for client rocblas-test. This client is used to test rocBLAS.
clients/benchmarks
''''''''''''''''''
Code for client rocblas-benchmark. This client is used to benchmark rocBLAS functions.
clients/include
'''''''''''''''
Code for testing and benchmarking individual rocBLAS functions, and utility code for testing
clients/common
''''''''''''''
Common code used by both rocblas-benchmark and rocblas-test
clients/samples
'''''''''''''''
Sample code for calling rocBLAS functions
Infrastructure
^^^^^^^^^^^^^^
- CMake is used to build and package rocBLAS. There are CMakeLists.txt files throughout the code.
- Doxygen/Breathe/Sphinx/ReadTheDocs are used to produce documentation. Content for the documentation is from:
- Doxygen comments in include files in the directory library/include
- Files in the directory docs/source.
- Jenkins is used to automate Continuous Integration testing.
- clang-format is used to format C++ code.
-------------------------------------
Handle, Stream, and Device Management
-------------------------------------
Handle
^^^^^^
A rocBLAS handle must be created before calling other rocBLAS functions.
This can be done with:
::
rocblas_handle handle;
if(rocblas_create_handle(&handle) != rocblas_status_success) return EXIT_FAILURE;
The created handle should be destroyed when the users have completed calling rocBLAS functions. This can be done with:
::
if(rocblas_destroy_handle(handle) != rocblas_status_success) return EXIT_FAILURE;
The above-created handle will use the default stream and the default device. If the user wants the non-default
stream and the non-default device, then call:
::
int deviceId = non_default_device_id;
if(hipSetDevice(deviceId) != hipSuccess) return EXIT_FAILURE;
//optional call to rocblas_initialize
rocblas_initialize();
// note the order, call hipSetDevice before hipStreamCreate
hipStream_t stream;
if(hipStreamCreate(&stream) != hipSuccess) return EXIT_FAILURE;
rocblas_handle handle;
if(rocblas_create_handle(&handle) != rocblas_status_success) return EXIT_FAILURE;
if(rocblas_set_stream(handle, stream) != rocblas_status_success) return EXIT_FAILURE;
For the library to use a non-default device within a host thread, the device must be set using hipSetDevice() before creating the handle.
The device in the host thread should not be changed between hipStreamCreate and hipStreamDestroy. If the device in the host thread is changed between creating and destroying, then the stream the behavior is undefined.
If the user created a non-default stream, it is the user's responsibility to synchronize the non-default stream before destroying it:
::
// Synchronize the non-default stream before destroying it
if(hipStreamSynchronize(stream) != hipSuccess) return EXIT_FAILURE;
if(hipStreamDestroy(stream) != hipSuccess) return EXIT_FAILURE;
When a user changes the stream from one non-default stream to another non-default stream, it is the user's responsibility to synchronize the old stream before setting the new stream. Then, the user can optionally destroy the old stream:
::
// Synchronize the old stream
if(hipStreamSynchronize(old_stream) != hipSuccess) return EXIT_FAILURE;
// Destroy the old stream (this step is optional but must come after synchronization)
if(hipStreamDestroy(old_stream) != hipSuccess) return EXIT_FAILURE;
// Create a new stream (this step can be done before the steps above)
if(hipStreamCreate(&new_stream) != hipSuccess) return EXIT_FAILURE;
// Set the handle to use the new stream (must come after synchronization)
if(rocblas_set_stream(handle, new_stream) != rocblas_status_success) return EXIT_FAILURE;
The above ``hipStreamSynchronize`` is necessary because the rocBLAS handle contains allocated device
memory that must not be shared by multiple asynchronous streams at the same time.
If either the old or new stream is the default (NULL) stream, it is not necessary to
synchronize the old stream before destroying it, or before setting the new stream,
because the synchronization is implicit.
.. note::
A user can switch from one non-default stream to another without calling hipStreamSynchronize() by enabling stream-order memory allocation.
Refer to section :ref:`stream order alloc`.
Creating the handle will incur a startup cost. There is an additional startup cost for
gemm functions to load gemm kernels for a specific device. Users can shift the
gemm startup cost to occur after setting the device by calling ``rocblas_initialize()``
after calling ``hipSetDevice()``. This action needs to be done once for each device.
If the user has two rocBLAS handles which use the same device, then the user only needs to call ``rocblas_initialize()``
once. If ``rocblas_initialize()`` is not called, then the first gemm call will have
the startup cost.
The rocBLAS handle stores the following:
- Stream
- Logging mode
- Pointer mode
- Atomics mode
Stream and Device Management
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
HIP kernels are launched in a queue. This queue is otherwise known as a stream. A stream is a queue of
work on a particular device.
A rocBLAS handle always has one stream, and a stream is always associated with one device. Furthermore, the rocBLAS handle is passed as an argument to all rocBLAS functions that launch kernels, and these kernels are
launched in that handle's stream to run on that stream's device.
If the user does not create a stream, then the rocBLAS handle uses the default (NULL)
stream, maintained by the system. Users cannot create or destroy the default
stream. However, users can create a new non-default stream and bind it to the rocBLAS handle with the
two commands: ``hipStreamCreate()`` and ``rocblas_set_stream()``.
If the user creates a stream, they are responsible for destroying it with ``hipStreamDestroy()``. If the handle
is switching from one non-default stream to another, then the old stream needs to be synchronized. Next, the user needs to create and set the new non-default stream using ``hipStreamCreate()`` and ``rocblas_set_stream()``, respectively. Then the user can optionally destroy the old stream.
HIP has two important device management functions, ``hipSetDevice()``, and ``hipGetDevice()``.
- ``hipSetDevice()``: Set default device to be used for subsequent hip API calls from this thread.
- ``hipGetDevice()``: Return the default device id for the calling host thread.
The device which was set using ``hipSetDevice()`` at the time of calling
``hipStreamCreate()`` is the one that is associated with a stream. But, if the device was not set using ``hipSetDevice()``, then, the default device will be used.
Users cannot switch the device in a stream between ``hipStreamCreate()`` and ``hipStreamDestroy()``.
If users want to use another device, they should create another stream.
rocBLAS never sets a device, it only queries using ``hipGetDevice()``. If rocBLAS does not see a
valid device, it returns an error message to users.
Multiple Streams and Multiple Devices
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If a machine has ``num`` GPU devices, they will have deviceID numbers 0, 1, 2, ... (``num`` - 1). The
default device has deviceID == 0. Each rocBLAS handle can only be used with a single device, but users can run ``num`` rocBLAS handles on ``num`` devices concurrently.
.. _Device Memory allocation in detail:
------------------------
Device Memory Allocation
------------------------
Requirements
^^^^^^^^^^^^
- Some rocBLAS functions need temporary device memory.
- Allocating and deallocating device memory is expensive and synchronizing.
- Temporary device memory should be recycled across multiple rocBLAS function calls using the same rocblas_handle.
- The following schemes need to be supported:
- **Default** Functions allocate required device memory automatically. This has the disadvantage that allocation is a synchronizing event.
- **Preallocate** Query all the functions called using a rocblas_handle to find out how much device memory is needed. Preallocate the required device memory when the rocblas_handle is created, and there are no more synchronizing allocations or deallocations.
- **Manual** Query a function to find out how much device memory is required. Allocate and deallocate the device memory before and after function calls. This allows the user to control where the synchronizing allocation and deallocation occur.
In all above schemes, temporary device memory needs to be held by the rocblas_handle and recycled if a subsequent function using the handle needs it.
Design
^^^^^^
- rocBLAS uses per-handle device memory allocation with out-of-band management.
- The state of the device memory is stored in the rocblas_handle.
- For the user of rocBLAS:
- Functions are provided to query how much device memory a function needs.
- An environment variable is provided to preallocate when the rocblas_handle is created.
- Functions are provided to manually allocate and deallocate after the rocblas_handle is created.
- The following two values are added to the rocblas_status enum to indicate how a rocBLAS function is changing the state of the temporary device memory in the rocBLAS handle :
- rocblas_status_size_unchanged
- rocblas_status_size_increased
- For the rocBLAS developer:
- Functions are provided to answer device memory size queries.
- Functions are provided to allocate temporary device memory.
- opaque RAII objects are used to hold the temporary device memory, and allocated memory is returned to the handle automatically when it is no longer needed.
The functions for the rocBLAS user are described in the User Guide. The functions for the rocBLAS developer are described below.
Answering Device Memory Size Queries in Function That Needs Memory
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Example
'''''''
Functions should contain code like below to answer a query on how much temporary device memory is required. In this case, ``m * n * sizeof(T)`` bytes of memory is required:
.. code-block:: c++
rocblas_status rocblas_function(rocblas_handle handle, ...)
{
if(!handle) return rocblas_status_invalid_handle;
if (handle->is_device_memory_size_query())
{
size_t size = m * n * sizeof(T);
return handle->set_optimal_device_memory_size(size);
}
// rest of function
}
Function
'''''''''
.. code-block:: c++
bool _rocblas_handle::is_device_memory_size_query() const
Indicates if the current function call is collecting information about the optimal device memory allocation size
return value:
- **true** if information is being collected
- **false** if information is not being collected
Function
''''''''
.. code-block:: c++
rocblas_status _rocblas_handle::set_optimal_device_memory_size(size...)
Sets the optimal size(s) of device memory buffer(s) in bytes for this function. The sizes are rounded up to the next multiple of 64 (or some other chunk size), and the running maximum is updated.
return value:
- **rocblas_status_size_unchanged** If he maximum optimal device memory size did not change, this is the case where the function does not use device memory.
- **rocblas_satus_size_increased** If the maximum optimal device memory size increased.
- **rocblas_status_internal_error** If this function is not suposed to be collecting size information.
Function
''''''''
.. code-block:: c++
size_t rocblas_sizeof_datatype(rocblas_datatype type)
Returns size of a rocBLAS runtime data type
Answering Device Memory Size Queries in Function That Does Not Need Memory
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Example
'''''''
.. code-block:: c++
rocblas_status rocblas_function(rocblas_handle handle, ...)
{
if(!handle) return rocblas_status_invalid_handle;
RETURN_ZERO_DEVICE_MEMORY_SIZE_IF_QUERIED(handle);
// rest of function
}
Macro
'''''
.. code-block:: c++
RETURN_ZERO_DEVICE_MEMORY_SIZE_IF_QUERIED(handle)
A convenience macro that returns rocblas_status_size_unchanged if the function call is a memory size query
rocBLAS Kernel Device Memory Allocation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Example
'''''''
Device memory can be allocated for n floats using device_malloc as follows:
.. code-block:: c++
auto workspace = handle->device_malloc(n * sizeof(float));
if (!workspace) return rocblas_status_memory_error;
float* ptr = static_cast<float*>(workspace);
Example
'''''''
To allocate multiple buffers:
.. code-block:: c++
size_t size1 = m * n;
size_t size2 = m * k;
auto workspace = handle->device_malloc(size1, size2);
if (!workspace) return rocblas_status_memory_error;
void * w_buf1, * w_buf2;
w_buf1 = workspace[0];
w_buf2 = workspace[1];
Function
'''''''''
.. code-block:: c++
auto workspace = handle->device_malloc(size...)
- Returns an opaque RAII object lending allocated device memory to a particular rocBLAS function.
- The object returned is convertible to ``void *`` or other pointer types if only one size is specified.
- The individual pointers can be accessed with the subscript ``operator[]``.
- The lifetime of the returned object is the lifetime of the borrowed device memory (RAII).
- To simplify and optimize the code, only one successful allocation object can be alive at a time.
- If the handle's device memory is currently being managed by rocBLAS, as in the default scheme, it is expanded in size as necessary.
- If the user allocated (or pre-allocated) an explicit size of device memory, then that size is used as the limit, and no resizing or synchronization ever occurs.
Parameters:
- **size** size in bytes of memory to be allocated
return value:
- **On success**, returns an opaque RAII object that evaluates to ``true`` when converted to ``bool``
- **On failure**, returns an opaque RAII object that evaluates to ``false`` when converted to ``bool``
Performance Degrade
^^^^^^^^^^^^^^^^^^^
The rocblas_status enum value ``rocblas_status_perf_degraded`` is used to indicate that a slower algorithm was used because of insufficient device memory for the optimal algorithm.
Example
'''''''
.. code-block:: c++
rocblas_status ret = rocblas_status_success;
size_t size_for_optimal_algorithm = m + n + k;
size_t size_for_degraded_algorithm = m;
auto workspace_optimal = handle->device_malloc(size_for_optimal_algorithm);
if (workspace_optimal)
{
// Algorithm using larger optimal memory
}
else
{
auto workspace_degraded = handle->device_malloc(size_for_degraded_algorithm);
if (workspace_degraded)
{
// Algorithm using smaller degraded memory
ret = rocblas_status_perf_degraded;
}
else
{
// Not enough device memory for either optimal or degraded algorithm
ret = rocblas_status_memory_error;
}
}
return ret;
-------------------
Thread Safe Logging
-------------------
rocBLAS has thread safe logging. This prevents garbled output when multiple threads are writing to the same file.
Thread safe logging is obtained from using rocblas_internal_ostream, a class that can be used similarly to std::ostream. It provides standardized methods for formatted output to either strings or files. The default constructor of rocblas_internal_ostream writes to strings, which are thread-safe because they are owned by the calling thread. There are also rocblas_internal_ostream constructors for writing to files. The rocblas_internal_ostream::yaml_on and rocblas_internal_ostream::yaml_off IO modifiers turn YAML formatting mode on and off.
rocblas_cout and rocblas_cerr are the thread-safe versions of std::cout and std::cerr.
Many output identifiers have been marked "poisoned" in rocblas-test and rocblas-bench, to catch the use of non-thread-safe IO. These include std::cout, std::cerr, printf, fprintf, fputs, puts, and others. The poisoning is not turned on in the library itself or in the samples, because we cannot impose restrictions on the use of these symbols on outside users.
rocblas_handle contains three rocblas_internal_ostream pointers for logging output:
- static rocblas_internal_ostream* log_trace_os
- static rocblas_internal_ostream* log_bench_os
- static rocblas_internal_ostream* log_profile_os
The user can also create rocblas_internal_ostream pointers/objects outside of the handle.
Each rocblas_internal_ostream associated with a file points to a single rocblas_internal_ostream::worker with a std::shared_ptr, for writing to the file. The worker is mapped from the device id and inode corresponding to the file. More than one rocblas_internal_ostream can point to the same worker.
This means if more than one rocblas_internal_ostream is writing to a single output file, they will share the same rocblas_internal_ostream::worker.
The << operator for rocblas_internal_ostream is overloaded. Output is first accumulated in rocblas_internal_ostream::os, a std::ostringstream buffer. Each rocblas_internal_ostream has its own os std::ostringstream buffer, so strings in os will not be garbled.
When rocblas_internal_ostream.os is flushed with either a std::endl or an explicit flush of rocblas_internal_ostream, then rocblas_internal_ostream::worker::send pushes the string contents of rocblas_internal_ostream.os and a promise, the pair being called a task, onto rocblas_internal_ostream.worker.queue.
The send function uses promise/future to asynchronously transfer data from rocblas_internal_ostream.os to rocblas_internal_ostream.worker.queue, and to wait for the worker to finish writing the string to the file. It also locks a mutex to make sure the push of the task onto the queue is atomic.
The ostream.worker.queue will contain a number of tasks. When rocblas_internal_ostream is destroyed, all the tasks.string in rocblas_internal_ostream.worker.queue are printed to the rocblas_internal_ostream file, the std::shared_ptr to the ostream.worker is destroyed, and if the reference count to the worker becomes 0, the worker's thread is sent a 0-length string to tell it to exit.
---------------------------
rocBLAS Numerical Checking
---------------------------
**Note that performance will degrade when numerical checking is enabled.**
rocBLAS provides the environment variable ``ROCBLAS_CHECK_NUMERICS``, which allows users to debug numerical abnormalities. Setting a value of ``ROCBLAS_CHECK_NUMERICS`` enables checks on the input and the output vectors/matrices
of the rocBLAS functions for (not-a-number) NaN's, zeros, infinities, and denormal/subnormal values. Numerical checking is available to check the input and the output vectors for all level 1 and 2 functions.
In level 2 functions, only the general (ge) type input and the output matrix can be checked for numerical abnormalities. In level 3, GEMM is the only function to have numerical checking.
``ROCBLAS_CHECK_NUMERICS`` is a bitwise OR of zero or more bit masks as follows:
* ``ROCBLAS_CHECK_NUMERICS = 0``: is not set, then there is no numerical checking
* ``ROCBLAS_CHECK_NUMERICS = 1``: fully informative message, prints the results of numerical checking whether the input and the output Matrices/Vectors have NaN's/zeros/infinities/denormal values to the console
* ``ROCBLAS_CHECK_NUMERICS = 2``: prints result of numerical checking only if the input and the output Matrices/Vectors has a NaN/infinity/denormal value
* ``ROCBLAS_CHECK_NUMERICS = 4``: return ``rocblas_status_check_numeric_fail`` status if there is a NaN/infinity/denormal value
An example usage of ``ROCBLAS_CHECK_NUMERICS`` is shown below,
.. code-block:: bash
ROCBLAS_CHECK_NUMERICS=4 ./rocblas-bench -f gemm -i 1 -j 0
The above command will return a ``rocblas_status_check_numeric_fail``if the input and the output matrices of BLAS level 3 GEMM function has a NaN/infinity/denormal value.
If there are no numerical abnormalities, then ``rocblas_status_success`` is returned.
-----------------------------------------------
rocBLAS Order of Argument Checking and Logging
-----------------------------------------------
Legacy BLAS
^^^^^^^^^^^
Legacy BLAS has two types of argument checking:
- Error-return for incorrect argument (Legacy BLAS implement this with a call to the function ``XERBLA``)
- Quick-return-success when an argument allows for the subprogram to be a no-operation or a constant result
Level 2 and Level 3 BLAS subprograms have both error-return and quick-return-success. Level 1 BLAS subprograms have only quick-return-success
rocBLAS
^^^^^^^
rocBLAS has 5 types of argument checking:
- ``rocblas_status_invalid_handle`` if the handle is a NULL pointer
- ``rocblas_status_invalid_size`` for invalid size, increment or leading dimension argument
- ``rocblas_status_invalid_value`` for unsupported enum value
- ``rocblas_status_success`` for quick-return-success
- ``rocblas_status_invalid_pointer`` for NULL argument pointers
rocBLAS has the Following Differences When Compared To Legacy BLAS
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- It is a C API, returning a ``rocblas_status`` type indicating the success of the call.
- In legacy BLAS, the following functions return a scalar result: dot, nrm2, asum, amax, and amin. In rocBLAS, a pointers to scalar return value is passed as the last argument.
- The first argument is a ``rocblas_handle`` argument, an opaque pointer to rocBLAS resources, corresponding to a single HIP stream.
- Scalar arguments like alpha and beta are pointers on either the host or device, controlled by the rocBLAS handle's pointer mode. In cases where the other arguments do not dictate an early return, if the alpha and beta pointers are NULL the function will return ``rocblas_status_invalid_pointer``.
- Vector and matrix arguments are always pointers to device memory.
- When ``rocblas_pointer_mode == rocblas_pointer_mode_host`` alpha and beta values are inspected and based on their values it is deteremined which vector and matrix pointers must be dereferenced. If these pointers will be dereferenced a NULL pointer will lead to a return value ``rocblas_status_invalid_pointer``.
- Otherwise if ``rocblas_pointer_mode == rocblas_pointer_mode_device`` we do NOT check if these vector or matrix pointers will dereference a NULL pointer as we do not want to slow execution to fetch and inspect alpha and beta values.
- The ``ROCBLAS_LAYER`` environment variable controls the option to log argument values.
- There is added functionality like
- batched
- strided_batched
- mixed precision in gemm_ex, gemm_batched_ex, and gemm_strided_batched_ex
To Accommodate the Additions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- See Logging below.
- For batched and strided_batched L2 and L3 functions, there is a quick-return-success for ``batch_count == 0``, and an invalid size error for ``batch_count < 0``.
- For batched and strided_batched L1 functions, there is a quick-return-success for ``batch_count <= 0``
- When ``rocblas_pointer_mode == rocblas_pointer_mode_device`` alpha and beta are not copied from device to host for quick-return-success checks. In this case, the quick-return-success checks are omitted. This will still give a correct result, but the operation will be slower.
- For strided_batched functions there is no argument checking for stride. To access elements in a strided_batched_matrix, for example the C matrix in gemm, the zero based index is calculated as ``i1 + i2 * ldc + i3 * stride_c``, where ``i1 = 0, 1, 2, ..., m-1``; ``i2 = 0, 1, 2, ..., n-1``; ``i3 = 0, 1, 2, ..., batch_count -1``. An incorrect stride can result in a core dump due a segmentation fault. It can also produce an indeterminate result if there is a memory overlap in the output matrix between different values of ``i3``.
Device Memory Size Queries
^^^^^^^^^^^^^^^^^^^^^^^^^^
- When ``handle->is_device_memory_size_query()`` is true, the call is not a normal call, but it is a device memory size query.
- No logging should be performed during device memory size queries.
- If the rocBLAS kernel requires no temporary device memory, the macro ``RETURN_ZERO_DEVICE_MEMORY_SIZE_IF_QUERIED(handle)`` can be called after checking that ``handle != nullptr``.
- If the rocBLAS kernel requires temporary device memory, then it should be set, and the kernel returned, by calling ``return handle->set_optimal_device_memory_size(size...)``, where ``size...`` is a list of one or more sizes for different sub-problems. The sizes are rounded up and added.
Logging
'''''''
- There is logging before a quick-return-success or error-return, except:
- When ``handle == nullptr``, return ``rocblas_status_invalid_handle``.
- When ``handle->is_device_memory_size_query()`` returns ``true``.
- Vectors and matrices are logged with their addresses and are always on device memory.
- Scalar values in device memory are logged as their addresses. Scalar values in host memory are logged as their values, with a ``nullptr`` logged as ``NaN`` (``std::numeric_limits<T>::quiet_NaN()``).
rocBLAS Control Flow
^^^^^^^^^^^^^^^^^^^^
1. If ``handle == nullptr``, then return ``rocblas_status_invalid_handle``.
2. If the function does not require temporary device memory, then call the macro ``RETURN_ZERO_DEVICE_MEMORY_SIZE_IF_QUERIED(handle);``.
3. If the function requires temporary device memory, and ``handle->is_device_memory_size_query()`` is ``true``, then validate any pointers and arguments required to determine the optimal size of temporary device memory, returning ``rocblas_status_invalid_pointer`` or ``rocblas_status_invalid_size`` if the arguments are invalid, and otherwise ``return handle->set_optimal_device_memory_size(size...);``, where ``size...`` is a list of one or more sizes of temporary buffers, which are allocated with ``handle->device_malloc(size...)`` later.
4. Perform logging if enabled, taking care not to dereference ``nullptr`` arguments.
5. Check for unsupported enum value. Return ``rocblas_status_invalid_value`` if enum value is invalid.
6. Check for invalid sizes. Return ``rocblas_status_invalid_size`` if size arguments are invalid.
7. Return ``rocblas_status_invalid_pointer`` if any pointers used to determine quick return conditions are NULL.
8. If quick return conditions are met:
- If there is no return value
- Return ``rocblas_status_success``
- If there is a return value
- If the return value pointer argument is nullptr, return ``rocblas_status_invalid_pointer``
- Else, return ``rocblas_status_success``
9. If any pointers not checked in #7 are NULL and MUST be dereferenced return ``rocblas_status_invalid_pointer``; only when in ``rocblas_pointer_mode == rocblas_pointer_mode_host`` can it be determined efficiently if some vector/matrix arguments must be dereferenced.
10. (Optional.) Allocate device memory, returning ``rocblas_status_memory_error`` if the allocation fails.
11. If all checks above pass, launch the kernel and return ``rocblas_status_success``.
Legacy L1 BLAS "single vector"
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Below are four code snippets from NETLIB for "single vector" legacy L1 BLAS. They have quick-return-success for (n <= 0) || (incx <= 0):
.. code-block:: bash
DOUBLE PRECISION FUNCTION DASUM(N,DX,INCX)
IF (N.LE.0 .OR. INCX.LE.0) RETURN
DOUBLE PRECISION FUNCTION DNRM2(N,X,INCX)
IF (N.LT.1 .OR. INCX.LT.1) THEN
return = ZERO
SUBROUTINE DSCAL(N,DA,DX,INCX)
IF (N.LE.0 .OR. INCX.LE.0) RETURN
INTEGER FUNCTION IDAMAX(N,DX,INCX)
IDAMAX = 0
IF (N.LT.1 .OR. INCX.LE.0) RETURN
IDAMAX = 1
IF (N.EQ.1) RETURN
Legacy L1 BLAS "two vector"
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Below are seven legacy L1 BLAS codes from NETLIB. There is quick-return-success for (n <= 0). In addition, for DAXPY, there is quick-return-success for (alpha == 0):
.. code-block::
SUBROUTINE DAXPY(N,alpha,DX,INCX,DY,INCY)
IF (N.LE.0) RETURN
IF (alpha.EQ.0.0d0) RETURN
SUBROUTINE DCOPY(N,DX,INCX,DY,INCY)
IF (N.LE.0) RETURN
DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
IF (N.LE.0) RETURN
SUBROUTINE DROT(N,DX,INCX,DY,INCY,C,S)
IF (N.LE.0) RETURN
SUBROUTINE DSWAP(N,DX,INCX,DY,INCY)
IF (N.LE.0) RETURN
DOUBLE PRECISION FUNCTION DSDOT(N,SX,INCX,SY,INCY)
IF (N.LE.0) RETURN
SUBROUTINE DROTM(N,DX,INCX,DY,INCY,DPARAM)
DFLAG = DPARAM(1)
IF (N.LE.0 .OR. (DFLAG+TWO.EQ.ZERO)) RETURN
Legacy L2 BLAS
^^^^^^^^^^^^^^
Below are code snippets from NETLIB for legacy L2 BLAS. They have both argument checking and quick-return-success:
.. code-block::
SUBROUTINE DGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
INFO = 0
IF (M.LT.0) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (INCY.EQ.0) THEN
INFO = 7
ELSE IF (LDA.LT.MAX(1,M)) THEN
INFO = 9
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DGER ',INFO)
RETURN
END IF
IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
.. code-block::
SUBROUTINE DSYR(UPLO,N,ALPHA,X,INCX,A,LDA)
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (LDA.LT.MAX(1,N)) THEN
INFO = 7
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DSYR ',INFO)
RETURN
END IF
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
.. code-block::
SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
INFO = 0
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. .NOT.LSAME(TRANS,'C')) THEN
INFO = 1
ELSE IF (M.LT.0) THEN
INFO = 2
ELSE IF (N.LT.0) THEN
INFO = 3
ELSE IF (LDA.LT.MAX(1,M)) THEN
INFO = 6
ELSE IF (INCX.EQ.0) THEN
INFO = 8
ELSE IF (INCY.EQ.0) THEN
INFO = 11
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DGEMV ',INFO)
RETURN
END IF
IF ((M.EQ.0) .OR. (N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
.. code-block::
SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. .NOT.LSAME(TRANS,'C')) THEN
INFO = 2
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
INFO = 3
ELSE IF (N.LT.0) THEN
INFO = 4
ELSE IF (LDA.LT.MAX(1,N)) THEN
INFO = 6
ELSE IF (INCX.EQ.0) THEN
INFO = 8
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DTRSV ',INFO)
RETURN
END IF
IF (N.EQ.0) RETURN
Legacy L3 BLAS
^^^^^^^^^^^^^^
Below is a code snippet from NETLIB for legacy L3 BLAS dgemm. It has both argument checking and quick-return-success:
.. code-block::
SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
NOTA = LSAME(TRANSA,'N')
NOTB = LSAME(TRANSB,'N')
IF (NOTA) THEN
NROWA = M
NCOLA = K
ELSE
NROWA = K
NCOLA = M
END IF
IF (NOTB) THEN
NROWB = K
ELSE
NROWB = N
END IF
// Test the input parameters.
INFO = 0
IF ((.NOT.NOTA) .AND. (.NOT.LSAME(TRANSA,'C')) .AND.
+ (.NOT.LSAME(TRANSA,'T'))) THEN
INFO = 1
ELSE IF ((.NOT.NOTB) .AND. (.NOT.LSAME(TRANSB,'C')) .AND.
+ (.NOT.LSAME(TRANSB,'T'))) THEN
INFO = 2
ELSE IF (M.LT.0) THEN
INFO = 3
ELSE IF (N.LT.0) THEN
INFO = 4
ELSE IF (K.LT.0) THEN
INFO = 5
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
INFO = 8
ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
INFO = 10
ELSE IF (LDC.LT.MAX(1,M)) THEN
INFO = 13
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DGEMM ',INFO)
RETURN
END IF
// Quick return if possible.
IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
.. raw:: latex
\newpage
--------------------------------
rocBLAS Benchmarking and Testing
--------------------------------
There are two client executables that can be used with rocBLAS. They are:
- rocblas-bench
- rocblas-test
These two clients can be built by following the instructions in the Building and Installing section of the User Guide. After building the rocBLAS clients, they can be found in the directory ``rocBLAS/build/release/clients/staging``.
The next two sections will cover a brief explanation and the usage of each rocBLAS client.
rocblas-bench
^^^^^^^^^^^^^
rocblas-bench is used to measure performance and verify the correctness of rocBLAS functions.
It has a command line interface. For more information:
.. code-block:: bash
rocBLAS/build/release/clients/staging/rocblas-bench --help
* The following table shows all the data types in rocBLAS:
.. list-table:: Data types in rocBLAS
:widths: 25 25
:header-rows: 1
* - Data type
- accronym
* - real 16 bit Brain Floating Point
- bf16_r
* - real half
- f16_r (h)
* - real float
- f32_r (s)
* - real double
- f64_r (d)
* - Complex float
- f32_c (c)
* - Complex double
- f64_c (z)
* - Integer 32
- i32_r
* - Integer 8
- i8_r
* All options for problem types in rocBLAS for gemm are shown here:
N: not transposed
T: transposed
C: complex conjugate (for real data type C is the same as T)
.. list-table:: various matrix operations
:widths: 25 25 25
:header-rows: 1
* - Problem Types
- problem_type
- data type
* - NN
- Cijk_Ailk_Bljk
- real/complex
* - NT
- Cijk_Ailk_Bjlk
- real/complex
* - TN
- Cijk_Alik_Bljk
- real/complex
* - TT
- Cijk_Alik_Bjlk
- real/complex
* - NC
- Cijk_Ailk_BjlkC
- complex
* - CN
- Cijk_AlikC_Bljk
- complex
* - CC
- Cijk_AlikC_BjlkC
- complex
* - TC
- Cijk_Alik_BjlkC
- complex
* - CT
- Cijk_AlikC_Bjlk
- complex
For example, NT means A * B\ :sup:`T`\.
* Gemm functions can be divided into two main categories:
#. HPA functions (HighPrecisionAccumulate) where the compute data type is different from the input data type (A/B). All HPA functions must be called using *gemm_ex* API in rocblas-bench (and not gemm). gemm_ex function name consists of three letters: A/B data type, C/D data type, compute data type.
#. Non-HPA functions where the input (A/B), output (C/D), and compute data types are all the same. Non-HPA cases can be called using *gemm* or *gemm_ex*. But using *gemm* is recommended.
The following table shows all possible gemm functions in rocBLAS.
.. list-table:: all gemm functions in rocBLAS
:widths: 20 30 10 10 10
:header-rows: 1
* - function
- Kernel name
- A/B data type
- C/D data type
- compute data type
* - hgemm
- <arch>_<problem_type>_HB
- f16_r
- f16_r
- f16_r
* - hgemm_batched
- <arch>_<problem_type>_HB_GB
- f16_r
- f16_r
- f16_r
* - hgemm_strided_batched
- <arch>_<problem_type>_HB
- f16_r
- f16_r
- f16_r
* - sgemm
- <arch>_<problem_type>_SB
- f32_r
- f32_r
- f32_r
* - sgemm_batched
- <arch>_<problem_type>_SB_GB
- f32_r
- f32_r
- f32_r
* - sgemm_strided_batched
- <arch>_<problem_type>_SB
- f32_r
- f32_r
- f32_r
* - dgemm
- <arch>_<problem_type>_DB
- f64_r
- f64_r
- f64_r
* - dgemm_batched
- <arch>_<problem_type>_DB_GB
- f64_r
- f64_r
- f64_r
* - dgemm_strided_batched
- <arch>_<problem_type>_DB
- f64_r
- f64_r
- f64_r
* - cgemm
- <arch>_<problem_type>_CB
- f32_c
- f32_c
- f32_c
* - cgemm_batched
- <arch>_<problem_type>_CB_GB
- f32_c
- f32_c
- f32_c
* - cgemm_strided_batched
- <arch>_<problem_type>_CB
- f32_c
- f32_c
- f32_c
* - zgemm
- <arch>_<problem_type>_ZB
- f64_c
- f64_c
- f64_c
* - zgemm_batched
- <arch>_<problem_type>_ZB_GB
- f64_c
- f64_c
- f64_c
* - zgemm_strided_batched
- <arch>_<problem_type>_ZB
- f64_c
- f64_c
- f64_c
* - HHS
- <arch>_<problem_type>_HHS_BH
- f16_r
- f16_r
- f32_r
* - HHS_batched
- <arch>_<problem_type>_HHS_BH_GB
- f16_r
- f16_r
- f32_r
* - HHS_strided_batched
- <arch>_<problem_type>_HHS_BH
- f16_r
- f16_r
- f32_r
* - HSS
- <arch>_<problem_type>_HSS_BH
- f16_r
- f32_r
- f32_r
* - HSS_batched
- <arch>_<problem_type>_HSS_BH_GB
- f16_r
- f32_r
- f32_r
* - HSS_strided_batched
- <arch>_<problem_type>_HSS_BH
- f16_r
- f32_r
- f32_r
* - BBS
- <arch>_<problem_type>_BBS_BH
- bf16_r
- bf16_r
- f32_r
* - BBS_batched
- <arch>_<problem_type>_BBS_BH_GB
- bf16_r
- bf16_r
- f32_r
* - BBS_strided_batched
- <arch>_<problem_type>_BBS_BH
- bf16_r
- bf16_r
- f32_r
* - BSS
- <arch>_<problem_type>_BSS_BH
- bf16_r
- f32_r
- f32_r
* - BSS_batched
- <arch>_<problem_type>_BSS_BH_GB
- bf16_r
- f32_r
- f32_r
* - BSS_strided_batched
- <arch>_<problem_type>_BSS_BH
- bf16_r
- f32_r
- f32_r
* - I8II
- <arch>_<problem_type>_I8II_BH
- I8
- I
- I
* - I8II_batched
- <arch>_<problem_type>_I8II_BH_GB
- I8
- I
- I
* - I8II_strided_batched
- <arch>_<problem_type>_I8II_BH
- I8
- I
- I
.. raw:: latex
\newpage
* How to benchmark the performance of a gemm function using rocblas-bench:
This method is good only if you want to test a few sizes, otherwise, refer to the next section. The following listing shows how to configure rocblas-bench to call each of the gemm funcitons:
Non-HPA cases (gemm)
.. code-block:: bash
#dgemm
$ ./rocblas-bench -f gemm --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r d --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1.0
# dgemm batched
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r d --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# dgemm strided batched
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r d --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5
# sgemm
$ ./rocblas-bench -f gemm --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r s --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1
# sgemm batched
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r s --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# sgemm strided batched
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r s --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5
# hgemm (this function is not really very fast. Use HHS instead, which is faster and more accurate)
$ ./rocblas-bench -f gemm --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r h --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1
# hgemm batched
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r h --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# hgemm strided batched
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r h --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5
# cgemm
$ ./rocblas-bench -f gemm --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r c --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1
# cgemm batched
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r c --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# cgemm strided batched
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r c --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5
# zgemm
$ ./rocblas-bench -f gemm --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r z --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1
# zgemm batched
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r z --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# zgemm strided batched
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r z --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5
# cgemm (NC)
$ ./rocblas-bench -f gemm --transposeA N --transposeB C -m 1024 -n 2048 -k 512 -r c --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1
# cgemm batched (NC)
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB C -m 1024 -n 2048 -k 512 -r c --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# cgemm strided batched (NC)
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB C -m 1024 -n 2048 -k 512 -r c --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5
.. raw:: latex
\newpage
HPA cases (gemm_ex)
.. code-block:: bash
# HHS
$ ./rocblas-bench -f gemm_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --b_type h --ldb 2048 --c_type h --ldc 1024 --d_type h --ldd 1024 --compute_type s --alpha 1.1 --beta 1
# HHS batched
$ ./rocblas-bench -f gemm_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --b_type h --ldb 2048 --c_type h --ldc 1024 --d_type h --ldd 1024 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# HHS strided batched
$ ./rocblas-bench -f gemm_strided_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --stride_a 4096 --b_type h --ldb 2048 --stride_b 4096 --c_type h --ldc 1024 --stride_c 2097152 --d_type h --ldd 1024 --stride_d 2097152 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# HSS
$ ./rocblas-bench -f gemm_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --b_type h --ldb 2048 --c_type s --ldc 1024 --d_type s --ldd 1024 --compute_type s --alpha 1.1 --beta 1
# HSS batched
$ ./rocblas-bench -f gemm_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --b_type h --ldb 2048 --c_type s --ldc 1024 --d_type s --ldd 1024 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# HSS strided batched
$ ./rocblas-bench -f gemm_strided_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --stride_a 4096 --b_type h --ldb 2048 --stride_b 4096 --c_type s --ldc 1024 --stride_c 2097152 --d_type s --ldd 1024 --stride_d 2097152 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# BBS
$ ./rocblas-bench -f gemm_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --b_type bf16_r --ldb 2048 --c_type bf16_r --ldc 1024 --d_type bf16_r --ldd 1024 --compute_type s --alpha 1.1 --beta 1
# BBS batched
$ ./rocblas-bench -f gemm_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --b_type bf16_r --ldb 2048 --c_type bf16_r --ldc 1024 --d_type bf16_r --ldd 1024 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# BBS strided batched
$ ./rocblas-bench -f gemm_strided_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --stride_a 4096 --b_type bf16_r --ldb 2048 --stride_b 4096 --c_type bf16_r --ldc 1024 --stride_c 2097152 --d_type bf16_r --ldd 1024 --stride_d 2097152 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# BSS
$ ./rocblas-bench -f gemm_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --b_type bf16_r --ldb 2048 --c_type s --ldc 1024 --d_type s --ldd 1024 --compute_type s --alpha 1.1 --beta 1
# BSS batched
$ ./rocblas-bench -f gemm_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --b_type bf16_r --ldb 2048 --c_type s --ldc 1024 --d_type s --ldd 1024 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# BSS strided batched
$ ./rocblas-bench -f gemm_strided_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --stride_a 4096 --b_type bf16_r --ldb 2048 --stride_b 4096 --c_type s --ldc 1024 --stride_c 2097152 --d_type s --ldd 1024 --stride_d 2097152 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# I8II
$ ./rocblas-bench -f gemm_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type i8_r --lda 1024 --b_type i8_r --ldb 2048 --c_type i32_r --ldc 1024 --d_type i32_r --ldd 1024 --compute_type i32_r --alpha 1.1 --beta 1
# I8II batched
$ ./rocblas-bench -f gemm_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type i8_r --lda 1024 --b_type i8_r --ldb 2048 --c_type i32_r --ldc 1024 --d_type i32_r --ldd 1024 --compute_type i32_r --alpha 1.1 --beta 1 --batch_count 5
# I8II strided batched
$ ./rocblas-bench -f gemm_strided_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type i8_r --lda 1024 --stride_a 4096 --b_type i8_r --ldb 2048 --stride_b 4096 --c_type i32_r --ldc 1024 --stride_c 2097152 --d_type i32_r --ldd 1024 --stride_d 2097152 --compute_type i32_r --alpha 1.1 --beta 1 --batch_count 5
.. raw:: latex
\newpage
* How to set rocblas-bench parameters in a yaml file:
If you want to benchmark many sizes, it is recommended to use rocblas-bench with the batch call to eliminate the latency in loading the Tensile library which rocblas links to. The batch call takes a yaml file with a list of all problem sizes. You can have multiple sizes of different types in one yaml file. The benchmark setting is different from the direct call to the rocblas-bench. A sample setting for each function is listed below. Once you have the yaml file, you can benchmark the sizes as follows:
.. code-block:: bash
rocBLAS/build/release/clients/staging/rocblas-bench --yaml problem-sizes.yaml
Here are the configurations for each function:
Non-HPA cases (gemm)
.. code-block:: bash
# dgemm
- { rocblas_function: "rocblas_dgemm", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# dgemm batched
- { rocblas_function: "rocblas_dgemm_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# dgemm strided batched
- { rocblas_function: "rocblas_dgemm_strided_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# sgemm
- { rocblas_function: "rocblas_sgemm", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# sgemm batched
- { rocblas_function: "rocblas_sgemm_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# sgemm strided batched
- { rocblas_function: "rocblas_sgemm_strided_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# hgemm
- { rocblas_function: "rocblas_hgemm", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# hgemm batched
- { rocblas_function: "rocblas_hgemm_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# hgemm strided batched
- { rocblas_function: "rocblas_hgemm_strided_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# cgemm
- { rocblas_function: "rocblas_cgemm", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# cgemm batched
- { rocblas_function: "rocblas_cgemm_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# cgemm strided batched
- { rocblas_function: "rocblas_cgemm_strided_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# zgemm
- { rocblas_function: "rocblas_zgemm", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# zgemm batched
- { rocblas_function: "rocblas_zgemm_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# zgemm strided batched
- { rocblas_function: "rocblas_zgemm_strided_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# cgemm
- { rocblas_function: "rocblas_cgemm", transA: "N", transB: "C", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# cgemm batched
- { rocblas_function: "rocblas_cgemm_batched", transA: "N", transB: "C", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# cgemm strided batched
- { rocblas_function: "rocblas_cgemm_strided_batched", transA: "N", transB: "C", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
.. raw:: latex
\newpage
HPA cases (gemm_ex)
.. code-block:: bash
# HHS
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f16_r, d_type: f16_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# HHS batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f16_r, d_type: f16_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# HHS strided batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f16_r, d_type: f16_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# HSS
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f16_r, d_type: f16_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# HSS batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f32_r, d_type: f32_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# HSS strided batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f32_r, d_type: f32_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# BBS
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: bf16_r, d_type: bf16_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# BBS batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: bf16_r, d_type: bf16_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# BBS strided batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: bf16_r, d_type: bf16_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# BSS
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: f32_r, d_type: f32_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# BSS batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: f32_r, d_type: f32_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# BSS strided batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: f32_r, d_type: f32_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# I8II
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: i8_r, b_type: i8_r, c_type: i32_r, d_type: i32_r, compute_type: i32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# I8II batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: i8_r, b_type: i8_r, c_type: i32_r, d_type: i32_r, compute_type: i32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# I8II strided batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: i8_r, b_type: i8_r, c_type: i32_r, d_type: i32_r, compute_type: i32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
For example, the performance of sgemm using rocblas-bench on a vega20 machine returns:
.. code-block:: bash
./rocblas-bench -f gemm -r f32_r --transposeA N --transposeB N -m 4096 -n 4096 -k 4096 --alpha 1 --lda 4096 --ldb 4096 --beta 0 --ldc 4096
transA,transB,M,N,K,alpha,lda,ldb,beta,ldc,rocblas-Gflops,us
N,N,4096,4096,4096,1,4096,4096,0,4096,11941.5,11509.4
A useful way of finding the parameters that can be used with ``./rocblas-bench -f gemm`` is to turn on logging
by setting environment variable ``ROCBLAS_LAYER=2``. For example if the user runs:
.. code-block:: bash
ROCBLAS_LAYER=2 ./rocblas-bench -f gemm -i 1 -j 0
The above command will log:
.. code-block:: bash
./rocblas-bench -f gemm -r f32_r --transposeA N --transposeB N -m 128 -n 128 -k 128 --alpha 1 --lda 128 --ldb 128 --beta 0 --ldc 128
The user can copy and change the above command. For example, to change the datatype to IEEE-64 bit and the size to 2048:
.. code-block:: bash
./rocblas-bench -f gemm -r f64_r --transposeA N --transposeB N -m 2048 -n 2048 -k 2048 --alpha 1 --lda 2048 --ldb 2048 --beta 0 --ldc 2048
Logging affects performance, so only use it to log the command to copy and change, then run the command without logging to measure performance.
Note that rocblas-bench also has the flag ``-v 1`` for correctness checks.
rocblas-test
^^^^^^^^^^^^
rocblas-test is used in performing rocBLAS unit tests and it uses Googletest framework.
The tests are in four categories:
- quick
- pre_checkin
- nightly
- known_bug
To run the quick tests:
.. code-block:: bash
./rocblas-test --gtest_filter=*quick*
The other tests can also be run using the above command by replacing ``*quick*`` with ``*pre_checkin*``, ``*nightly*``, and ``*known_bug*``.
The pattern for ``--gtest_filter`` is:
.. code-block:: bash
--gtest_filter=POSTIVE_PATTERNS[-NEGATIVE_PATTERNS]
gtest_filter can also be used to run tests for a particular function, and a particular set of input parameters. For example, to run all quick tests for the function rocblas_saxpy:
.. code-block:: bash
./rocblas-test --gtest_filter=*quick*axpy*f32_r*
The number of lines of output can be reduced with:
.. code-block:: bash
GTEST_LISTENER=NO_PASS_LINE_IN_LOG ./rocblas-test --gtest_filter=*quick*
Add New rocBLAS Unit Test
^^^^^^^^^^^^^^^^^^^^^^^^^
To add new data-driven tests to the rocBLAS Google Test Framework:
**I**. Create a C++ header file with the name ``testing_<function>.hpp`` in the
``include`` subdirectory, with templated functions for a specific rocBLAS
routine. Examples:
.. code-block::
testing_gemm.hpp
testing_gemm_ex.hpp
In this ``testing_*.hpp`` file, create a templated function which returns ``void``
and accepts a ``const Arguments&`` parameter. Example:
.. code-block::
template<typename Ti, typename To, typename Tc>
void testing_gemm_ex(const Arguments& arg)
{
// ...
}
This function is used for yaml file driven argument testing. It will be invoked by the dispatch code for each permutation of the yaml driven parameters.
Additionally a template function for bad argument handling tests should be created. Example:
.. code-block::
template <typename T>
void testing_gemv_bad_arg(const Arguments& arg)
{
// ...
}
These bad_arg test function templates should be used to set arguments programmatically where it is simpler than the yaml approach. E.g. to pass NULL pointers.
It is expected that member variable values in the Arguments parameter will not be utilized with the common exception of arg.fortran which can drive selection of C and FORTRAN API bad argument tests.
All functions should be generalized with template parameters as much as possible,
to avoid copy-and-paste code.
In this function, use the following macros and functions to check results:
.. code-block::
HIP_CHECK_ERROR Verifies that a HIP call returns success
ROCBLAS_CHECK_ERROR Verifies that a rocBLAS call returns success
EXPECT_ROCBLAS_STATUS Verifies that a rocBLAS call returns a certain status
unit_check_general Check that two answers agree (see unit.hpp)
near_check_general Check that two answers are close (see near.hpp)
In addition, you can use Google Test Macros such as the below, as long as they are
guarded by ``#ifdef GOOGLE_TEST``\ :
.. code-block::
EXPECT_EQ
ASSERT_EQ
EXPECT_TRUE
ASSERT_TRUE
...
Note: The ``device_vector`` template allocates memory on the device. You must check whether
converting the ``device_vector`` to ``bool`` returns ``false``\ , and if so, report a HIP memory
error and then exit the current function. Example:
.. code-block::
// allocate memory on device
device_vector<T> dx(size_x);
device_vector<T> dy(size_y);
if(!dx || !dy)
{
CHECK_HIP_ERROR(hipErrorOutOfMemory);
return;
}
The general outline of the function should be:
#. Convert any scalar arguments (e.g., ``alpha`` and ``beta``\ ) to ``double``.
#. If the problem size arguments are invalid, use a ``safe_size`` to allocate arrays,
call the rocBLAS routine with the original arguments, and verify that it returns
``rocblas_status_invalid_size``. Return.
#. Set up host and device arrays (see ``rocblas_vector.hpp`` and ``rocblas_init.hpp``\ ).
#. Call a CBLAS or other reference implementation on the host arrays.
#. Call rocBLAS using both device pointer mode and host pointer mode, verifying that
every rocBLAS call is successful by wrapping it in ``ROCBLAS_CHECK_ERROR()``.
#. If ``arg.unit_check`` is enabled, use ``unit_check_general`` or ``near_check_general`` to validate results.
#. (Deprecated) If ``arg.norm_check`` is enabled, calculate and print out norms.
#. If ``arg.timing`` is enabled, perform benchmarking (currently under refactoring).
**II**. Create a C++ file with the name ``<function>_gtest.cpp`` in the ``gtest``
subdirectory, where ``<function>`` is a non-type-specific shorthand for the
function(s) being tested. Example:
.. code-block::
gemm_gtest.cpp
trsm_gtest.cpp
blas1_gtest.cpp
In the C++ file, follow these steps:
A. Include the header files related to the tests, as well as ``type_dispatch.hpp``.
Example:
.. code-block:: c++
#include "testing_syr.hpp"
#include "type_dispatch.hpp"
B. Wrap the body with an anonymous namespace, to minimize namespace collisions:
.. code-block:: c++
namespace {
C. Create a templated class which accepts any number of type parameters followed by one anonymous trailing type parameter defaulted to ``void`` (to be used with ``enable_if``\ ).
Choose the number of type parameters based on how likely in the future that
the function will support a mixture of that many different types, e.g. Input
type (\ ``Ti``\ ), Output type (\ ``To``\ ), Compute type (\ ``Tc``\ ). If the function will
never support more than 1-2 type parameters, then that many can be used. But
if the function may be expanded later to support mixed types, then those
should be planned for ahead of time and placed in the template parameters.
Unless the number of type parameters is greater than one and is always
fixed, then later type parameters should default to earlier ones, so that
a subset of type arguments can used, and so that code which works for
functions which take one type parameter may be used for functions which
take one or more type parameters. Example:
.. code-block:: c++
template< typename Ti, typename To = Ti, typename Tc = To, typename = void>
Make the primary definition of this class template derive from the ``rocblas_test_invalid`` class. Example:
.. code-block:: c++
template <typename T, typename = void>
struct syr_testing : rocblas_test_invalid
{
};
D. Create one or more partial specializations of the class template conditionally enabled by the type parameters matching legal combinations of types.
If the first type argument is ``void``\ , then these partial specializations must not apply, so that the default based on ``rocblas_test_invalid`` can perform the correct behavior when ``void`` is passed to indicate failure.
In the partial specialization(s), derive from the ``rocblas_test_valid`` class.
In the partial specialization(s), create a functional ``operator()`` which takes a ``const Arguments&`` parameter and calls templated test functions (usually in ``include/testing_*.hpp``\ ) with the specialization's template arguments when the ``arg.function`` string matches the function name. If ``arg.function`` does not match any function related to this test, mark it as a test failure. Example:
.. code-block:: c++
template <typename T>
struct syr_testing<T,
std::enable_if_t<std::is_same<T, float>::value || std::is_same<T, double>::value>
> : rocblas_test_valid
{
void operator()(const Arguments& arg)
{
if(!strcmp(arg.function, "syr"))
testing_syr<T>(arg);
else
FAIL() << "Internal error: Test called with unknown function: "
<< arg.function;
}
};
E. If necessary, create a type dispatch function for this function (or group of functions it belongs to) in ``include/type_dispatch.hpp``. If possible, use one of the existing dispatch functions, even if it covers a superset of allowable types. The purpose of ``type_dispatch.hpp`` is to perform runtime type dispatch in a single place, rather than copying it across several test files.
The type dispatch function takes a ``template`` template parameter of ``template<typename...> class`` and a function parameter of type ``const Arguments&``. It looks at the runtime type values in ``Arguments``\ , and instantiates the template with one or more static type arguments, corresponding to the dynamic runtime type arguments.
It treats the passed template as a functor, passing the Arguments argument to a particular instantiation of it.
The combinations of types handled by this "runtime type to template type instantiation mapping" function can be general, because the type combinations which do not apply to a particular test case will have the template argument set to derive from ``rocblas_test_invalid``\ , which will not create any unresolved instantiations. If unresolved instantiation compile or link errors occur, then the ``enable_if<>`` condition in step D needs to be refined to be ``false`` for type combinations which do not apply.
The return type of this function needs to be ``auto``\ , picking up the return type of the functor.
If the runtime type combinations do not apply, then this function should return ``TEST<void>{}(arg)``\ , where ``TEST`` is the template parameter. However, this is less important than step D above in excluding invalid type
combinations with ``enable_if``\ , since this only excludes them at run-time, and they need to be excluded by step D at compile-time in order to avoid unresolved references or invalid instantiations. Example:
.. code-block:: c++
template <template <typename...> class TEST>
auto rocblas_simple_dispatch(const Arguments& arg)
{
switch(arg.a_type)
{
case rocblas_datatype_f16_r: return TEST<rocblas_half>{}(arg);
case rocblas_datatype_f32_r: return TEST<float>{}(arg);
case rocblas_datatype_f64_r: return TEST<double>{}(arg);
case rocblas_datatype_bf16_r: return TEST<rocblas_bfloat16>{}(arg);
case rocblas_datatype_f16_c: return TEST<rocblas_half_complex>{}(arg);
case rocblas_datatype_f32_c: return TEST<rocblas_float_complex>{}(arg);
case rocblas_datatype_f64_c: return TEST<rocblas_double_complex>{}(arg);
default: return TEST<void>{}(arg);
}
}
F. Create a (possibly-templated) test implementation class which derives from the ``RocBLAS_Test`` template class, passing itself to ``RocBLAS_Test`` (the CRTP pattern) as well as the template class defined above. Example:
.. code-block:: c++
struct syr : RocBLAS_Test<syr, syr_testing>
{
// ...
};
In this class, implement three static functions:
``static bool type_filter(const Arguments& arg)`` returns ``true`` if the types described by ``*_type`` in the ``Arguments`` structure, match a valid type combination.
This is usually implemented simply by calling the dispatch function in step E, passing it the helper ``type_filter_functor`` template class defined in ``RocBLAS_Test``. This functor uses the same runtime type checks as are used to instantiate test functions with particular type arguments, but instead, this returns ``true`` or ``false`` depending on whether a function would have been called. It is used to filter out tests whose runtime parameters do not match a valid test.
Since ``RocBLAS_Test`` is a dependent base class if this test implementation class is templated, you may need to use a fully-qualified name (\ ``A::B``\ ) to resolve ``type_filter_functor``\ , and in the last part of this name, the keyword ``template`` needs to precede ``type_filter_functor``. The first half of the fullyqualified name can be this class itself, or the full instantation of ``RocBLAS_Test<...>``. Example:
.. code-block:: c++
static bool type_filter(const Arguments& arg)
{
return rocblas_blas1_dispatch<
blas1_test_template::template type_filter_functor>(arg);
}
``static bool function_filter(const Arguments& arg)`` returns ``true`` if the function name in ``Arguments`` matches one of the functions handled by this test. Example:
.. code-block:: c++
// Filter for which functions apply to this suite
static bool function_filter(const Arguments& arg)
{
return !strcmp(arg.function, "ger") || !strcmp(arg.function, "ger_bad_arg");
}
``static std::string name_suffix(const Arguments& arg)`` returns a string which will be used as the Google Test name's suffix. It will provide an alphanumeric representation of the test's arguments.
Use the ``RocBLAS_TestName`` helper class template to create the name. It accepts ostream output (like ``std::cout``\ ), and can be automatically converted to ``std::string`` after all of the text of the name has been streamed to it.
The ``RocBLAS_TestName`` helper class constructor accepts a string argument which will be included in the test name. It is generally passed the ``Arguments`` structure's ``name`` member.
The ``RocBLAS_TestName`` helper class template should be passed the name of this test implementation class (including any implicit template arguments) as a template argument, so that every instantiation of this test implementation class creates a unique instantiation of ``RocBLAS_TestName``. ``RocBLAS_TestName`` has some static data that needs to be kept local to each test.
``RocBLAS_TestName`` converts non-alphanumeric characters into suitable replacements, and disambiguates test names when the same arguments appear more than once.
Since the conversion of the stream into a ``std::string`` is a destructive one-time operation, the ``RocBLAS_TestName`` value converted to ``std::string`` needs to be an rvalue. Example:
.. code-block:: c++
static std::string name_suffix(const Arguments& arg)
{
// Okay: rvalue RocBLAS_TestName object streamed to and returned
return RocBLAS_TestName<syr>() << rocblas_datatype2string(arg.a_type)
<< '_' << (char) std::toupper(arg.uplo) << '_' << arg.N
<< '_' << arg.alpha << '_' << arg.incx << '_' << arg.lda;
}
static std::string name_suffix(const Arguments& arg)
{
RocBLAS_TestName<gemm_test_template> name;
name << rocblas_datatype2string(arg.a_type);
if(GEMM_TYPE == GEMM_EX || GEMM_TYPE == GEMM_STRIDED_BATCHED_EX)
name << rocblas_datatype2string(arg.b_type)
<< rocblas_datatype2string(arg.c_type)
<< rocblas_datatype2string(arg.d_type)
<< rocblas_datatype2string(arg.compute_type);
name << '_' << (char) std::toupper(arg.transA)
<< (char) std::toupper(arg.transB) << '_' << arg.M
<< '_' << arg.N << '_' << arg.K << '_' << arg.alpha << '_'
<< arg.lda << '_' << arg.ldb << '_' << arg.beta << '_'
<< arg.ldc;
// name is an lvalue: Must use std::move to convert it to rvalue.
// name cannot be used after it's converted to a string, which is
// why it must be "moved" to a string.
return std::move(name);
}
G. Choose a non-type-specific shorthand name for the test, which will be displayed as part of the test name in the Google Tests output (and hence will be stringified). Create a type alias for this name, unless the name is already the name of the class defined in step F, and it is not templated. For example, for a templated class defined in step F, create an alias for one of its instantiations:
.. code-block:: c++
using gemm = gemm_test_template<gemm_testing, GEMM>;
H. Pass the name created in step G to the ``TEST_P`` macro, along with a broad test category name that this test belongs to (so that Google Test filtering can be used to select all tests in a category). The broad test category suffix should be _tensile if it requires Tensile.
In the body following this ``TEST_P`` macro, call the dispatch function from step E, passing it the class from step C as a template template argument, passing the result of ``GetParam()`` as an ``Arguments`` structure, and wrapping the call in the ``CATCH_SIGNALS_AND_EXCEPTIONS_AS_FAILURES()`` macro. Example:
.. code-block:: c++
TEST_P(gemm, blas3_tensile) { CATCH_SIGNALS_AND_EXCEPTIONS_AS_FAILURES(rocblas_gemm_dispatch<gemm_testing>(GetParam())); }
The ``CATCH_SIGNALS_AND_EXCEPTIONS_AS_FAILURES()`` macro detects signals such as ``SIGSEGV`` and uncaught C++ exceptions returned from rocBLAS C APIs as failures, without terminating the test program.
I. Call the ``INSTANTIATE_TEST_CATEGORIES`` macro which instantiates the Google Tests across all test categories (\ ``quick``\ , ``pre_checkin``\ , ``nightly``\ , ``known_bug``\ ), passing it the same test name as in steps G and H. Example:
.. code-block:: c++
INSTANTIATE_TEST_CATEGORIES(gemm);
J. Don't forget to close the anonymous namespace:
.. code-block:: c++
} // namespace
**III.** Create a ``<function>.yaml`` file with the same name as the C++ file, just with
a ``.yaml`` extension.
In the YAML file, define tests with combinations of parameters.
The YAML files are organized as files which ``include:`` each other (an extension to YAML), define anchors for data types and data structures, list of test parameters or subsets thereof, and ``Tests`` which describe a combination of parameters including ``category`` and ``function``.
``category`` must be one of ``quick``\ , ``pre_checkin``\ , ``nightly``\ , or ``known_bug``. The category is automatically changed to ``known_bug`` if the test matches a test in ``known_bugs.yaml``.
``function`` must be one of the functions tested for and recognized in steps D-F.
The syntax and idioms of the YAML files is best described by looking at the
existing ``*_gtest.yaml`` files as examples.
**IV.** Add the YAML file to ``rocblas_gtest.yaml``\ , to be included. Examnple:
.. code-block:: yaml
include: blas1_gtest.yaml
**V.** Add the YAML file to the list of dependencies for ``rocblas_gtest.data`` in ``CMakeLists.txt``. Example:
.. code-block:: cmake
add_custom_command( OUTPUT "${ROCBLAS_TEST_DATA}"
COMMAND ../common/rocblas_gentest.py -I ../include rocblas_gtest.yaml -o "${ROCBLAS_TEST_DATA}"
DEPENDS ../common/rocblas_gentest.py rocblas_gtest.yaml ../include/rocblas_common.yaml known_bugs.yaml blas1_gtest.yaml gemm_gtest.yaml gemm_batched_gtest.yaml gemm_strided_batched_gtest.yaml gemv_gtest.yaml symv_gtest.yaml syr_gtest.yaml ger_gtest.yaml trsm_gtest.yaml trtri_gtest.yaml geam_gtest.yaml set_get_vector_gtest.yaml set_get_matrix_gtest.yaml
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}" )
**VI.** Add the ``.cpp`` file to the list of sources for ``rocblas-test`` in ``CMakeLists.txt``. Example:
.. code-block:: c++
set(rocblas_test_source
rocblas_gtest_main.cpp
${Tensile_TEST_SRC}
set_get_pointer_mode_gtest.cpp
logging_mode_gtest.cpp
set_get_vector_gtest.cpp
set_get_matrix_gtest.cpp
blas1_gtest.cpp
gemv_gtest.cpp
ger_gtest.cpp
syr_gtest.cpp
symv_gtest.cpp
geam_gtest.cpp
trtri_gtest.cpp
)
**VII.** Aim for a function to have tests in each of the categories: quick, pre_checkin, nightly. Aim for tests for each function to have runtime in the table below:
+---------+-------------------+--------------------+-----------------------+
| | quick | pre_checkin | nightly |
+=========+===================+====================+=======================+
| | | | |
| Level 1 | 2 - 12 sec | 20 - 36 sec | 70 - 200 sec |
| | | | |
+---------+-------------------+--------------------+-----------------------+
| | | | |
| Level 2 | 6 - 36 sec | 35 - 100 sec | 200 - 650 sec |
| | | | |
+---------+-------------------+--------------------+-----------------------+
| | | | |
| Level 3 | 20 sec - 2 min | 2 - 6 min | 12 - 24 min |
| | | | |
+---------+-------------------+--------------------+-----------------------+
Many examples are available in ``gtest/*_gtest.{cpp,yaml}``
|