File: KernelWriter.py

package info (click to toggle)
rocblas 5.5.1%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 565,372 kB
  • sloc: cpp: 198,491; python: 44,792; f90: 25,111; sh: 24,429; asm: 8,954; xml: 222; makefile: 147; ansic: 107; awk: 14
file content (5455 lines) | stat: -rw-r--r-- 276,633 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
################################################################################
#
# Copyright (C) 2016-2022 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
################################################################################

from . import Code
from . import Common
from .Common import globalParameters, CHeader, roundUp, Backup, print2
from .ReplacementKernels import ReplacementKernels
from .CustomKernels import isCustomKernelConfig
from .SolutionStructs import Solution

import abc
import collections
import os
import shutil
import subprocess
import copy
from math import ceil

################################################################################
# Kernel Writer
################################################################################
class KernelWriter(metaclass=abc.ABCMeta):
  #__metaclass__=abc.ABCMeta

  ##############################################################################
  # Init
  ##############################################################################
  def __init__( self, kernelMinNaming, kernelSerialNaming ):
    self.kernelMinNaming = kernelMinNaming
    self.kernelSerialNaming = kernelSerialNaming
    self.overflowedResources = 0

  @property
  def asmCaps(self):
    """
    Assembler capabilities for the current ISA version.
    """
    return globalParameters["AsmCaps"][self.version]

  @property
  def archCaps(self):
    """
    Architectural capabilities for the current ISA version.
    """
    return globalParameters["ArchCaps"][self.version]

  @property
  def globalParams(self):
    """
    Global parameters for current configuration.
    """
    return globalParameters

  ##############################################################################
  # makeSchedule:  Schedule work into interations.

  # Tensile uses a two-level scheduler.  This the first-level, which
  # schedules global reads, global incs, and local writes into iteration.
  # Then makeSubIterSchedule schedules the instructions within the iteration.
  #
  # Inputs:
  #   localWriteEndIter: loop iteration where last writes should be inserted
  #      If scheduleLocalWrite=0, all writes will be be placed in this iteration.
  #      If scheduleLocalWrite=1, the scheduler will work backwards from this
  #      iteration.
  #
  # Outputs:
  #   self.unrollLoopHeaderCode:
  #      - Code module that should be added into the unroll loop header
  #        In unscheduled code this contains global loads and global address increment
  #   self.perIterGlobalReadCode[], self.perIterLocalWriteCode[]
  #      - List indexed by unroll iteration.
  #        Each entry in the list is a code module that should be added into that iteration.
  #        May be None, indicating no extra code for that iteration
  #   self.grEndMfmaIndex
  #   self.lwStartMfmaIndex
  #   self.lwEndMfmaIndex
  #   self.barrierMfmaIndex
  #   self.numMfmaForNextLoopLR
  # This routine is responsible for setting the schedule including determining
  # that all necessary dependency are met.  The driver code in kernelBody
  # blindly follows the plan set in unrollLoopHeaderCode and perIterCode
  ##############################################################################
  def makeSchedule(self, kernel, tensorParametersA, tensorParametersB, localWriteEndIter, uDu=0, skipGlobalReadInc=False, firstIter=False, lastLoop=False, lastLc=False):

    currentIsa = globalParameters["CurrentISA"]
    maxVmcnt = globalParameters["AsmCaps"][currentIsa]["MaxVmcnt"]

    self.unrollLoopHeaderCode = Code.Module()
    # schedule of work for each local_read iteration:
    self.perIterGlobalReadCode = [ Code.Module() for i in range (kernel["LoopIters"]) ]
    self.perIterLocalWriteCode = [ Code.Module() for i in range (kernel["LoopIters"]) ]
    if lastLc:
      self.perIterLocalWriteCodeNGLL = [ Code.Module() for i in range (kernel["LoopIters"]) ]
    self.perIterLocalWriteCanSkip = [ 0 for i in range (kernel["LoopIters"]) ]
    self.perIterGlobalReadCodeDTV = [ Code.Module() for i in range (kernel["LoopIters"]) ] # global read for DirectToVgpr
    assert([item.name for item in self.globalReadIncrements.itemList] == ['globalReadIncrementA', 'globalReadIncrementB'])

    globalReadIncACode  = self.globalReadIncrements.findNamedItem("globalReadIncrementA")
    globalReadIncBCode  = self.globalReadIncrements.findNamedItem("globalReadIncrementB")

    if uDu < kernel["DepthULdsDivisor"] - 1 and kernel.enabledSplitLDS and kernel["PrefetchGlobalRead"] \
       or skipGlobalReadInc:
      globalReadIncACode  = Code.Module()
      globalReadIncBCode  = Code.Module()

    grBackup = None
    if uDu != kernel["DepthULdsDivisor"] - 2 and kernel.enabledSplitLDS:
      # hack RAII object for auto restore
      # withhold issuing global read codes until in the 2nd last subloop, meaning we empty the code
      # modules in other subloops.
      grBackup = Backup(self, globalReadACode = self.globalReadACode, globalReadBCode = self.globalReadBCode)
      self.globalReadACode = Code.StructuredModule() # empty
      self.globalReadBCode = Code.StructuredModule() # empty

    numGlobalReadC = self.getNumberOfLoadCInForLoadC(kernel)

    lastLoadIter = 0
    PRECISION = 100
    if kernel["EnableMatrixInstruction"] and kernel["ScheduleIterAlg"] == 3:
      numMfmaPerIter = self.numMfmaPerIter
      #########
      # Get localWriteEnd
      #########
      # assign parameter
      # 1. we calculate number of mfma to prefetch localReads for next loop
      # 2. we put barrier 1 mfma ahead that
      # 3. we put last localWrite 1~2 mfma ahead barrier
      # localReads followed following sequence to be scheduled
      # ds_read[A][0], ds_read[B][0], ds_read[A][1:], ds_read[B][1:]
      # NOTE: we need this sequence for new feature "breaking waitcnt"
      # TODO: breaking waitcnt
      self.numMfmaForLR = 1
      latencyLeft = self.miLatencyLeft
      miLatencyLeft = self.miLatencyLeft
      # ds_read[A][0]
      for i in range(self.numReadPerVectorA):
        latencyLeft -= tensorParametersA["localReadInstruction"].IssueLatency*2
        if latencyLeft < 0:
          self.numMfmaForLR += 1
          latencyLeft = max(miLatencyLeft - tensorParametersA["localReadInstruction"].IssueLatency*2,0)
      # ds_read[B][0]
      for i in range(self.numReadPerVectorB):
        latencyLeft -= tensorParametersB["localReadInstruction"].IssueLatency*2
        if latencyLeft < 0:
          self.numMfmaForLR += 1
          latencyLeft = max(miLatencyLeft - tensorParametersB["localReadInstruction"].IssueLatency*2,0)
      # ds_read[A][1:]
      for i in range(self.numReadsPerIterA-self.numReadPerVectorA):
        latencyLeft -= tensorParametersA["localReadInstruction"].IssueLatency*2
        if latencyLeft < 0:
          self.numMfmaForLR += 1
          latencyLeft = max(miLatencyLeft - tensorParametersA["localReadInstruction"].IssueLatency*2,0)
      # ds_read[B][1:]
      for i in range(self.numReadsPerIterB-self.numReadPerVectorB):
        latencyLeft -= tensorParametersB["localReadInstruction"].IssueLatency*2
        if latencyLeft < 0:
          self.numMfmaForLR += 1
          latencyLeft = max(miLatencyLeft - tensorParametersB["localReadInstruction"].IssueLatency*2,0)
      # to calculate number of mfma we need to wait before data arrive from lds to vgpr.
      # latency: 40 quad-cycle for 4 word, 20 quad-cycle for 2 word, 10 quad-cycle for 1 word / half word
      self.numMfmaForNextLoopLR = self.numMfmaForLR
      latencyForLR = roundUp(tensorParametersB["localReadInstruction"].blockWidth)*10
      latencyForLR -= max(latencyLeft,0) # remaining latency in mfma
      latencyForLR -= self.miLatency # last LR will have 1 mfma latency
      while latencyForLR > 0:
        latencyForLR -= self.miLatency
        self.numMfmaForNextLoopLR += 1
      # final index definition
      self.numMfmaForNextLoopLR = min(self.numMfmaForNextLoopLR,numMfmaPerIter-1)
      self.barrierMfmaIndex = numMfmaPerIter*(kernel["LoopIters"]-self.numItersPLR+1) - self.numMfmaForNextLoopLR - 1 if self.numItersPLR else 0
      numMfmaBetweenLWandBarrier = 2 if kernel["MatrixInstM"] == 32 else 3
      self.lwEndMfmaIndex = max(self.barrierMfmaIndex - numMfmaBetweenLWandBarrier,0) if self.numItersPLR else numMfmaPerIter*kernel["LoopIters"] - 1
      if kernel["DirectToLds"] and kernel["PrefetchGlobalRead"] == 2:
        # DirectToLds + PGR=2 case, lwEndMfmaIndex must be after the end of local read (excluding local reads for next iter)
        lrEnd = min(self.barrierMfmaIndex - 1, self.numMfmaForLR * (kernel["LoopIters"] - self.numItersPLR))
        if self.lwEndMfmaIndex < lrEnd:
          self.lwEndMfmaIndex = lrEnd

      #########
      # Internally assign an optimized LWPM value for PGR2
      #########
      # strategy is to distribute LW/GR as wide as possible to avoid hitting vmem FIFO
      # LWPM = (LW_End - LW_Start) / numLW
      if kernel["LocalWritePerMfma"] == -1:
        #########
        # Get localWriteStart
        #########
        if not kernel["1LDSBuffer"]:
          # TODO: replace here for real number of globalReadIncInst
          numGRIncInst = 12 if not kernel["StaggerU"] else 18
          numInstPerMfma = max(roundUp(self.miLatencyLeft/2),1)
          numMfmaToSched = roundUp(numGRIncInst/numInstPerMfma)
          lwStartMfmaIndex = 1 + numMfmaToSched
        else:
          # for 1LDSB, we have to issue localwrites after localreads
          if self.numVgprBuffer == kernel["LoopIters"]:
            if self.numReadPerVectorA != 1 or self.numReadPerVectorB !=1:
            # fp16 or bf16, we read 1 element to vgprBuffer the other element to tempVgpr.
            # since each iteration shares same tempVgpr, only read-to-vgprBuffer can
            # be scheduled in the front of loop.
              # localwrite have to start after last read-to-tempVgpr.
              numHalfReads = (self.numReadPerVectorA//2)*kernel["InnerUnroll"]*kernel["MIWaveTileA"] + (self.numReadPerVectorB//2)*kernel["InnerUnroll"]*kernel["MIWaveTileB"]
              numMfmaForHalfRead = 1
              latencyLeft = self.miLatencyLeft
              for i in range(numHalfReads):
                latencyLeft -= 2
                if latencyLeft < 0:
                  numMfmaForHalfRead += 1
                  latencyLeft = max(self.miLatencyLeft - 2, 0)
              lwStartMfmaIndex = numMfmaPerIter * (kernel["LoopIters"] - 1 - self.numItersPLR) + numMfmaForHalfRead
            else:
            # we have enough vgprBuffer to schedule localReads in the front of loop
              numMfmaForCurrentLoopLR = 1
              latencyLeft = self.miLatencyLeft
              for u in range(kernel["LoopIters"] - self.numItersPLR):
                doReadA = (u < kernel["LoopIters"] // self.numIterPerCoalescedReadA - self.numItersPLR)
                doReadB = (u < kernel["LoopIters"] // self.numIterPerCoalescedReadB - self.numItersPLR)
                # disable LocalRead if DirectToVgpr is enabled
                doReadA = doReadA and (not kernel["DirectToVgprA"])
                doReadB = doReadB and (not kernel["DirectToVgprB"])
                # ds_read[A][0]
                for i in range(self.numReadPerVectorA * doReadA):
                  latencyLeft -= tensorParametersA["localReadInstruction"].IssueLatency*2
                  if latencyLeft < 0:
                    numMfmaForCurrentLoopLR += 1
                    latencyLeft = max(self.miLatencyLeft - tensorParametersA["localReadInstruction"].IssueLatency*2,0)
                # ds_read[B][0]
                for i in range(self.numReadPerVectorB * doReadB):
                  latencyLeft -= tensorParametersB["localReadInstruction"].IssueLatency*2
                  if latencyLeft < 0:
                    numMfmaForCurrentLoopLR += 1
                    latencyLeft = max(self.miLatencyLeft - tensorParametersB["localReadInstruction"].IssueLatency*2,0)
                # ds_read[A][1:]
                for i in range((self.numReadsPerIterA - self.numReadPerVectorA) * doReadA):
                  latencyLeft -= tensorParametersA["localReadInstruction"].IssueLatency*2
                  if latencyLeft < 0:
                    numMfmaForCurrentLoopLR += 1
                    latencyLeft = max(self.miLatencyLeft - tensorParametersA["localReadInstruction"].IssueLatency*2,0)
                # ds_read[B][1:]
                for i in range((self.numReadsPerIterB - self.numReadPerVectorB) * doReadB):
                  latencyLeft -= tensorParametersB["localReadInstruction"].IssueLatency*2
                  if latencyLeft < 0:
                    numMfmaForCurrentLoopLR += 1
                    latencyLeft = max(self.miLatencyLeft - tensorParametersB["localReadInstruction"].IssueLatency*2,0)
              lwStartMfmaIndex = numMfmaForCurrentLoopLR
          else:
            lwStartMfmaIndex = numMfmaPerIter * (kernel["LoopIters"] - 1 - self.numItersPLR) + self.numMfmaForLR
          # to calculate number of mfma we need to wait before data arrive from lds to vgpr.
          # latency: 40 quad-cycle for 4 word, 20 quad-cycle for 2 word, 10 quad-cycle for 1 word / half word
          if self.numIterPerCoalescedReadB > self.numIterPerCoalescedReadA:
            latencyForLR = roundUp(tensorParametersA["localReadInstruction"].blockWidth) * 10
          else:
            latencyForLR = roundUp(tensorParametersB["localReadInstruction"].blockWidth) * 10
          latencyForLR -= max(latencyLeft,0) # remaining latency in mfma
          while latencyForLR > 0:
            latencyForLR -= self.miLatency
            lwStartMfmaIndex += 1
        #########
        # Get LocalWritePerMfma
        #########
        if lwStartMfmaIndex > self.lwEndMfmaIndex:
          lwStartMfmaIndex = self.lwEndMfmaIndex
        numMfmaCanSched = self.lwEndMfmaIndex - lwStartMfmaIndex + 1
        numLoadsA = kernel["DepthU"]*kernel["MacroTileA"]//kernel["GlobalLoadVectorWidthA"]//kernel["NumThreads"]
        numLoadsB = kernel["DepthU"]*kernel["MacroTileB"]//kernel["GlobalLoadVectorWidthB"]//kernel["NumThreads"]
        writesToSched = (numLoadsA + numLoadsB - 1) * PRECISION
        # In StoreCInUnroll case, add StoreC code related code to writesToSched
        if kernel["StoreCInUnroll"]:
          numStoreCUnrollCode = len(list(self.StoreCUnrollCode.items()))
          writesToSched += numStoreCUnrollCode * PRECISION
        oldValue = 0
        newValue = PRECISION
        loop = 0
        #   1. number of padded writesToSched is (numWrites - 1) * 100 + 1
        #     LW ---99--- LW ---99--- LW
        #   2. we need to pad it to multiple of LWPM
        #     LW ---99--- LW ---99--- LW --?--
        #     | ------- multiple of LWPM ---- |
        #   3. if LWPM is not multiple of 100, we need extra empty instructions to schedule GR for PGR2
        #     LW ---99--- LW ---99--- LW --?-- --?--
        #     | ------- multiple of LWPM ---- |-LWPM-|
        #   4. then we put GR into padded writesToSched
        #       put GR after LW + LWPM of empty inst, so that we can offset GR 1 mfma with LW if possible
        #     Ex. LWPM = 0.25
        #         LW --24- GR ------74------ LW --24- GR ------74------ LW --24- GR --24-
        #     mfma--24-mfma--24-mfma--24-mfma--24-mfma--24-mfma--24-mfma--24-mfma--24-mfma
        # we need LWPM to get precise LWPM
        # so we iterate formula 10 times to get LWPM
        while oldValue != newValue and loop < 10:
          loop += 1
          oldValue = newValue
          newValue = roundUp((writesToSched+1 + (oldValue - (writesToSched+1) % oldValue) + oldValue%PRECISION) / numMfmaCanSched)
        numLocalWriteModPerMfma = newValue

      #####
      # Assign GRPM and LWPM
      #####
      # HOW THIS WORK
      # padding each globalReadInstruction to 100 with empty instruction, 
      # each mfma will schedule intructions GRPM*100 times from padded globalReadInstruction.
      #   Ex. GRPM = 0.5
      #        GR ---------99--------- GR --------99---------- GR
      #   mfma --49-- mfma --49-- mfma --49-- mfma --49-- mfma --49--
      self.numGlobalReadInsPerMfma = roundUp(kernel["GlobalReadPerMfma"]*PRECISION)

      # HOW THIS WORK
      # padding each globalReadInstruction to 100 with empty instruction, 
      # each mfma will schedule intructions GRPM*100 times from padded globalReadInstruction.
      #   Ex. LWPM = 0.5
      #        LW ---------99--------- LW --------99---------- LW
      #   mfma --49-- mfma --49-- mfma --49-- mfma --49-- mfma --49--
      if kernel["LocalWritePerMfma"] == -1:
        if kernel["PrefetchGlobalRead"] == 1:
          # In PGR1:
          #   Larger LWPM can provide more latency to hide global read
          #   However, larger LWPM may cause mfma bubbles
          #   we set LWPM to 1 unless it requires larger LWPM to enable 1LDSB
          if kernel["1LDSBuffer"]:
            self.numLocalWriteModPerMfma = max(numLocalWriteModPerMfma,PRECISION)
          else:
            self.numLocalWriteModPerMfma = PRECISION
        else:
          self.numLocalWriteModPerMfma = numLocalWriteModPerMfma
      else:
        self.numLocalWriteModPerMfma = roundUp(kernel["LocalWritePerMfma"]*PRECISION)

      ##################################
      numGlobalReadInsPerIter = numMfmaPerIter * self.numGlobalReadInsPerMfma
      numLocalWriteModPerIter = numMfmaPerIter * self.numLocalWriteModPerMfma
      # if numGlobalReadInsPerMfma>1, we still want to schedule only 1 GlobalReadIncCode per mfma
      # inserting empty CodeModule so that generator will schedule 1 GlobalReadIncCode 1 empty CodeModule if numGlobalReadInsPerMfma=2
      numEmptyGlobalReadIncCode = self.numGlobalReadInsPerMfma - 1

      # If numLocalWriteModPerMfma is not multiple of 100,
      # last globalread will be scheduled at lwEndMfmaIndex,
      # and last localwrite will be scheduled at lwEndMfmaIndex - 1
      # so we offset lwEndMfmaIndex by 1 mfma
      if kernel["PrefetchGlobalRead"] == 2 and self.numLocalWriteModPerMfma % PRECISION != 0:
        numMfmaBetweenLWandBarrier -= 1
      def assignParamSplitLds(numMfmaBetweenLWandBarrier):
        if not kernel.enabledSplitLDS:
          return numMfmaBetweenLWandBarrier
        # how many local reads in terms of mfma indices (height)
        # total number of instructions (total) minus the instructions prefetched outside of loop (spent), divided by mfma bubble (width)
        issueLatency = max(self.localReadInstructionA.IssueLatency, self.localReadInstructionB.IssueLatency) * 2
        width = self.miLatencyLeft // issueLatency
        width = max(width, 1)
        spent = self.numItersPLR * (self.numReadsPerIterA + self.numReadsPerIterB)
        total = kernel["LoopIters"]//self.numIterPerCoalescedReadA*self.numReadsPerIterA + \
                kernel["LoopIters"]//self.numIterPerCoalescedReadB*self.numReadsPerIterB
        height = int(ceil((total-spent)/width))
        # how many local writes
        localWritesToSched = self.localWriteACode.countType(Code.LocalWriteInst) + \
                             self.localWriteBCode.countType(Code.LocalWriteInst)
        if kernel["StoreCInUnroll"]:
          # in StoreCInUnroll case, add number of storeC related code here
          # add store C related code to itemsLWToSched
          numStoreCUnrollCode = len(list(self.StoreCUnrollCode.items()))
          localWritesToSched += numStoreCUnrollCode
        localWritesPerMfma = self.numLocalWriteModPerMfma / PRECISION # was scaled by PRECISION
        # _numMfmaBetweenLastLWandBarrier: a function of 'spacing', which is num of mfma instructions until local write starts
        _numMfmaBetweenLastLWandBarrier = lambda spacing : self.barrierMfmaIndex + 1 - ceil(localWritesToSched/localWritesPerMfma) - spacing
        addrIncToSched = sum(1 for codemod in [globalReadIncACode, globalReadIncBCode] if len(codemod.items()))
        if uDu < kernel["DepthULdsDivisor"] - 1:
          if kernel["1LDSBuffer"] and kernel["PrefetchLocalRead"] > 1:
            # space the stream of local writes so that 1st local write is scheduled after last local read,
            # but give it 2 mfma's worth of headroom
            spacing = 2 + height
          else:
            # can start ds_write/buffer_load as soon as loop starts, but give it 1 mfma's worth of headroom
            spacing = 1
        else:
          # query how much spacing we have by calling lambda(0), minus the original 'numMfmaBetweenLWandBarrier'
          # we get the spacing that results in exactly 'numMfmaBetweenLWandBarrier' between last write and barrier
          spacing = _numMfmaBetweenLastLWandBarrier(0) - numMfmaBetweenLWandBarrier + addrIncToSched - 1
        return max(0, _numMfmaBetweenLastLWandBarrier(spacing))

      numMfmaBetweenLWandBarrier = assignParamSplitLds(numMfmaBetweenLWandBarrier)
      # In StoreCInUnroll + num of store > 1 case, reduce numMfmaBetweenLWandBarrier to 1
      # because interval between local write and read is already added by StoreCInUnroll code
      if kernel["StoreCInUnroll"] and self.getNumberOfStoreCInTemplate(kernel) > 1:
        numMfmaBetweenLWandBarrier = min(numMfmaBetweenLWandBarrier, 1)
      self.lwEndMfmaIndex = max(self.barrierMfmaIndex - numMfmaBetweenLWandBarrier,0) if self.numItersPLR else numMfmaPerIter*kernel["LoopIters"] - 1
      # adjust lwEndMfmaIndex for the following cases 
      #  1) PGR=2 + DirectToVgpr(DTV)
      #  2) last loop and StoreCInUnrollPostLoop enabled case
      # In these cases, lwEndMfmaIndex needs to be < numMfmaPerIter * (kernel["LoopIters"] - 1) 
      # to schedule global read for DTV after lwEndMfmaIndex or execute PostLoop after StoreC in NoLoadLoop
      # kernel["LoopIters"]  has to be > 1 to make this logic work.
      if kernel["LoopIters"] > 1 and \
         ((kernel["PrefetchGlobalRead"] == 2 and (kernel["DirectToVgprA"] or kernel["DirectToVgprB"])) or \
          (lastLoop and kernel["StoreCInUnrollPostLoop"])):
        self.lwEndMfmaIndex = min(self.lwEndMfmaIndex, numMfmaPerIter * (kernel["LoopIters"] - 1) - 1)
      if kernel["DirectToLds"] and kernel["PrefetchGlobalRead"] == 2:
        # DirectToLds + PGR=2 case, lwEndMfmaIndex must be after the end of local read (excluding local reads for next iter)
        lrEnd = min(self.barrierMfmaIndex - 1, self.numMfmaForLR * (kernel["LoopIters"] - self.numItersPLR))
        if self.lwEndMfmaIndex < lrEnd:
          self.lwEndMfmaIndex = lrEnd
      localWriteEndIter = self.lwEndMfmaIndex//numMfmaPerIter
      localWriteEndIter = min(kernel["LoopIters"] - 1, localWriteEndIter)
      assert localWriteEndIter < kernel["LoopIters"]
      assert self.lwEndMfmaIndex < numMfmaPerIter*kernel["LoopIters"]
    else:
      numGlobalReadInsPerIter = roundUp(kernel["GlobalReadPerMfma"] * PRECISION) if kernel["GlobalReadPerMfma"] > 0 else PRECISION
      numLocalWriteModPerIter = roundUp(kernel["LocalWritePerMfma"] * PRECISION) if kernel["LocalWritePerMfma"] > 0 else PRECISION
      numEmptyGlobalReadIncCode = numGlobalReadInsPerIter - 1

    numLocalWritesPerSched = numLocalWriteModPerIter if kernel["ScheduleIterAlg"] != 3 else self.numLocalWriteModPerMfma

    if not self.scheduleGlobalRead:
      # put everything in the header:
      self.unrollLoopHeaderCode.addCode(self.dtlsM0UpdateACode)
      self.unrollLoopHeaderCode.addCode(self.globalReadACode)
      self.unrollLoopHeaderCode.addCode(self.dtlsM0UpdateBCode)
      self.unrollLoopHeaderCode.addCode(self.globalReadBCode)
      self.unrollLoopHeaderCode.addCode(globalReadIncACode)
      self.unrollLoopHeaderCode.addCode(globalReadIncBCode)
      if kernel["EnableMatrixInstruction"] and kernel["ScheduleIterAlg"] == 3:
        self.grEndMfmaIndex = 0
        itemsGRToSchedLater = []
    else:
      self.unrollLoopHeaderCode.addCode(self.globalReadACode.header)
      self.unrollLoopHeaderCode.addCode(self.globalReadBCode.header)

      # Add all loads from middle as individual schedulable items
      # when using PGR2, put global read instruction right after corresponding localWrite instruction
      if kernel["PrefetchGlobalRead"] == 2 or kernel.enabledSplitLDS:
        itemsGRToSched =  []
        itemsGRToSchedLater = list(self.globalReadACode.middle.items()) + \
                         list(self.globalReadBCode.middle.items())
        itemsGRToSchedLaterDTV = []
        # PGR2 and DirectToVgpr case, schedule global read for DirectToVgpr separately after registers are used for mfma
        if kernel["EnableMatrixInstruction"]:
          if kernel["DirectToVgprA"] or kernel["DirectToVgprB"]:
            itemsGRToSchedLater = list(self.globalReadACode.middle.items())      # not DirectToVgpr (A has non-DirectToVgpr load)
            itemsGRToSchedLaterDTV = list(self.globalReadBCode.middle.items()) # DirectToVgpr (B has DirectToVgpr load)
          # add to self.perIterGlobalReadCodeDTV to schedule DirectToVgpr
          while itemsGRToSchedLaterDTV:
            itemGR = itemsGRToSchedLaterDTV.pop(0)
            self.perIterGlobalReadCodeDTV[kernel["LoopIters"] - 1].addCode(itemGR)
        if kernel.enabledSetPrioSplitLDS and itemsGRToSchedLater:
          itemsGRToSchedLater.insert(1, Code.Inst("s_setprio", "3", "top priority for load"))
          itemsGRToSchedLater.insert(len(itemsGRToSchedLater), Code.Inst("s_setprio", "0", ""))
      else:
        itemsGRToSched =  list(self.globalReadACode.middle.items()) + \
                        list(self.globalReadBCode.middle.items())
        itemsGRToSchedLater = []
        if kernel["StoreCInUnroll"]:
          # in StoreCInUnroll case, add loadC code here (self.LoadCTemplate is empty for no loadC required case)
          # The location to insert LoadC is decided based on DirectToLds and DirectToVgpr setting
          # 1) No Lds write case (Both DirectToLds or DirectToVgpr enabled), insert Load C before Load A and B
          if kernel["NoLdsWriteCode"]:
            itemsGRToSched =  list(list(self.LoadCUnrollCode.itemList) + self.globalReadACode.middle.items()) +\
                            list(self.globalReadBCode.middle.items())
          # 2) DirectToVgpr only enabled case, insert Load C before Load for DirectToVgpr
          elif kernel["DirectToVgprA"] or kernel["DirectToVgprB"]:
            itemsGRToSched =  list(self.globalReadACode.middle.items()) + list(self.LoadCUnrollCode.itemList) +\
                            list(self.globalReadBCode.middle.items())
          # 3) no DirectToVgpr/Lds case, insert Load C after Load A,B
          else:
            itemsGRToSched += list(self.LoadCUnrollCode.itemList)

      itemsGRToSchedTemp = []
      for i in range(len(itemsGRToSched)):
        itemsGRToSchedTemp.append(itemsGRToSched.pop(0))
        for j in range(PRECISION-1):
          itemsGRToSchedTemp.append(Code.Module())
      itemsGRToSched = itemsGRToSchedTemp

      itemsGRIncToSched = []
      if kernel["EnableMatrixInstruction"] and kernel["ScheduleIterAlg"] == 3:
        # for SIA3, we can break GlobalReadIncCode to avoid mfma bubbles
        if kernel["PrefetchGlobalRead"] == 2:
          # skip to schedule global read for PGR2 first mfma
          for i in range(numEmptyGlobalReadIncCode+1):
            imod = Code.Module()
            itemsGRIncToSched.append(imod)
        numInst = globalReadIncACode.countType(Code.Inst) + globalReadIncBCode.countType(Code.Inst)
        numInstPerMfma = max(roundUp(self.miLatencyLeft/2),1)

        globalReadInc1 = globalReadIncACode.flatitems()
        globalReadInc2 = globalReadIncBCode.flatitems()
        if kernel["DirectToVgprA"]:
          # swap the order of readInc for DTVA
          globalReadInc1, globalReadInc2 = globalReadInc2, globalReadInc1
        globalReadIncItems = globalReadInc1 + globalReadInc2
        if kernel["StoreCInUnroll"] and  kernel["PrefetchGlobalRead"] == 2:
          # PGR=2 + StoreCInUnroll case, add first LoadC after IncA, second LoadC (if exist) after IncB
          tmpList = list(self.LoadCUnrollCode.itemList)
          dummyList = [ Code.Module() for i in range (numInstPerMfma - 1) ]
          if len(tmpList) > 0:
            # first LoadC
            globalReadIncItems = globalReadInc1 + tmpList[0:1] + dummyList + globalReadInc2
          if len(tmpList) > 1:
            # second LoadC
            globalReadIncItems += tmpList[1:]
          # add len(LoadCUnrollCode.itemList) to numInst
          numInst += len(tmpList)
        numMfmaToSched = roundUp(numInst/numInstPerMfma)
        for j in range(numMfmaToSched):
          imod = Code.Module()
          count = 0
          while globalReadIncItems and count < numInstPerMfma:
            tempInst = globalReadIncItems.pop(0)
            imod.addCode(tempInst)
            if tempInst.countType(Code.Inst):
              count += 1
          itemsGRIncToSched.append(imod)
          for i in range(numEmptyGlobalReadIncCode):
            imod = Code.Module()
            itemsGRIncToSched.append(imod)
      else:
        itemsGRIncToSched.append(globalReadIncACode)
        for i in range(numEmptyGlobalReadIncCode):
          imod = Code.Module()
          itemsGRIncToSched.append(imod)
        itemsGRIncToSched.append(globalReadIncBCode)
        for i in range(numEmptyGlobalReadIncCode):
          imod = Code.Module()
          itemsGRIncToSched.append(imod)

      if kernel["EnableMatrixInstruction"] and kernel["ScheduleIterAlg"] == 3:
        # Loop in PGR1: GlobalRead -> GlobalReadInc -> LocalWrite
        # but GlobalReadInc shouldn't block LocalWrite so we count them out
        # Loop in PGR2: GlobalReadInc -> LocalWrite/GlobalRead pair
        # since LocalWrite/GlobalRead pair depends on GlobalReadInc, we count in only GlobalReadInc
        if kernel["PrefetchGlobalRead"] == 2:
          loadsToSched = len(itemsGRIncToSched)
        else:
          loadsToSched = len(itemsGRToSched)

        # Here is to adjust scheduling silently in order to have validation pass.
        # Better way is to use larger globalReadPerMfma.
        ## schedule more instructions at first iteration if no enough mfma to schedule globalRead
        self.grEndMfmaIndex = max(0, roundUp(loadsToSched/self.numGlobalReadInsPerMfma) - 1)
        if self.grEndMfmaIndex > self.lwEndMfmaIndex:
          schedNumForIter0 = numGlobalReadInsPerIter + (self.grEndMfmaIndex - self.lwEndMfmaIndex) * self.numGlobalReadInsPerMfma
          self.grEndMfmaIndex = self.lwEndMfmaIndex
        else:
          schedNumForIter0 = numGlobalReadInsPerIter
        if kernel["PrefetchGlobalRead"] == 1:
          globalReadIncEndMfmaIndex = self.grEndMfmaIndex + roundUp(len(itemsGRIncToSched)/self.numGlobalReadInsPerMfma)
          endIter = roundUp((globalReadIncEndMfmaIndex+1)/numMfmaPerIter)
        else:
          endIter = roundUp((self.grEndMfmaIndex+1)/numMfmaPerIter)
        ## schedule more instructions at first iteration if no enough mfma to schedule globalRead + globalReadInc
        if endIter > kernel["LoopIters"]:
          endIter = kernel["LoopIters"]
          if kernel["PrefetchGlobalRead"] == 1:
            schedNumForIter0 += (globalReadIncEndMfmaIndex+1 - kernel["LoopIters"]*numMfmaPerIter) * self.numGlobalReadInsPerMfma

      # SIA 1 or 2
      # distribute the instructions in itemsGRToSched evenly as possible to iterations: perIterGlobalReadCode[0,endIter)
      # last one is perIterGlobalReadCode[endIter-1],
      # Ideally:     endIter <= localWriteEndIter,
      #              then put M0 updateCode (if any) and first 'schedNumForIter0' GR-inst in perIterGlobalReadCode[0]
      #              put every numGlobalReadInsPerIter GR-insts in perIterGlobalReadCode[1]~[endIter-1]
      # corner case: endIter > localWriteEndIter, set endIter = localWriteEndIter,in this case, schedNumForIter0 will > 1
      #              and perIterGlobalReadCode[0] would need to schedule more instructions
      else:
        # reads and incs are scheduled in iters range(0..endIter)
        endIter = roundUp((len(itemsGRToSched) + len(itemsGRIncToSched)) / numGlobalReadInsPerIter)
        # FIXME:
        # above formula precisely count number of GR + GRInc
        # however it has regression issue with tuned yaml with default GRPM.
        # below formula follows old logic to add 2 to the instruction count, so it may has larger schedNumForIter0
        # we should use above formula with GRPM tuning for better performance
        # NOTE: both formula pass validation test
        endIter = roundUp((len(itemsGRToSched) + len(itemsGRIncToSched) + 2*PRECISION) / numGlobalReadInsPerIter)
        if endIter > localWriteEndIter:
          # Front-load some of the buffer loads if we don't have enough loop iters:
          # could use a different/smarter algorithm to space out the loads?
          schedNumForIter0 = (endIter-(localWriteEndIter) + 1) * numGlobalReadInsPerIter
          endIter = localWriteEndIter
        else:
          # schedule b2b for readCnt > 2 (True for bigger TT)
          schedNumForIter0 = numGlobalReadInsPerIter

      # insert dtlsM0UpdateACode dtlsM0UpdateBCode code
      if self.globalReadACode.middle.items():
        self.globalReadACode.middle.items()[0].items().insert(0,self.dtlsM0UpdateACode)
      if self.globalReadBCode.middle.items():
        self.globalReadBCode.middle.items()[0].items().insert(0,self.dtlsM0UpdateBCode)

      itemsGRToSched.extend(itemsGRIncToSched)
      # append 'n' global load at a time
      # append global load(S) first 'number of global load(s)' determined by schedNumForIter0
      for item in itemsGRToSched[:schedNumForIter0]:
        self.perIterGlobalReadCode[0].addCode(item)
      itemsGRToSched = itemsGRToSched[schedNumForIter0:] # trim the scheduled GRs, do the rest in the following loop

      for u in range(1, endIter):
        # append itemPerIter GR for each iteration,
        # and trim the scheduled ones at the end of loop
        itemPerIter = 1 * numGlobalReadInsPerIter
        try:
          for item in itemsGRToSched[:itemPerIter]:
            self.perIterGlobalReadCode[u].addCode(item)
            lastLoadIter = u
          itemsGRToSched = itemsGRToSched[itemPerIter:]
        except IndexError:
          break # itemsGRToSched is 0-length, no code left to schedule

      assert not itemsGRToSched # should have scheduled everything already, itemsGRToSched should be empty

      # adjustment for StoreCInUnroll
      # lastLoop case, make the last perIterGlobalReadCode[] (LoopIters-1) empty
      # otherwise, mixing global read inc code and StoreCInUnroll post code could cause memory access issue
      if kernel["StoreCInUnroll"] and lastLoop:
        lastIter = kernel["LoopIters"] - 1
        prevLastIter = max(0, lastIter - 1)
        if prevLastIter < lastIter:
          while self.perIterGlobalReadCode[lastIter].items():
            self.perIterGlobalReadCode[prevLastIter].addCode(self.perIterGlobalReadCode[lastIter].items().pop(0))

      self.perIterGlobalReadCode[endIter-1].addCode(self.globalReadACode.footer)
      self.perIterGlobalReadCode[endIter-1].addCode(self.globalReadBCode.footer)

    # Now schedule the writes:
    if not self.scheduleLocalWrite:
      # if no scheduleLocalWrite - just add writes to localWritelocalWriteEndIter
      # If PGR=0, writes have to be done immediately following the loads - no opportunity to schedule
      #   so don't add to schedule, these will be added separately and before the first iter
      if kernel["PrefetchGlobalRead"]:
        # do we need a module here? That would prevent these from being scheduled
        imod = self.perIterLocalWriteCode[localWriteEndIter].addCode(Code.Module())
        if self.enable["Wait"]:
          imod.addCode(
              self.wait(kernel, tensorParametersA, tensorParametersB, 0, -1, -1, \
              "1wait for global read"))
        imod.addComment1("local write A")
        imod.addCode(self.localWriteACode)
        imod.addComment1("local write B")
        imod.addCode(self.localWriteBCode)
      if kernel["EnableMatrixInstruction"] and kernel["ScheduleIterAlg"] == 3:
        self.lwStartMfmaIndex = self.lwEndMfmaIndex
    else:
      #################
      # create a plan #
      #################
      itemsLWToSched = list(self.localWriteACode.items()) + list(self.localWriteBCode.items())
      if kernel["PrefetchGlobalRead"] == 2:
        # PrefetchGlobalRead + DirectToLds case, need to add dummy list to insert global read
        tmpList = []
        numItemsBeforeStoreC = 0 #if not kernel["StoreCInUnroll"] else self.numItemsBeforeStoreC
        numDummy = 0
        if kernel["DirectToLdsA"]:
          numDummy += max(len(list(self.globalReadACode.middle.items())) - numItemsBeforeStoreC, 0)
        if kernel["DirectToLdsB"]:
          # DirectToVgprA case, LDS load is actually in B. Need to get correct length
          numReadB = len(list(self.globalReadACode.middle.items())) if kernel["DirectToVgprA"] else len(list(self.globalReadBCode.middle.items()))
          numDummy += max(numReadB - numItemsBeforeStoreC, 0)
        for i in range(numDummy):
          tmpList.append(Code.Module())
        # add dummy at the top of the list
        itemsLWToSched = tmpList + itemsLWToSched
      if kernel["StoreCInUnroll"]:
        # in StoreCInUnroll case, add storeC related code here
        # add store C related code to itemsLWToSched
        tmpList = list(self.StoreCUnrollCode.items())
        itemsLWToSched += tmpList
      # extend localWrite by inserting empty Module
      itemsLWToSchedTemp = []
      for i in range(len(itemsLWToSched)-1):
        itemsLWToSchedTemp.append(itemsLWToSched.pop(0))
        for j in range(PRECISION-1):
          itemsLWToSchedTemp.append(Code.Module())
      if itemsLWToSched:
        itemsLWToSchedTemp.append(itemsLWToSched.pop(0))
        for i in range(numLocalWritesPerSched + numLocalWritesPerSched % PRECISION - len(itemsLWToSchedTemp) % numLocalWritesPerSched):
          itemsLWToSchedTemp.append(Code.Module())
      itemsLWToSched = itemsLWToSchedTemp
      # This counts the number of modules which contain a ds_write
      # Scheduler below keeps all writes in the same module in same iteration
      # so this is better match to what it is trying to do
      # writesToSched = sum(1 for item in itemsLWToSched if item.countType(Code.LocalWriteInst))
      writesToSched = len(itemsLWToSched)
      # assign schedule index
      if kernel["EnableMatrixInstruction"] and kernel["ScheduleIterAlg"] == 3:
        self.lwStartMfmaIndex = self.lwEndMfmaIndex - max(1,roundUp(writesToSched/numLocalWritesPerSched)) + 1
        if self.lwStartMfmaIndex < self.grEndMfmaIndex:
          self.lwStartMfmaIndex = self.grEndMfmaIndex
        # DirectToLds + PGR=2 case, lwStart must be after all local reads are done
        if kernel["DirectToLds"] and kernel["PrefetchGlobalRead"] == 2:
          lrEnd = min(self.lwEndMfmaIndex, self.numMfmaForLR * (kernel["LoopIters"] - self.numItersPLR))
          if self.lwStartMfmaIndex < lrEnd:
            self.lwStartMfmaIndex = lrEnd
        startIter = self.lwStartMfmaIndex//numMfmaPerIter
        assert startIter < localWriteEndIter+1 # startIter should be at or before the endIter
      else:
        startIter = localWriteEndIter - roundUp(writesToSched/numLocalWritesPerSched) + 1
        # - can't move a write past the load it depends on
        #   as a simplification, don't move writes past any loads
        if startIter < lastLoadIter:
          startIter = lastLoadIter

      readsToWait = len(list(self.localWriteACode.items())) + len(list(self.localWriteBCode.items()))
      readsToWaitDTV = 0
      # add waitcnt for DirectToVgpr. Delaying wait for DirectToVgpr global read
      if kernel["DirectToVgprA"] or kernel["DirectToVgprB"]:
        # DirectToVgprA case, actual A load is in self.globalReadBCode (due to swap).
        # Need to check self.globalReadBCode
        readsToWaitDTV += len(list(self.globalReadBCode.middle.items()))
      # add waitcnt for StoreCInUnroll. Delaying wait for Load C
      readsToWait += numGlobalReadC

      readsToWaitNGLL = readsToWait

      localwriteCnt = 0
      for u in range(startIter, localWriteEndIter+1):
        if u==(localWriteEndIter):
          itemPerIter = len(itemsLWToSched) # schedule all remaining activity
        else:
          itemPerIter = numLocalWriteModPerIter
          # if localwrite is not multiple of numLocalWriteModPerIter, fill last iteration first.
          # make sure numLocalWriteModPerIter is enough to schedule localwrite
          # TODO: if numLocalWriteModPerIter is not enough to schedule localwrite, need smarter way to distribute localWrite
          if u == startIter and kernel["ScheduleIterAlg"] == 3:
            itemPerIter = numLocalWriteModPerIter - (self.lwStartMfmaIndex % numMfmaPerIter) * numLocalWritesPerSched

        for item in itemsLWToSched[:itemPerIter]:
          # Use a module to ensure these pieces stay together in the sub-iter scheduler
          imod = Code.Module("LocalWriteMod%u"%u)
          imodNGLL = Code.Module("LocalWriteMod%u"%u)
          writesPerItem = item.countType(Code.LocalWriteInst)
          readsToWaitAdjustForStoreC = 0
          if kernel["StoreCInUnroll"] and not firstIter and kernel["PrefetchGlobalRead"]==2:
            # get number of StoreC in template
            readsToWaitAdjustForStoreC += self.getNumberOfStoreCInTemplate(kernel)
          if writesPerItem:
            imod.addComment0("sched write - iter %u writesPerItem=%u"%(u,writesPerItem))
            imodNGLL.addComment0("sched write - iter %u writesPerItem=%u"%(u,writesPerItem))
            # if writesPerItem>1 this indicates multiple LocalWrites in the same module
            # this happens in some transpose cases.  Here the first write needs to wait
            # for the associated global read to finish, then the remaining writes can flow
            # TODO - can schedule these writes across iters, should figure this out above
            readsToWait = readsToWait - 1
            readsToWaitNGLL = readsToWaitNGLL - 1
            if uDu < kernel["DepthULdsDivisor"]-1:
              imod.addComment0("no wait vmcnt except for in the last subLdsLoop")
            else:
              imod.addCode(Code.WaitCnt(self.version, -1, min(maxVmcnt, readsToWait + readsToWaitDTV + readsToWaitAdjustForStoreC), \
                "wait for global read before writing to local"))
              imodNGLL.addCode(Code.WaitCnt(self.version, -1, min(maxVmcnt, readsToWaitNGLL  + readsToWaitDTV + readsToWaitAdjustForStoreC), \
                "wait for global read before writing to local"))
          if kernel["StoreCInUnroll"] or kernel["PrefetchGlobalRead"]==2:
            if "s_waitcnt" in str(item) and "__placeholder__" in str(item):
              # waitcnt adjustment for StoreCInUnroll
              readsToWaitAdjust = readsToWait + readsToWaitDTV - numGlobalReadC
              if kernel["PrefetchGlobalRead"]==2:
                # PGR=2 special cases
                if (kernel["AtomicAddC"] or not kernel["ProblemType"]["UseBeta"]):
                  # no Load C case
                  if not firstIter:
                    # PGR=2 and not firstIter case, __placeholder__ includes num of storeC from previous Iter
                    readsToWaitAdjust += readsToWaitAdjustForStoreC
                else:
                  # Load C case
                  # adjustment for waitcnt for loadC
                  if kernel["StoreCInUnroll"] and self.StoreCUnrollLoadCWaitComment in str(item):
                    # readsToWaitDTV should not be added for loadC waitcnt
                    readsToWaitAdjust -= readsToWaitDTV
              if kernel["NoLdsWriteCode"] and kernel["PrefetchGlobalRead"]!=2:
                # DirectToLds or DirectToVgpr for both A and B case, use  the number of global read for both A and B as vmcnt (only for PGR=1)
                readsToWaitAdjust = len(list(self.globalReadACode.middle.items())) + len(list(self.globalReadBCode.middle.items()))
              item = str(item).replace("__placeholder__", str(readsToWaitAdjust))

          imod.addCode(item)
          # schedule global instruction that need to be scheduled later
          if localwriteCnt % PRECISION == (numLocalWritesPerSched % PRECISION):
            reads = 0
            while itemsGRToSchedLater:
              itemGR = itemsGRToSchedLater[0]
              readsInc = itemGR.countType(Code.GlobalReadInst)
              if kernel["StoreCInUnroll"] and readsInc == 0:
                # adjustment for StoreCInUnroll
                # count buffer_load if it exist but not counted
                readsInc += str(itemGR).count("_buffer_load")
              reads = reads + readsInc
              if reads > 1:
                break
              if "s_waitcnt" in str(itemGR) and "__placeholder__" in str(itemGR):
                itemGR2 = (str(itemGR).replace("__placeholder__", str(readsToWait)))
                imod.addText(itemGR2)
              else:
                imod.addCode(itemGR)
              readsToWait = readsToWait + readsInc # GR instruction increments vmcnt
              itemsGRToSchedLater.pop(0)
          localwriteCnt += 1
          self.perIterLocalWriteCode[u].addCode(imod)

          imodNGLL.addCode(copy.deepcopy(item))
          if lastLc:
            # local write code for NGLL should be updated at the last lc
            # in init acc opt case, the last inner loop generated is not for the last lc.
            # in that case, local write code for NGLL is not as expected.
            self.perIterLocalWriteCodeNGLL[u].addCode(imodNGLL)

        itemsLWToSched = itemsLWToSched[itemPerIter:]

      # should never run out of items to schedule
      assert not itemsLWToSched # should have scheduled everthing already

    if grBackup is not None:
      del grBackup

  ##############################################################################
  # Schedule work into the each unroll loop iteration
  # localReadCode is the local reads for this loop iteration
  #  (returned by localReadDo). The instructions in localReadCode
  #  will retain their relative order, but may be interleaved
  #  with instructions from otherCode.

  # globalReadCode is the 'other' buffer loads and addr increments
  # localWriteCode is the 'other' local writes
  #  to schedule in with the ds reads.  The instructions
  #  will retain their relative order, but may be interleaved
  #  with instructions from localReadCode.

  # pointerCode contains local pointer changes (if needed)
  # waitCode contains s_waitcnt before macs.
  #   - Cannot be "" or None
  #   - may be empty Module if not waiting is desired (perhaps for debug)
  #   - may be multiple instructions (ConservativeWaitCnt)
  #   - typically is a single Code.WaitCnt.  This routine will
  #     modify the lgkmcnt to account for any scheduling decisions.
  #     If this is not desired, add the waitCnt to pointerCode and
  #     set waitCode to an empty module
  # macIterCode contains the mac iters.  May be a macro call.
  #
  # returns: a Module with the combined, optimally scheduled
  #  localReadCode + otherCode
  ##############################################################################
  def makeSubIterSchedule(self, kernel, localReadCode, iteration, pointerLWCode, pointerLRCode, waitCode, macIterCode, \
      waitLWCode = Code.Module(), syncCode = Code.Module(), packCode = Code.Module(), isDTVodd = False, NLLlast = False):

    iterCode = Code.Module()
    globalReadCode = copy.deepcopy(self.perIterGlobalReadCode[iteration])
    globalReadCodeDTV = self.perIterGlobalReadCodeDTV[iteration]
    origLenGlobalReadCodeDTV = len(list(self.perIterGlobalReadCodeDTV[iteration].items()))
    localWriteCode = self.perIterLocalWriteCode[iteration]
    isBarrier = kernel["LoopIters"] - self.numItersPLR
    hasLocalRead = localReadCode.countType(Code.LocalReadInst)
    # Default schedule is other, local reads, then local writes:
    if self.scheduleIterAlg==0:
      # simple schedule, just add the modules in-order
      iterCode.addCode(globalReadCode)
      iterCode.addCode(globalReadCodeDTV)
      # pop out all items
      while len(list(globalReadCodeDTV.items())):
        globalReadCodeDTV.items().pop(0)
      iterCode.addCode(waitLWCode)
      iterCode.addCode(syncCode)
      iterCode.addCode(localReadCode)
      iterCode.addCode(localWriteCode)
      iterCode.addCode(pointerLWCode)
      iterCode.addCode(pointerLRCode)
      iterCode.addCode(waitCode)
      iterCode.addCode(packCode)
      iterCode.addCode(macIterCode)
    elif self.scheduleIterAlg == 1:
      iterCode.addCode(waitLWCode)
      iterCode.addCode(syncCode)
      #import pdb
      #pdb.set_trace()
      # simple algorithm - do half the reads first:
      readsToSchedule = localReadCode.countType(Code.LocalReadInst) / 2
      #localReadCode.prettyPrint()
      readItems = localReadCode.flatitems()
      while readItems:
        item = readItems.pop(0)
        #print "readsToSchedule=", readsToSchedule, "item=", item
        iterCode.addCode(item)
        readsThisItem = item.countType(Code.LocalReadInst)
        if readsThisItem:
          assert readsThisItem==1, "Scheduler assumes 1 read per item"
          readsToSchedule = readsToSchedule - 1
          if readsToSchedule == 0:
            break

      iterCode.addCode(globalReadCode)
      iterCode.addCode(globalReadCodeDTV)
      # pop out all items
      while len(list(globalReadCodeDTV.items())):
        globalReadCodeDTV.items().pop(0)

      # add rest of the reads here
      for item in readItems:
        iterCode.addCode(item)

      #move down write to be the last
      iterCode.addCode(localWriteCode)
      # tack on the pointer and mac code:
      iterCode.addCode(pointerLWCode)
      iterCode.addCode(pointerLRCode)
      iterCode.addCode(waitCode)
      iterCode.addCode(packCode)
      iterCode.addCode(macIterCode)
    elif self.scheduleIterAlg == 2:
    # SIA2 use only 1 iteration and separate compute and fetch by raising compute priority
    # 2 workgroup interleave, while WG0/WG1 doing compute, WG1/WG0 doing fetch
    # EPS need to be 1, or valu instruction will break interleave
      iterCode.addCode(globalReadCode)
      iterCode.addCode(globalReadCodeDTV)
      # pop out all items
      while len(list(globalReadCodeDTV.items())):
        globalReadCodeDTV.items().pop(0)
      iterCode.addCode(waitLWCode)
      iterCode.addCode(syncCode)
      iterCode.addCode(localReadCode)
      iterCode.addCode(waitCode)

      # interleave pack code
      # BF16 or FP16: each packCode is for one 32-bit reg,  1 packing inst: half-to-single x1
      # INT8        : each packCode is for one 32-bit regs, 3 packing inst: byte-to-half x2 + half-to-single x1
      if self.archCaps["HasEccHalf"]:
          instPerRegPack = 1 / kernel["ProblemType"]["DataType"].numRegisters() - 1
      else:
          instPerRegPack = 1 if (kernel["ProblemType"]["DataType"].numRegisters() == 0.25) else 0
      instPerPack    = int(kernel["MIInputPerThread"] * kernel["ProblemType"]["DataType"].numRegisters() * instPerRegPack)
      packItems = []
      for iui in range(kernel["InnerUnroll"]):
        packINtems = [ [] for j in range(max(self.numReadsIterCoalescedA,self.numReadsIterCoalescedB)) ]
        packA = packCode.findNamedItem("packA_I%s"%(iui))
        packB = packCode.findNamedItem("packB_I%s"%(iui))
        # In case localReadDo not generate pack Module
        # and findNamedItem will return None type
        # TODO: let all type have pack Module
        if not packA:
          packA = Code.Module()
        packAItems = packA.flatitems()
        if not packB:
          packB = Code.Module()
        packBItems = packB.flatitems()
        if packAItems:
          for j in range(self.numReadsIterCoalescedA):
            for n in range(instPerPack):
              packINtems[j].append(packAItems.pop(0))
        if packBItems:
          for j in range(self.numReadsIterCoalescedB):
            for n in range(instPerPack):
              packINtems[j].append(packBItems.pop(0))
        while packAItems:
          for j in range(self.numReadsIterCoalescedA):
            for n in range(instPerPack):
              packINtems[j].append(packAItems.pop(0))
        while packBItems:
          for j in range(self.numReadsIterCoalescedB):
            for n in range(instPerPack):
              packINtems[j].append(packBItems.pop(0))
        for j in range(max(self.numReadsIterCoalescedA,self.numReadsIterCoalescedB)):
          packItems += packINtems.pop(0)

      macIterItem = macIterCode.flatitems()
      # pop the first code which is s_nop 1 for packing
      item = macIterItem.pop(0)

      numMfmaPerIter = self.numMfmaPerIter
      curPackIdx = 0
      packAIdx = 0
      packBIdx = 0

      for i in range(numMfmaPerIter):
        if packItems:
          # how many pack have to be done
          # calculate the data index of this mfma used for A and B
          # if i // kernel["MIWaveTile"][0]==0, mfma will use new A (need to take iu into account)
          # if i % kernel["MIWaveTile"][0]==0, mfma will use new B
          packAIdx += instPerPack if i//(kernel["MIWaveTileA"]+kernel["MIWaveTileA"]*kernel["MIWaveTileB"]*(i//(kernel["MIWaveTileA"]*kernel["MIWaveTileB"]))) == 0 else 0
          packBIdx += instPerPack if i % kernel["MIWaveTileA"] == 0 else 0
          # blockWidth < 1, means 0.5 or 0.25 (BF,H,Int8)
          packAIdx = packAIdx if self.tPA["localReadInstruction"].blockWidth < 1 else 0
          packBIdx = packBIdx if self.tPB["localReadInstruction"].blockWidth < 1 else 0
          numPack = (packAIdx + packBIdx)
          iterCode.addComment0("pack scheduling: packAIdx:%u, packBIdx:%u" %(packAIdx,packBIdx))
          # we put 2 pack in each mfma, "2" means A & B
          if packItems:
            for j in range(instPerPack):
              iterCode.addCode(packItems.pop(0))
              curPackIdx += 1
          if packItems:
            for j in range(instPerPack):
              iterCode.addCode(packItems.pop(0))
              curPackIdx += 1
          # since packed register need to wait 2 quad cycle to finish packing
          # we insert pack instruction if we can, or s_nop
          while curPackIdx < numPack+2:
            if packItems:
              for j in range(instPerPack):
                iterCode.addCode(packItems.pop(0))
                curPackIdx += 1
            else:
              iterCode.addInst("s_nop ","0","VALU packing writes to be consumed by matrix instruction")
              curPackIdx += 1
        if i == 0:
          if not packItems:
            tmpVgpr = self.vgprPool.checkOut(1)
            iterCode.addInst("v_mov_b32 ","v%u"%(tmpVgpr),"0x0","valu operation to have different priority")
            self.vgprPool.checkIn(tmpVgpr)
          iterCode.addInst("s_setprio ","3","Raise priority while processing macs")
        item = macIterItem.pop(0)
        iterCode.addCode(item)

      iterCode.addInst("s_setprio ","1","Raise priority while processing macs")
      if kernel["1LDSBuffer"]:
        barrier = Code.Module()
        barrier.addComment0("1 LDS buffer: read-sync-write")
        barrier.addInst("s_waitcnt lgkmcnt(0)","")
        barrier.addInst("s_barrier","")
        iterCode.addCode(barrier)
      iterCode.addCode(localWriteCode)
      iterCode.addCode(pointerLWCode)
      iterCode.addCode(pointerLRCode)
      iterCode.addInst("s_setprio ","2","Raise priority while processing macs")
      pass
    elif self.scheduleIterAlg == 3:
      iterCode.addComment0(" grEndMfmaIndex:%u, lwStartMfmaIndex:%u, lwEndMfmaIndex:%u " %(self.grEndMfmaIndex,self.lwStartMfmaIndex,self.lwEndMfmaIndex))
      iterCode.addComment0(" numMfmaForLR:%u, barrierMfmaIndex:%u " %(self.numMfmaForNextLoopLR,self.barrierMfmaIndex))
      #####
      # Prepare and Assign parameter
      ####
      if iteration == 0:
        self.localReadsVacancy = []
        self.localReadsWait = [ [] for j in range(kernel["LoopIters"])]
      self.localReadsWait[iteration] = waitCode
      numMfmaPerIter = self.numMfmaPerIter
      isBarrier = kernel["LoopIters"] - self.numItersPLR
      writeItems = list(localWriteCode.items())
      macIterItems = macIterCode.flatitems()
      skipLocalWriteWaitcnt = 0
      localReadsWaitcnt = 0
      curPackIdx = 0
      packAIdx = 0
      packBIdx = 0

      #####
      # Prepare localReadCode
      ####
      localReadCodeAB = Code.Module()
      for iui in range(kernel["InnerUnroll"]):
        localReadCodeA = localReadCode.findNamedItem("LocalReadDoA_I%s"%(iui))
        localReadCodeB = localReadCode.findNamedItem("LocalReadDoB_I%s"%(iui))
        # In case localReadDo not generate localReadCode Module
        # and findNamedItem will return None type
        # TODO: findNamedItem return Code.Module() if not found
        if not localReadCodeA:
          localReadCodeA = Code.Module()
        if not localReadCodeB:
          localReadCodeB = Code.Module()
        if localReadCodeA.items():
          localReadCodeAB.addCode(localReadCodeA.items().pop(0))
        if localReadCodeB.items():
          localReadCodeAB.addCode(localReadCodeB.items().pop(0))
        while localReadCodeA.items():
          localReadCodeAB.addCode(localReadCodeA.items().pop(0))
        while localReadCodeB.items():
          localReadCodeAB.addCode(localReadCodeB.items().pop(0))
      localReadItems = localReadCodeAB.flatitems()
      localReadItemsThisLoop = localReadItems if iteration < isBarrier else []
      localReadItemsNextLoop = localReadItems if iteration >= isBarrier else []

      #####
      # Prepare pack Code                for B:
      # since the mfma reuse B first =>    for A: mfma[A][B]
      # we need 1 vector A and 1 vector B for first mfma
      # then we prepare remaining A, then remaining B
      # BF16 or FP16: each packCode is for one 32-bit reg,  1 packing inst: half-to-single x1
      # INT8        : each packCode is for one 32-bit regs, 3 packing inst: byte-to-half x2 + half-to-single x1
      ####
      if self.archCaps["HasEccHalf"]:
          instPerRegPack = 1 / kernel["ProblemType"]["DataType"].numRegisters() - 1
      else:
          instPerRegPack = 1 if (kernel["ProblemType"]["DataType"].numRegisters() == 0.25) else 0
      instPerPack    = int(kernel["MIInputPerThread"] * kernel["ProblemType"]["DataType"].numRegisters() * instPerRegPack)
      packItems = []
      for iui in range(kernel["InnerUnroll"]):
        packINtems = [ [] for j in range(max(self.numReadsIterCoalescedA,self.numReadsIterCoalescedB)) ]
        packA = packCode.findNamedItem("packA_I%s"%(iui))
        packB = packCode.findNamedItem("packB_I%s"%(iui))
        # In case localReadDo not generate pack Module
        # and findNamedItem will return None type
        # TODO: let all type have pack Module
        if not packA:
          packA = Code.Module()
        packAItems = packA.flatitems()
        if not packB:
          packB = Code.Module()
        packBItems = packB.flatitems()
        if packAItems:
          for j in range(self.numReadsIterCoalescedA):
            for n in range(instPerPack):
              packINtems[j].append(packAItems.pop(0))
        if packBItems:
          for j in range(self.numReadsIterCoalescedB):
            for n in range(instPerPack):
              packINtems[j].append(packBItems.pop(0))
        while packAItems:
          for j in range(self.numReadsIterCoalescedA):
            for n in range(instPerPack):
              packINtems[j].append(packAItems.pop(0))
        while packBItems:
          for j in range(self.numReadsIterCoalescedB):
            for n in range(instPerPack):
              packINtems[j].append(packBItems.pop(0))
        for j in range(max(self.numReadsIterCoalescedA,self.numReadsIterCoalescedB)):
          packItems += packINtems.pop(0)

      # remove s_nop for packing
      # we will add s_nop if needed
      if macIterItems:
        macIterItems.pop(0)

      ####
      # scheduled local read to previous iterations
      ####
      if self.numVgprBuffer >= kernel["LoopIters"]:
        for vacancy in self.localReadsVacancy:
          # {"items","latencyLeft","atIter","atMfmaIndex","noReadsAtThisIter"}
          for localRead in list(localReadItemsThisLoop):
            if vacancy["latencyLeft"] > localRead.IssueLatency * 2:
              if not localRead.readToTempVgpr:
                vacancy["latencyLeft"] -= localRead.IssueLatency * 2
                vacancy["items"].addCode(localRead)
                localReadItemsThisLoop.remove(localRead)
                if vacancy["atMfmaIndex"] > self.lwStartMfmaIndex - 1 and kernel["1LDSBuffer"]:
                  self.overflowedResources = 5
                # update waitCnt
                if self.numItersPLR:
                  for readsIter in range(vacancy["atIter"], iteration + self.numItersPLR):
                    if (vacancy["atMfmaIndex"] % numMfmaPerIter == 0 or readsIter != vacancy["atIter"]) and \
                        (vacancy["noReadsAtThisIter"] or readsIter <= vacancy["atIter"] + self.numItersPLR):
                      if isinstance(self.localReadsWait[readsIter], Code.WaitCnt):
                        self.localReadsWait[readsIter].lgkmcnt += 1
            else:
              # make sure the localread sequence remain the same
              vacancy["latencyLeft"] = 0
      numReadsInst = len(localReadItemsThisLoop) if iteration < isBarrier else len(localReadItemsNextLoop)

      for i in range(numMfmaPerIter):
        mfmaIndex = iteration * numMfmaPerIter + i
        lastMfmaIndex = kernel["LoopIters"] * numMfmaPerIter - 1
        iterCode.addComment0(" mfmaIndex:%u " %(mfmaIndex))

        ####
        # scheduled local read
        ####
        readLeft = numReadsInst
        latencyLeft = self.miLatencyLeft
        # with PrefetchLocalRead, localreads can interleave with mfma
        if self.numItersPLR and iteration < isBarrier:
          # take ds_write into account to schedule ds_read, assume A and B localwrite have same width (TLDS=1)
          if (mfmaIndex >= self.lwStartMfmaIndex) and not globalReadCode.countType(Code.GlobalReadInst):
            for j in range(min(len(writeItems),self.numLocalWriteModPerMfma)):
              if writeItems[j].countType(Code.LocalWriteInst):
                latencyLeft -= (self.tPA["localWriteInstruction"].IssueLatency*2)
          readLeftLROPT = 0
          for j in range(len(localReadItemsThisLoop)):
            latencyLeft -= localReadItemsThisLoop[j].IssueLatency*2
            readLeftLROPT += 1 if latencyLeft >= 0 else 0
          # at least 1 instruction
          readLeftLROPT = max(readLeftLROPT,1)
          # evenly schedule localread with each mfma
          readLeftLREven = numReadsInst // numMfmaPerIter
          if (numReadsInst % (numMfmaPerIter)) > i:
            readLeftLREven += 1
          # we want no localreads at first mfma
          if (iteration == 0) and numMfmaPerIter != 1:
            numMfmaForLR = numMfmaPerIter - 1
            if i < numMfmaPerIter - numMfmaForLR:
              readLeftLREven = 0
              readLeftLROPT = 0
            # rest mfma help to schedule those localReads
            else:
              readLeftLREven = numReadsInst // (numMfmaPerIter-1)
              if (numReadsInst % (numMfmaPerIter-1)) >= i:
                readLeftLREven += 1
          # if there are too many localreads, change strategy to even.
          readLeft = max(readLeftLREven,readLeftLROPT)
        if not self.numItersPLR and iteration < isBarrier:
          for j in range(len(localReadItemsThisLoop)):
            latencyLeft -= localReadItemsThisLoop[j].IssueLatency*2
        # if start to schedule localwrite, but still have localreads not scheduled yet,
        # reject to use 1LDSB, since it will write and read same lds buffer at same time.
        # TODO: force to schedule all remaining localreads before start to schedule localwrite.
        if mfmaIndex >= self.lwStartMfmaIndex and mfmaIndex <= max(self.lwEndMfmaIndex,self.barrierMfmaIndex) and \
          localReadItemsThisLoop and localWriteCode.countType(Code.LocalWriteInst) and kernel["1LDSBuffer"]:
          self.overflowedResources = 5
        # DirectToVgpr case, localReadItemsThisLoop and localWriteCode.countType(Code.LocalWriteInst) do not satisfy at the same time.
        # However, it is still invaid if localReadItemsThisLoop exists when mfmaIndex > lwStartMfmaIndex
        elif (kernel["DirectToVgprA"] or kernel["DirectToVgprB"]) and \
          mfmaIndex > self.lwStartMfmaIndex and mfmaIndex <= max(self.lwEndMfmaIndex,self.barrierMfmaIndex) and \
          localReadItemsThisLoop and kernel["1LDSBuffer"]:
          self.overflowedResources = 5
        for j in range(readLeft):
          if localReadItemsThisLoop:
            item = localReadItemsThisLoop.pop(0)
            iterCode.addCode(item)
            if (i == 0):
              localReadsWaitcnt += 1
        if not localReadItemsThisLoop and latencyLeft > 0 and iteration < isBarrier and \
            not(mfmaIndex > self.lwStartMfmaIndex and kernel["1LDSBuffer"]):
          item = Code.Module()
          item.addComment0("localReadsVacancy: latencyLeft %d"%(latencyLeft))
          iterCode.addCode(item)
          self.localReadsVacancy.append({ "items": item, \
                                          "latencyLeft": latencyLeft, \
                                          "atIter": iteration, \
                                          "atMfmaIndex": mfmaIndex, \
                                          "noReadsAtThisIter": numReadsInst == 0, \
                                        })

        ####
        # scheduled global read
        ####
        for j in range(self.numGlobalReadInsPerMfma):
          if globalReadCode.items():
            loadText = str(globalReadCode.items().pop(0))
            if isDTVodd:
              # need to swap Vgpr set for odd code
              loadText = self.flipVregSetForDirectToVgprInGlobalRead(kernel, loadText)
            iterCode.addText(loadText)
        # schedule remaining globalReadInst
        if mfmaIndex == self.grEndMfmaIndex:
          while globalReadCode.items() and \
              (globalReadCode.countType(Code.GlobalReadInst) or kernel["PrefetchGlobalRead"] == 2):
            loadText = str(globalReadCode.items().pop(0))
            if isDTVodd:
              # need to swap Vgpr set for odd code
              loadText = self.flipVregSetForDirectToVgprInGlobalRead(kernel, loadText)
            iterCode.addText(loadText)
        # schedule remaining globalReadIncInst
        if i == numMfmaPerIter - 1:
          while globalReadCode.items():
            loadText = str(globalReadCode.items().pop(0))
            if isDTVodd:
              # need to swap Vgpr set for odd code
              loadText = self.flipVregSetForDirectToVgprInGlobalRead(kernel, loadText)
            iterCode.addText(loadText)

        ####
        # scheduled local write
        ####
        if kernel["1LDSBuffer"] and mfmaIndex == self.lwStartMfmaIndex - 1:
          barrier = Code.Module()
          barrier.addComment0("1 LDS buffer: read-sync-write")
          barrier.addInst("s_waitcnt lgkmcnt(0)","")
          barrier.addInst("s_barrier","")
          iterCode.addCode(barrier)

        if kernel["StorePriorityOpt"]:
          flagInsert = False
          if kernel["PrefetchGlobalRead"] == 2:
            lwStartOffset = 0
            if kernel["DirectToLds"]:
              lwStartOffset = 2
            #  if (mfmaIndex == self.lwStartMfmaIndex or mfmaIndex == self.barrierMfmaIndex+2):
            if (mfmaIndex == self.lwStartMfmaIndex + lwStartOffset or mfmaIndex == self.barrierMfmaIndex+1) :
              flagInsert = True
          elif kernel["PrefetchGlobalRead"] == 1 and numMfmaPerIter >= 4:
            # this setting is good for fixed clock, but not good for auto clock
            #if (mfmaIndex == self.grEndMfmaIndex or mfmaIndex == self.barrierMfmaIndex+1) :
            withGL = ((not NLLlast) or (self.prefetchAcrossPersistent and kernel["PrefetchAcrossPersistentMode"] == 1))
            withDTLload = kernel["DirectToLds"] and withGL
            startIndex = 0 if withDTLload else 1
            if (mfmaIndex == startIndex or withGL and mfmaIndex == self.barrierMfmaIndex+1):
              flagInsert = True
          if flagInsert:
            iterCode.addInst("s_setprio 3","store optimization")

        if (mfmaIndex >= self.lwStartMfmaIndex):
          for j in range(self.numLocalWriteModPerMfma):
            # in case there are localWrite and globalread in same iteration
            # we need to make sure globalRead before localWrite
            if writeItems and not globalReadCode.countType(Code.GlobalReadInst):
              writeItem = writeItems.pop(0)
              # check StoreCInUnrollLoopCodeStart
              if kernel["StoreCInUnroll"]:
                if self.StoreCUnrollStartComment in str(writeItem):
                  self.StoreCUnrollLoopCodeStarted = 1 # mark as started
                if self.StoreCUnrollStoreStartComment in str(writeItem):
                  # generate all remaining pre code before the first Store C
                  while(len(self.StoreCUnrollPreCode.items()) > 0):
                    iterCode.addCode(self.StoreCUnrollPreCode.items().pop(0))
              iterCode.addCode(writeItem)
              # if there is localWrite at first mfma, need to skip it in waitcnt.
              if i == 0:
                skipLocalWriteWaitcnt += writeItem.countType(Code.LocalWriteInst)
              if not localReadItemsThisLoop:
                self.perIterLocalWriteCanSkip[iteration] += writeItem.countType(Code.LocalWriteInst)
        if mfmaIndex == self.lwEndMfmaIndex:
          while writeItems:
            writeItem = writeItems.pop(0)
            # generate all remaining pre code before the first Store C
            if kernel["StoreCInUnroll"]:
              if self.StoreCUnrollStoreStartComment in str(writeItem):
                while(len(self.StoreCUnrollPreCode.items()) > 0):
                  iterCode.addCode(self.StoreCUnrollPreCode.items().pop(0))
            iterCode.addCode(writeItem)
            if i == 0:
              skipLocalWriteWaitcnt += writeItem.countType(Code.LocalWriteInst)
            if not localReadItemsThisLoop:
              self.perIterLocalWriteCanSkip[iteration] += writeItem.countType(Code.LocalWriteInst)

        ####
        # scheduled pointer
        ####
        if mfmaIndex == self.lwEndMfmaIndex:
          iterCode.addCode(pointerLWCode)
        if i == numMfmaPerIter - 1:
          iterCode.addCode(pointerLRCode)

        ####
        # scheduled sync
        ####
        if mfmaIndex == self.barrierMfmaIndex and self.numItersPLR:
          iterCode.addCode(waitLWCode)
          iterCode.addCode(syncCode)

        ####
        # scheduled local read for next loop
        # localReads for next loop should after barrier
        ####
        latencyLeft = self.miLatencyLeft
        if self.numItersPLR and iteration >= isBarrier:
          readLeftLROPT = 0
          for j in range(len(localReadItemsNextLoop)):
            latencyLeft -= localReadItemsNextLoop[j].IssueLatency*2
            readLeftLROPT += 1 if latencyLeft >= 0 else 0
          # at least 1 instruction
          readLeftLROPT = max(readLeftLROPT,1)
          # evenly schedule localread with each mfma
          readLeftLREven = numReadsInst // numMfmaPerIter
          if (numReadsInst % (numMfmaPerIter)) > i:
            readLeftLREven += 1
          # we want no localreads at barrier mfma
          if (iteration == isBarrier) and numMfmaPerIter != 1:
            numMfmaForLR = self.numMfmaForNextLoopLR
            if i < numMfmaPerIter - numMfmaForLR:
              readLeftLREven = 0
              readLeftLROPT = 0
            # rest mfma help to schedule those localReads
            else:
              readLeftLREven = numReadsInst // (numMfmaPerIter-1)
              if (numReadsInst % (numMfmaPerIter-1)) >= i:
                readLeftLREven += 1
          # if there are too many localreads, change strategy to even.
          readLeft = max(readLeftLREven,readLeftLROPT)
        for j in range(readLeft):
          if localReadItemsNextLoop:
            item = localReadItemsNextLoop.pop(0)
            iterCode.addCode(item)
            if (i == 0):
              localReadsWaitcnt += 1

        ####
        # scheduled wait localReads
        ####
        if i == 0:
          iterCode.addCode(waitCode)

        ####
        # scheduled pack
        ####
        if packItems:
          # how many pack have to be done
          # calculate the data index of this mfma used for A and B
          # if i // kernel["MIWaveTile"][0]==0, mfma will use new A (need to take iu into account)
          # if i % kernel["MIWaveTile"][0]==0, mfma will use new B
          packAIdx += instPerPack if i//(kernel["MIWaveTileA"]+kernel["MIWaveTileA"]*kernel["MIWaveTileB"]*(i//(kernel["MIWaveTileA"]*kernel["MIWaveTileB"]))) == 0 else 0
          packBIdx += instPerPack if i % kernel["MIWaveTileA"] == 0 else 0
          # blockWidth < 1, means 0.5 or 0.25 (BF,H,Int8)
          packAIdx = packAIdx if self.tPA["localReadInstruction"].blockWidth < 1 else 0
          packBIdx = packBIdx if self.tPB["localReadInstruction"].blockWidth < 1 else 0
          numPack = (packAIdx + packBIdx)
          iterCode.addComment0("pack scheduling: packAIdx:%u, packBIdx:%u" %(packAIdx,packBIdx))
          # we put 2 pack in each mfma
          if packItems:
            for j in range(instPerPack):
              iterCode.addCode(packItems.pop(0))
              curPackIdx += 1
          if packItems:
            for j in range(instPerPack):
              iterCode.addCode(packItems.pop(0))
              curPackIdx += 1
          # since packed register need to wait 2 quad cycle to finish packing
          # we insert pack instruction if we can, or s_nop
          while curPackIdx < numPack+2:
            if packItems:
              for j in range(instPerPack):
                iterCode.addCode(packItems.pop(0))
                curPackIdx += 1
            else:
              iterCode.addInst("s_nop ","0","VALU packing writes to be consumed by matrix instruction")
              curPackIdx += 1
        if i == numMfmaPerIter - 1:
          while packItems:
            iterCode.addCode(packItems.pop(0))

        ####
        # scheduled StoreCInUnrollPreProcess
        ####
        if kernel["StoreCInUnroll"]:
          if self.StoreCUnrollLoopCodeStarted and len(list(self.StoreCUnrollPreCode.items())) > 0:
            iterCode.addCode(self.StoreCUnrollPreCode.items().pop(0))

        ####
        # scheduled mfma
        ####
        iterCode.addCode(macIterItems.pop(0) if macIterItems else Code.Module())

        ####
        # scheduled global read for DirectToVgpr (PGR=2 only)
        ####
        numLoadVgpr = len(list(globalReadCodeDTV.items()))
        if numLoadVgpr > 0:
          interval = roundUp(numMfmaPerIter / origLenGlobalReadCodeDTV)
          tileIndex = 0 if kernel["DirectToVgprA"] else 1
          if (kernel["MIWaveTile"][tileIndex] // kernel["VectorWidth"]) > 1:
            if kernel["ProblemType"]["DataType"].isComplex():
              # adjustment for double complex
              # limit the max of interval up to 4 if (kernel["MIWaveTile"][0] // kernel["VectorWidth"]) > 1
              interval = min(4, interval)
            else: #if kernel["ProblemType"]["DataType"].isDouble() or isSingle():
              # adjustment for double
              # in this case, interval must be 1 to avoid overwritting vreg by global read
              interval = 1
          # DirectToVgprA + TLU=False + VW > 1 case, need to use interval = 1
          if kernel["DirectToVgprA"] and (not kernel["ProblemType"]["TLUA"]) and kernel["VectorWidth"] > 1:
            interval = 1
          # if number of mfma after self.grEndMfmaIndex is smaller than numMfmaPerIter, we need to use smaller interval to insert DTV load.
          # this is to ensure DTV load is generated after lwStartMfmaIndex
          intervalAfterGrEnd = kernel["LoopIters"] * numMfmaPerIter - self.lwStartMfmaIndex
          intervalMfma = min(numMfmaPerIter, intervalAfterGrEnd)
          numInstToInsert = roundUp(origLenGlobalReadCodeDTV / intervalMfma)
          remainingTimesToInsert = roundUp(numLoadVgpr / numInstToInsert)
          insertMfmaIndex = kernel["LoopIters"] * numMfmaPerIter - 1 - interval * (remainingTimesToInsert - 1)
          # avoid insertMfmaIndex getting smaller than (kernel["LoopIters"] - 1) * numMfmaPerIter
          insertMfmaIndex = max(insertMfmaIndex, (kernel["LoopIters"] - 1) * numMfmaPerIter)
          # avoid insertMfmaIndex getting smaller than lwEndMfmaIndex (DTV loads must be generated after non DTV loads)
          insertMfmaIndex = max(insertMfmaIndex, self.lwEndMfmaIndex)
          # if mfmaIndex is the last index, insert all DTV loads
          if mfmaIndex == lastMfmaIndex:
            insertMfmaIndex = mfmaIndex
            numInstToInsert = numLoadVgpr
          if mfmaIndex == insertMfmaIndex:
            for i in range(min(numLoadVgpr, numInstToInsert)):
              loadDTVText = str(globalReadCodeDTV.items().pop(0))
              if isDTVodd:
                # need to swap Vgpr set for odd code
                loadDTVText = self.flipVregSetForDirectToVgprInGlobalRead(kernel, loadDTVText)
              iterCode.addText(loadDTVText)

        ####
        # scheduled StoreCInUnrollPostProcess
        ####
        if kernel["StoreCInUnroll"]:
          numItems = len(self.StoreCUnrollPostCode.items())
          # need to make sure all global read inc is already generated
          # (iteration should be the last one)
          if numItems > 0 and iteration == kernel["LoopIters"] - 1 and len(globalReadCode.items()) == 0:
            totalMfma = kernel["LoopIters"] * numMfmaPerIter
            interval = 1
            numInstToInsert = roundUp(numItems / (totalMfma - mfmaIndex))
            remainingTimesToInsert = roundUp(numItems / numInstToInsert)
            insertMfmaIndex = totalMfma - 2 - interval * (remainingTimesToInsert - 1)
            if mfmaIndex >= insertMfmaIndex:
              for i in range(numInstToInsert):
                iterCode.addCode(self.StoreCUnrollPostCode.items().pop(0))

        if kernel["StorePriorityOpt"]:
          flagInsert = False
          if kernel["PrefetchGlobalRead"] == 2:
            #  if (mfmaIndex == self.barrierMfmaIndex or mfmaIndex == (kernel["LoopIters"] * numMfmaPerIter - 1)):
            if (mfmaIndex == self.barrierMfmaIndex - 1 or (not NLLlast) and mfmaIndex == (kernel["LoopIters"] * numMfmaPerIter - 1)) :
                flagInsert = True
          elif kernel["PrefetchGlobalRead"] == 1 and numMfmaPerIter >= 4:
            # this setting is good for fixed clock, but not good for auto clock
            #if (mfmaIndex == mfmaIndex == self.barrierMfmaIndex - 1 or mfmaIndex == (kernel["LoopIters"] * numMfmaPerIter - 1)) :
            insertPos1 = self.grEndMfmaIndex
            if not kernel["NoLdsWriteCode"]:
              insertPos1 = self.lwStartMfmaIndex - 1
            withGL = ((not NLLlast) or (self.prefetchAcrossPersistent and kernel["PrefetchAcrossPersistentMode"] == 1))
            if withGL and (mfmaIndex == insertPos1 or (not NLLlast) and mfmaIndex == (kernel["LoopIters"] * numMfmaPerIter - 1)) or \
               (not withGL) and mfmaIndex == (kernel["LoopIters"] * numMfmaPerIter // 2 - 1):
              flagInsert = True
          if flagInsert:
            iterCode.addInst("s_setprio 0","store optimization")
    else:
      assert 0, "Unsupported scheduleIterAlg=%u"%self.scheduleIterAlg

    if isinstance(waitCode, Code.WaitCnt):

      # Set the waitCount, based on the new iter schedule
      lgkmcnt = waitCode.lgkmcnt
      localReads = 0
      localWrites = 0
      if kernel["EnableMatrixInstruction"]:
        # dataAtIter      : the data we wait is read at which iteration
        # numReadsIter    : in this loop, number of iteration we have read (data used in current loop)
        dataAtIterA = iteration//self.numIterPerCoalescedReadA - self.numItersPLR
        dataAtIterB = iteration//self.numIterPerCoalescedReadB - self.numItersPLR
        numReadsIterA = min(iteration+1, kernel["LoopIters"]//self.numIterPerCoalescedReadA - self.numItersPLR)
        numReadsIterB = min(iteration+1, kernel["LoopIters"]//self.numIterPerCoalescedReadB - self.numItersPLR)
        skipReadsIterA = numReadsIterA - dataAtIterA - 1 if not dataAtIterA < max(dataAtIterA,dataAtIterB) else 0
        skipReadsIterB = numReadsIterB - dataAtIterB - 1 if not dataAtIterB < max(dataAtIterA,dataAtIterB) else 0
        # numPrefetchIter : in this loop, number of prefetch iteration we have read (data used in next loop)
        # currently we have localReadA and localReadB if iteration >= isBarrier
        # some case will not have localReads if PGR=0 or NoLoadLoop
        # known bug: wider localread + numItersPLR>1 may have chance to fail.
        numPrefetchIter = (iteration//(kernel["LoopIters"]-self.numItersPLR))*((iteration+1)-(kernel["LoopIters"]-self.numItersPLR)) if kernel["PrefetchGlobalRead"] else 0
        numPrefetchIter = 0 if iteration >= isBarrier and not hasLocalRead else numPrefetchIter
        skipReadsIterA += numPrefetchIter
        skipReadsIterB += numPrefetchIter
        # here the reads are prefetches so can skip them in the waitcnt
        # how many localreads can skip is based on how many iterations we prefetch.
        localReads += self.numReadsPerIterA * skipReadsIterA + localReads + self.numReadsPerIterB * skipReadsIterB
        # some of localReads is interleaved after waitcnt in SIA3
        if kernel["ScheduleIterAlg"] == 3 and self.numItersPLR and\
          (iteration < numReadsIterA or iteration < numReadsIterB or numPrefetchIter) and \
          self.enable["LocalRead"]:
          if (iteration < numReadsIterA and not dataAtIterA < max(dataAtIterA,dataAtIterB)) or numPrefetchIter:
            localReads -= self.numReadsPerIterA
          if (iteration < numReadsIterB and not dataAtIterB < max(dataAtIterA,dataAtIterB)) or numPrefetchIter:
            localReads -= self.numReadsPerIterB
          localReads += localReadsWaitcnt
        lgkmcnt += localReads
        iterCode.addComment0("numPrefetchIter=%u" % numPrefetchIter)
        iterCode.addComment0("dataAtIterA=%u numReadsIterA=%u skipReadsIterA=%u readsPerIterA=%u" % (dataAtIterA, numReadsIterA, skipReadsIterA, self.numReadsPerIterA))
        iterCode.addComment0("dataAtIterB=%u numReadsIterB=%u skipReadsIterB=%u readsPerIterB=%u" % (dataAtIterB, numReadsIterB, skipReadsIterB, self.numReadsPerIterB))
        if kernel["ScheduleIterAlg"] == 0 or kernel["ScheduleIterAlg"] == 1:
          # adjust the initial value of loop counter for DirectToVgpr
          adj = 1 if (kernel["DirectToVgprA"] or kernel["DirectToVgprB"]) else 0
          for i in range (max(dataAtIterA,dataAtIterB)+adj,iteration+1):
            localWrites += self.perIterLocalWriteCode[i].countType(Code.LocalWriteInst)
        # ScheduleIterAlg=2, localwrite is after waitCnt, no need to count it's current iteration.
        if kernel["ScheduleIterAlg"] == 3:
          for i in range (max(dataAtIterA,dataAtIterB)+1,iteration):
            localWrites += self.perIterLocalWriteCode[i].countType(Code.LocalWriteInst)
          if kernel["ScheduleLocalWrite"] > 0:
            # current iteration localWrite count
            localWrites += skipLocalWriteWaitcnt
            # dataAtIter iteration localWrite count
            if self.numItersPLR:
              skipPreIterLW = self.perIterLocalWriteCanSkip[max(dataAtIterA,dataAtIterB)]
              if kernel["PrefetchGlobalRead"] == 2 and kernel["LocalReadVectorWidth"] == 2 and \
                 (kernel["DirectToVgprA"] or kernel["DirectToVgprB"]):
                # PGR==2 and LRVW==2 and DirectToVgpr enabled case, count local write before max(dataAtIterA,dataAtIterB)
                # NOTE: This logic assumes that local write is scheduled after local read.
                for up in range(max(dataAtIterA,dataAtIterB)):
                  skipPreIterLW += self.perIterLocalWriteCanSkip[up]
              localWrites += skipPreIterLW
        lgkmcnt += localWrites
      else:
        for item in list(iterCode.items()):
          localReads  = item.countType(Code.LocalReadInst)
          localWrites = item.countType(Code.LocalWriteInst)
          if self.numVgprBuffer:
            # SQ: If PrefetchLocalRead = 1 and DepthU == LocalSplitU, then there is no double
            #  buffering and we must wait for all localReads but not localWrites.
            #  In that case, LoopIters == 1:
            if kernel["LoopIters"] > 1:
              # here the reads are prefetches so can skip them in the waitcnt
              lgkmcnt += localReads
            # and the writes are targetting another section of LDS and are
            # synchronized through a different waitcnt than this one
            # (which is always just before the macs)
            lgkmcnt += localWrites
          else:
            # if UnrollLoopEfficiencyEnable == True  use waitCode passed lgkmCnt
            # else:
            # we need to wait for all preceding reads before the macs
            # so only opportunity for optimization is if the writes are at the end
            if globalParameters["UnrollLoopEfficiencyEnable"]:
              lgkmcnt = waitCode.lgkmcnt
            else:
              if localReads:
                lgkmcnt = 0 # reset to wait for all reads
              else:
                lgkmcnt = localWrites  # this only survives if writes are at the end

      waitCode.comment += " old=%u, new=%u newLW=%u newLR=%u" % (waitCode.lgkmcnt, lgkmcnt,localWrites,localReads)
      waitCode.lgkmcnt = lgkmcnt

    return iterCode

  ##############################################################################
  # returns list of modules or text
  # papIter indicates this is the setup for the "prefetchAcrossPersistent"
  # (aka pap) iteration
  ##############################################################################
  def setupNewTile(self, kernel, tensorParametersA, tensorParametersB, isPap, isOptNLL=False, forceNoTileCode=False, forceNoGRCode=False):
    kl = []

    if self.enable["PreLoop"]:
      ####################################
      # Global Read Addresses
      ####################################
      kl.append(self.comment3("Begin setupNewTile, isPap=%s") % isPap)

      # work-group assignments
      kl.append(self.comment("global read addresses: work-group"))
      if not forceNoTileCode:
        kl.append(self.graWorkGroup(kernel, isPap))

      needShift = False
      if (kernel["EdgeType"] == "ShiftPtr") and \
         (not (kernel["BufferLoad"] and kernel["GuaranteeNoPartialA"])) or \
         (not (kernel["BufferLoad"] and kernel["GuaranteeNoPartialB"])):
        needShift = True

      # some case (PAP), we don't have to append the code for duplicated calculation
      # only those calculation related to WorkGroupID need to be generated. otherwise it's just redundant
      # default dontAppendCode = False, means need to append code
      self.dontAppendCode = False

      # 1. during isPap, this is actually no needed, so we can skip this.
      #    but since there are some vgpr value is used in the later lwaFirstOffset (when not OptNLL, such as "lwoT")
      #    so we still do this part when "isPap & not OptNLL"
      # 2. if tile edge, then we still need to add all these codes even isPap

      self.dontAppendCode = isPap and kernel["PrefetchAcrossPersistentMode"] == 1 and ((not needShift) or self.useGlobalReadTileVgpr)
      self.dontAppendCode = self.dontAppendCode or forceNoTileCode
      # tile assignments
      kl.append(self.comment("global read addresses: tile offset assignment a"))
      kl.append(self.graTileAssignment(kernel, tensorParametersA))
      kl.append(self.comment("global read addresses: tile offset assignment b"))
      kl.append(self.graTileAssignment(kernel, tensorParametersB))

      self.dontAppendCode = isPap and (not needShift)
      self.dontAppendCode = self.dontAppendCode or forceNoTileCode
      # unroll assignments
      kl.append(self.comment("global read addresses: unroll assignment a"))
      kl.append(self.graUnrollAssignment(kernel, tensorParametersA))
      kl.append(self.comment("global read addresses: unroll assignment b"))
      kl.append(self.graUnrollAssignment(kernel, tensorParametersB))
      self.dontAppendCode = False
      self.dontAppendCode = self.dontAppendCode or forceNoTileCode

      # other free indices
      if kernel["ProblemType"]["NumIndicesC"] > 2:
        kl.append(self.comment("global read addresses: other free assignments"))
        kl.append(self.graOtherFreeAssignments(kernel))

      # other summation indices
      if self.otherSummations:
        kl.append(self.comment("global read addresses: other summation assignments"))
        kl.append(self.graOtherSummationAssignments(kernel))

      self.dontAppendCode = isPap and ((not needShift) or self.useGlobalReadTileVgpr)
      self.dontAppendCode = self.dontAppendCode or forceNoTileCode
      # tile offsets
      kl.append(self.comment("global read addresses: tile offsets a"))
      kl.append(self.graTileOffsets(kernel, tensorParametersA))
      kl.append(self.comment("global read addresses: tile offsets b"))
      kl.append(self.graTileOffsets(kernel, tensorParametersB))

      # unroll offsets
      kl.append(self.comment("global read addresses: unroll offsets a"))
      kl.append(self.graUnrollOffsets(kernel, tensorParametersA))
      kl.append(self.comment("global read addresses: unroll offsets b"))
      kl.append(self.graUnrollOffsets(kernel, tensorParametersB))
      self.dontAppendCode = False
      self.dontAppendCode = self.dontAppendCode or forceNoTileCode

      # tile edges
      if kernel["EdgeType"] == "ShiftPtr":
        # Shift here has two purposes:
        #  1. Ensure the loads are in-bounds to prevent fault.
        #     BufferLoad uses the buffer limit hardware and does not require bounds checking for this case
        #  2. Shift-left a wide vector load to ensure it is completely in-bounds.
        #     If this occurs we need to 'unshift' the C values (see shiftVectorComponents)
        #     BufferLoad does support this shifting, but if GuaranteeNoPartial=1 then
        #     it can be guaranteed that no shifting is required.
        if not (kernel["BufferLoad"] and kernel["GuaranteeNoPartialA"]) and not forceNoTileCode:
          kl.append(self.comment("global read addresses: shift a"))
          kl.append(self.graShift(kernel, tensorParametersA))
        if not (kernel["BufferLoad"] and  kernel["GuaranteeNoPartialB"]) and not forceNoTileCode:
          kl.append(self.comment("global read addresses: shift b"))
          kl.append(self.graShift(kernel, tensorParametersB))
      elif kernel["EdgeType"] == "Branch":
        kl.append(self.comment("global read addresses: branch a"))
        kl.append(self.graBranch(kernel, tensorParametersA))
        kl.append(self.comment("global read addresses: branch b"))
        kl.append(self.graBranch(kernel, tensorParametersB))

      self.dontAppendCode = isPap and (not needShift)
      self.dontAppendCode = self.dontAppendCode or forceNoTileCode
      # final offsets
      kl.append(self.comment("global read addresses: final offsets a"))
      kl.append(self.graFinalOffsets(kernel, tensorParametersA))
      kl.append(self.comment("global read addresses: final offsets b"))
      kl.append(self.graFinalOffsets(kernel, tensorParametersB))
      self.dontAppendCode = False
      self.dontAppendCode = self.dontAppendCode or forceNoTileCode

      # addresses
      if not forceNoTileCode:
        kl.append(self.comment("global read addresses: addresses a"))
        kl.append(self.graAddresses(kernel, tensorParametersA, isPap))
        kl.append(self.comment("global read addresses: addresses b"))
        kl.append(self.graAddresses(kernel, tensorParametersB, isPap))

      self.dontAppendCode = isPap
      self.dontAppendCode = self.dontAppendCode or forceNoTileCode
      # increments
      kl.append(self.comment("global read addresses: increments a"))
      for i in reversed(range(kernel["ProblemType"]["NumIndicesSummation"])):
        kl.append(self.graIncrements(kernel, i, tensorParametersA))
      kl.append(self.comment("global read addresses: increments b"))
      for i in reversed(range(kernel["ProblemType"]["NumIndicesSummation"])):
        kl.append(self.graIncrements(kernel, i, tensorParametersB))
      self.dontAppendCode = False
      self.dontAppendCode = self.dontAppendCode or forceNoTileCode

      ####################################
      # Local Write Addresses
      ####################################
      kl.append(self.comment3("Local Write Addresses"))

      # tile assignments
      kl.append(self.lwaTileAssignment(kernel, tensorParametersA))
      kl.append(self.lwaTileAssignment(kernel, tensorParametersB))

      # unroll assignments
      kl.append(self.lwaUnrollAssignment(kernel, tensorParametersA))
      kl.append(self.lwaUnrollAssignment(kernel, tensorParametersB))

      # if PAP, no need to reset LWA, but if not OptNLL, we still do this (due to TailLoop)

      self.dontAppendCode = isPap and kernel["PrefetchAcrossPersistentMode"] == 1
      self.dontAppendCode = self.dontAppendCode or forceNoTileCode
      # first offsets
      kl.append(self.comment("local write addresses: first offset a"))
      kl.append(self.lwaFirstOffset(kernel, tensorParametersA))
      kl.append(self.comment("local write addresses: first offset b"))
      kl.append(self.lwaFirstOffset(kernel, tensorParametersB))
      self.dontAppendCode = False
      self.dontAppendCode = self.dontAppendCode or forceNoTileCode

      # final offsets
      kl.append(self.lwaFinalOffsets(kernel, tensorParametersA))
      kl.append(self.lwaFinalOffsets(kernel, tensorParametersB))

      # declare addresses
      kl.append(self.lwaDeclareAddresses(kernel, tensorParametersA))
      kl.append(self.lwaDeclareAddresses(kernel, tensorParametersB))

      # init pointers
      kl.append(self.localWriteInitPointers(kernel, tensorParametersA))
      kl.append(self.localWriteInitPointers(kernel, tensorParametersB))

    ###########################################################################
    # summations loops: open
    ###########################################################################

    # declare loop num iter
    if not forceNoTileCode:
      kl.append(self.comment1("declare loop num iterations"))
      kl.append(self.declareLoopNumIter(kernel))

    # perform initC in the shadow of the prefetch
    # Prefetch occurs at start of unroll loop
    # If we have multiple summation indices (otherSummationLoops>0),
    # we can't init in shadow of this prefetch
    # since that would initC inside the other summation loops

    if self.doShadowInit != 2:
      kl.append(self.initC(kernel))

    # open non-unrolled summation loops
    if not forceNoTileCode:
      for i in range(kernel["ProblemType"]["NumIndicesSummation"]-1):
        kl.append(self.comment("summation loop %u"%i))
        kl.append(self.calculateLoopNumIter(kernel, i, isPap))
        if self.actualSummationLoops>1:
          kl.append(self.openLoop(kernel, i))
      kl.append(self.calculateLoopNumIter(kernel, self.unrollIdx, isPap))

    if not forceNoTileCode:
      if self.staggerU:
        kl.append(self.declareStaggerParms(kernel))
        kl.append(self.calculateStagger(kernel, tensorParametersA))
        kl.append(self.calculateStagger(kernel, tensorParametersB))

    # isPap don't init the read pointers - we want to continue to use the double-buffer
    # LRO and LWA as assigned
    if self.enable["PreLoop"] and not isPap:
      # init lds read pointers before each unrolled loop
      kl.append(self.comment1("local read addresses: init pointers a"))
      kl.append(self.localReadInitPointers(kernel, tensorParametersA))
      kl.append(self.comment1("local read addresses: init pointers b"))
      kl.append(self.localReadInitPointers(kernel, tensorParametersB))

    if isPap and not isOptNLL:
      # init lds read pointers before each unrolled loop
      kl.append(self.comment1("local read addresses: reset offset a"))
      kl.append(self.localReadResetOffsets(kernel, tensorParametersA))
      kl.append(self.comment1("local read addresses: reset offset b"))
      kl.append(self.localReadResetOffsets(kernel, tensorParametersB))

    ####################################
    # prefetch: unrolled loop prefix
    ####################################
    if kernel["PrefetchGlobalRead"]:
      pfi = 1
      kl.append(self.comment("prefetch: global -> local"))
      kl.append(self.openSumAtLeastUnroll(kernel, prefetch=True, isOptNLL=isOptNLL, isPap=isPap))
      if isPap and isOptNLL:
        # forceNoGRCode case, reset and not generate global read A/B code
        if self.enable["GlobalRead"]  and (not forceNoGRCode):
          # if DirectToVgprA is enabled, swap the order of global read (B->A)
          tensorParameters1st = tensorParametersA
          tensorParameters2nd = tensorParametersB
          if kernel["DirectToVgprA"]:
            tensorParameters1st, tensorParameters2nd = tensorParameters2nd, tensorParameters1st
          self.dtlsM0UpdateACode = self.directToLdsM0Update(kernel, 0, tensorParameters1st, usePlaceHolder=isPap)
          self.globalReadACode = self.globalReadDo(kernel, 0, tensorParameters1st, 0)
          self.dtlsM0UpdateBCode = self.directToLdsM0Update(kernel, 0, tensorParameters2nd, usePlaceHolder=isPap)
          self.globalReadBCode = self.globalReadDo(kernel, 0, tensorParameters2nd, 0)
        else:
          self.dtlsM0UpdateACode = Code.StructuredModule()
          self.globalReadACode = Code.StructuredModule() # empty
          self.dtlsM0UpdateBCode = Code.StructuredModule()
          self.globalReadBCode = Code.StructuredModule() # empty

        if self.enable["GlobalReadInc"]:
          self.globalReadIncrements = self.globalReadIncrementAB(kernel, self.unrollIdx, pfi)
        else:
          self.globalReadIncrements = Code.Module()
          self.globalReadIncrements.addCode(Code.Module("globalReadIncrementA"))
          self.globalReadIncrements.addCode(Code.Module("globalReadIncrementB"))

      else:
        if self.enable["GlobalRead"]:
          # if DirectToVgprA is enabled, swap the order of global read (B->A)
          tensorParameters1st = tensorParametersA
          tensorParameters2nd = tensorParametersB
          if kernel["DirectToVgprA"]:
            tensorParameters1st, tensorParameters2nd = tensorParameters2nd, tensorParameters1st
          tmpStr = str(self.directToLdsM0Update(kernel, 0, tensorParameters1st, usePlaceHolder=isPap))
          tmpStr = tmpStr.replace("__placeholder__", str(0))
          kl.append(tmpStr)
          kl.append(str(self.globalReadDo(kernel, 0, tensorParameters1st, 0)))
          tmpStr = str(self.directToLdsM0Update(kernel, 0, tensorParameters2nd, usePlaceHolder=isPap))
          tmpStr = tmpStr.replace("__placeholder__", str(0))
          kl.append(tmpStr)
          kl.append(str(self.globalReadDo(kernel, 0, tensorParameters2nd, 0)))
        if self.enable["GlobalReadInc"]:
          kl.append(self.globalReadIncrementAB(kernel, self.unrollIdx, pfi))

    kl.append(self.comment3("End setupNewTile, isPap=%s") % isPap)

    return kl


  ##############################################################################
  # get conditions to skip local write wait
  ##############################################################################
  def getConditionToSkipLocalWriteWait( self, kernel , isPap, u, lastU):
    # not generate wait code here if u == 0 u != lastU and DirectToVgpr + DirectToLds is enabled
    # (to remove redundant wait. isPap case only)
    # exception is PGR=2. wait is necessary for u = 0 in PGR=2 case
    cond1 = not (isPap and u == 0 and u != lastU and kernel["PrefetchLocalRead"] != 0 and \
       (kernel["DirectToVgprA"] and kernel["DirectToLdsB"] or kernel["DirectToVgprB"] and kernel["DirectToLdsA"])) \
      or kernel["PrefetchGlobalRead"]==2
    # no need local read wait if LocalReadVectorWidth==2 and u is odd.
    # In that case, Prefetch local read covers both u = 0 and 1 (limit to MFMA+double+DirectToVgpr only)
    # (The other side of numReadsIterCoalesced must be 0 to skip local read wait)
    condSkip = kernel["LocalReadVectorWidth"]==2 and (u%2 != 0) and kernel["EnableMatrixInstruction"] and \
               kernel["ProblemType"]["DataType"].isDouble() and \
              (kernel["DirectToVgprA"] and self.numReadsIterCoalescedB % 2 == 0 or \
               kernel["DirectToVgprB"] and self.numReadsIterCoalescedA % 2 == 0)
    return cond1 and (not condSkip)

  ##############################################################################
  # No Load Loop Body
  ##############################################################################
  def noLoadLoopBody( self, kernel, tensorParametersA, tensorParametersB, kl, pack, isOptNLL, isPap, isNGLL, NLLfirst, NLLlast, isDTVodd=False):
    expand = kernel["ExpandPointerSwap"]
    lastuIdx = False
    pflr     = self.numItersPLR
    localWriteEndIter = kernel["LoopIters"] - self.numItersPLR - 1

    for uIdx in range(0, kernel["LoopIters"]*kernel["DepthULdsDivisor"]):
      u = uIdx % kernel["LoopIters"]    #   u: index in compute loop (in contrast to the notion of global read loop)
      uDu = uIdx // kernel["LoopIters"] # uDu: index of compute loop
      isLastLoop = (uDu == kernel["DepthULdsDivisor"] -1 ) and not isNGLL
      if u == 0:
        if uDu > 0:
          if self.enable["GlobalRead"]:
            assert len(self.globalReadACode.items()) > 0 and len(self.globalReadBCode.items()) > 0 # already issued in first uDu
            self.globalReadACode = Code.StructuredModule() # empty
            self.globalReadBCode = Code.StructuredModule() # empty
          if self.enable["GlobalReadInc"]:
            self.globalReadIncrements = Code.Module() # empty
            self.globalReadIncrements.addCode(Code.Module("globalReadIncrementA"))
            self.globalReadIncrements.addCode(Code.Module("globalReadIncrementB"))
        if not isLastLoop:
          self.localWriteACode = self.localWriteDo(kernel, tensorParametersA, (uDu+1)%kernel["DepthULdsDivisor"])  # local write in loopcnt N targets data for loopcnt N+1
          self.localWriteBCode = self.localWriteDo(kernel, tensorParametersB, (uDu+1)%kernel["DepthULdsDivisor"])
        else:
          self.localWriteACode = Code.Module()
          self.localWriteBCode = Code.Module()

        # TODO schedule waitcnt/barrier in makeSubIterSchedule()
        if kernel["PrefetchGlobalRead"] and kernel["LoopIters"] in [1, 2] and uDu > 0:
          if self.enable["Wait"]:
            kl.append(self.wait(kernel, tensorParametersA, tensorParametersB, 1, 0, -1, "wait for local write"))
          if self.enable["Sync"]:
            kl.append(self.syncThreads(kernel, "sync for local read after write"))

        if not isNGLL or isPap:
          # PAP would have GlobalRead and GlobalInc, but no localWrite
          # Get the perIterGlobalReadCode code for PAP (if PAP=On), else would be empty
          # NGLL (PGR=2) and isPap case, we do not need globalInc code. Set skip flag in that case
          skipGlobalReadInc = isNGLL and isPap
          self.makeSchedule(kernel, tensorParametersA, tensorParametersB, localWriteEndIter, uDu, skipGlobalReadInc=skipGlobalReadInc, lastLoop=NLLlast)
          kl.append(str(self.unrollLoopHeaderCode))

      # which loop iteration to reset the LRO,
      # note if PLR=0, isResetLroIter is False for all u
      isResetLroIter = (u == localWriteEndIter)
      isSwapAndResetLwoIter = isResetLroIter
      isSwapLroIter = isResetLroIter
      if kernel["ScheduleIterAlg"] == 3:
          isSwapAndResetLwoIter = (u == self.lwEndMfmaIndex//(self.numMfmaPerIter))

      extraComment = ""
      if isLastLoop:
        extraComment += " (last unrolled loop)"
      else:
        if kernel.enabledSplitLDS:
            extraComment += f" (uDu={uDu}) "
        if isResetLroIter:
            extraComment += " (reset local read pointers iteration) "
        if isSwapAndResetLwoIter:
            extraComment += " (swap and reset local write pointers iteration) "
        if isSwapLroIter:
            extraComment += " (swap local read pointers iteration) "

      kl.append(self.comment("iter %u%s"%(u,extraComment)))
      plrIdx = ((u+pflr) % (self.numVgprBuffer+1)) % kernel["LoopIters"]
      localReads = Code.Module()

      pointerLWCode = Code.Module()
      pointerLRCode = Code.Module()
      waitCode = Code.Module()  # may be overwritten (not added to) below
      macIterCode = Code.Module()
      waitLWCode = Code.Module()
      syncCode = Code.Module()

      if self.enable["LocalRead"]:
        hasLiveLdsData = kernel["PrefetchGlobalRead"] or (uDu < kernel["DepthULdsDivisor"]-1)
        hasLiveLdsData = hasLiveLdsData and not isLastLoop
        # reads for current loop are done in previous iteration because of wider local read
        doReadA = (u < kernel["LoopIters"]/self.numIterPerCoalescedReadA - self.numItersPLR)
        doReadB = (u < kernel["LoopIters"]/self.numIterPerCoalescedReadB - self.numItersPLR)
        # reads for next loop
        doReadA = doReadA or (hasLiveLdsData and u > localWriteEndIter)
        doReadB = doReadB or (hasLiveLdsData and u > localWriteEndIter)
        # disable LocalRead if DirectToVgpr is enabled
        doReadA = doReadA and (not kernel["DirectToVgprA"])
        doReadB = doReadB and (not kernel["DirectToVgprB"])
        for iui in range(0,kernel["InnerUnroll"]):
          doReadA = doReadA and iui*self.numReadsIterCoalescedA < kernel["InnerUnroll"]
          doReadB = doReadB and iui*self.numReadsIterCoalescedB < kernel["InnerUnroll"]
          if doReadA:
            localReads.addText(self.comment("local read a"))
            localReadCodeA, packCodeA = self.localReadDo(kernel, plrIdx*self.numIterPerCoalescedReadA, iui*self.numReadsIterCoalescedA, 0, tensorParametersA)
            localReads.addCode(localReadCodeA)
            pack[plrIdx*self.numIterPerCoalescedReadA].addCode(packCodeA)
          if doReadB:
            localReads.addText(self.comment("local read b"))
            localReadCodeB, packCodeB = self.localReadDo(kernel, plrIdx*self.numIterPerCoalescedReadB, iui*self.numReadsIterCoalescedB, 0, tensorParametersB)
            localReads.addCode(localReadCodeB)
            pack[plrIdx*self.numIterPerCoalescedReadB].addCode(packCodeB)
          if (not isResetLroIter or iui != kernel["InnerUnroll"]-1):
            if doReadA:
              localReads.addText(self.comment("local read increment a"))
              localReads.addText(self.localReadInc(kernel, iui, tensorParametersA))
            if doReadB:
              localReads.addText(self.comment("local read increment b"))
              localReads.addText(self.localReadInc(kernel, iui, tensorParametersB))

      if not isLastLoop:
        if kernel["PrefetchGlobalRead"]:
          # put barrier at localWriteEndIter+1
          if u == localWriteEndIter+1 or (u == (localWriteEndIter+1)%kernel["LoopIters"] and kernel["ScheduleIterAlg"] == 2):
            if self.enable["Wait"]:
              # skip local write wait if DirectToVgpr + DirectToLds is enabled
              if not kernel["NoLdsWriteCode"]:
                waitLWCode.addCode(self.wait(kernel, tensorParametersA, tensorParametersB, -1, 0, -1, "3wait for local write"))
              if (kernel["DirectToVgprA"] or kernel["DirectToVgprB"]) and (kernel["DirectToLdsA"] or kernel["DirectToLdsB"]):
                # DirectToVgpr + DirectToLds case, add waitcnt vmcnt before s_barrier
                # Except for PGR=2 and Load C (StoreCInUnroll) case. In that case, Load C is executed after necessary Load A and B.
                # Wait for Load C is already done here in PGR=2 case.
                needLoadC = kernel["StoreCInUnroll"] and (not kernel["AtomicAddC"]) and kernel["ProblemType"]["UseBeta"]
                if not (kernel["PrefetchGlobalRead"]==2 and needLoadC):
                  retStr = self.getWaitcntCodeForDirectToVgpr(kernel, localWriteEndIter, u, firstIter=False, beforeBarrier=True)
                  waitLWCode.addCode(retStr)
            if self.enable["Sync"]:
              if kernel["PrefetchGlobalRead"]==2 and (kernel["DirectToLdsA"] and kernel["DirectToLdsB"]):
                # PGR=2 and DTLA+B case, wait for global read needs to be added (wait is not generated with local write)
                syncCode.addCode(self.wait(kernel, tensorParametersA, tensorParametersB, 0, -1, -1, "wait for global read with lds"))
              syncCode.addCode(self.syncThreads(kernel))

          if isSwapAndResetLwoIter: # ResetLroIter
            if self.enable["LocalWrite"]:
              # local write for next iter, used to have local writes here
              pointerLWCode.addText(self.comment("local write swap offsets a"))
              pointerLWCode.addText(self.localWriteSwapOffsets(kernel, expand, tensorParametersA))
              pointerLWCode.addText(self.comment("local write swap offsets b"))
              pointerLWCode.addText(self.localWriteSwapOffsets(kernel, expand, tensorParametersB))
              pointerLWCode.addText(self.localWriteInitPointers(kernel, tensorParametersA))
              pointerLWCode.addText(self.localWriteInitPointers(kernel, tensorParametersB))

          if isSwapLroIter: # ResetLroIter
            if self.enable["LocalRead"]:
              # Swap, reset, or increment the LRO:
              # force internalPointerSwap = False in NGLL case
              internalPointerSwap = expand and not isNGLL
              pointerLRCode.addText(self.comment("local read swap offsets a"))
              pointerLRCode.addText(self.localReadSwapOffsets(kernel, internalPointerSwap, tensorParametersA))
              pointerLRCode.addText(self.comment("local read swap offsets b"))
              pointerLRCode.addText(self.localReadSwapOffsets(kernel, internalPointerSwap, tensorParametersB))

        if isResetLroIter: # ResetLroIter
          if self.enable["LocalRead"]:
            pointerLRCode.addText(self.comment("local read init pointers a"))
            pointerLRCode.addText(self.localReadInitPointers(kernel, tensorParametersA))
            pointerLRCode.addText(self.comment("local read init pointers b"))
            pointerLRCode.addText(self.localReadInitPointers(kernel, tensorParametersB))

      # we initiate lgkmcnt to 0, then assigning it correct value in makeSubIterSchedule()
      if self.enable["Wait"]:
        if self.getConditionToSkipLocalWriteWait(kernel, isPap, u, kernel["LoopIters"] - 1):
          waitCode = self.wait(kernel, tensorParametersA, tensorParametersB, \
              -1, 0, 0, \
              "wait for prior local read local write")
        # DirectToVgpr case, wait for global read as well as local read/write
        if kernel["DirectToVgprA"] or kernel["DirectToVgprB"]:
          # not generate wait here
          #  1) local write code in previous u (u-1) has waitcnt vmcnt
          prevVmcnt = False
          prevLocalWrite = ""
          if (u > 0):
            prevLocalWrite = ' '.join([str(x) for x in self.perIterLocalWriteCode[u-1].flatitems()])
            prevVmcnt = "vmcnt" in prevLocalWrite
          if not prevVmcnt:
            retStr = self.getWaitcntCodeForDirectToVgpr(kernel, localWriteEndIter, u, False, isPap or isNGLL, NLLlast=NLLlast)
            kl.append(retStr)

      # generate StoreCInUnroll post loop if it is enabled (only PAP case (but not NGLL))
      if u == localWriteEndIter+1:
        if kernel["StoreCInUnrollPostLoop"] and isPap and not isNGLL:
          kl.append(self.generateStoreInUnrollPostLoop(kernel, isOptNLL, isDTVodd))

      luIdx = (u) % (self.numVgprBuffer+1) # local to use for MACs
      if self.enable["MAC"]:
        if kernel["EnableMatrixInstruction"]:
          # NGLL case, use first set
          setId = 0 if isNGLL else 1
          # flip setId if isDTVodd is True
          if isDTVodd:
             setId = 1 - setId
          # use second set for DirectToVGPR
          vregSetIdxMFMA = setId # use first set for NGLL, second set for other cases
          if ((uIdx+1) == kernel["LoopIters"]*kernel["DepthULdsDivisor"]) and \
              (kernel["StoreCInUnroll"]):
            lastuIdx = (isOptNLL or self.enableSingleNLLOpt) and not isNGLL # do not apply lastuIdx for not isOptNLL case
          macIterCode.addCode(self.mfmaIter(kernel, u, kernel["InnerUnroll"], vregSetIdxMFMA,lastuIdx))
        else:
          macIterCode.addCode(self.macIter(kernel, luIdx, kernel["InnerUnroll"], True ))

      subIterCode = self.makeSubIterSchedule(kernel, localReads, \
                      u, pointerLWCode, pointerLRCode, waitCode, macIterCode, waitLWCode, syncCode, pack[luIdx], isDTVodd, NLLlast)
      kl.append(subIterCode)
      # vgpr.checkin for all the checked-out vgpr in LocalRead
      for item in list(pack[luIdx].items()):
        if item.tempVgpr != None:
          self.vgprPool.checkIn(item.tempVgpr)
          item.tempVgpr = None
      pack[luIdx] = Code.Module()

  ##############################################################################
  # noLoadLoop
  # Create the no load loop (NLL)
  #
  # isOptNLL : the NLL is to be optimized for the alpha=1 and non-edge case
  ##############################################################################
  def noLoadLoop( self, kernel, tensorParametersA, tensorParametersB, isOptNLL, isPap, isNGLL, pack ):
    kl = []
    if isNGLL:
      LoopNameComment = "NoGlobalLoadLoop"
    else:
      LoopNameComment = "NoLoadLoop"
    if isOptNLL:
      PAPcomment = "Opt. %s %s PAP - Begin " % (LoopNameComment, "With" if isPap else "Without")
    else:
      PAPcomment = "Ord. %s - Begin " % (LoopNameComment)
    kl.append(self.comment3("%s")%PAPcomment)
    NLLfirst = True
    NLLlast = True
    if kernel["PrefetchGlobalRead"] == 2:
      # PGR=2 case NoLoadLoop(NLL) is generated twice
      # we need to distinguish them to generate proper code at each NLL
      if isNGLL:
        NLLlast = False
      else:
        # PGR=2 and not isNGLL means second NoLoadLoop for PGR2.
        # Need to avoid generating duplicated code which is already generated in NGLL(first NoLoadLoop for PGR=2)
        NLLfirst = False
    if isNGLL:
      self.perIterLocalWriteCode = self.perIterLocalWriteCodeNGLL
      self.perIterLocalWriteCanSkip = [ 0 for i in range (kernel["LoopIters"]) ]
    #else:
    if not isNGLL or isPap:
      self.dtlsM0UpdateACode = Code.StructuredModule()
      self.globalReadACode = Code.StructuredModule() # empty
      self.dtlsM0UpdateBCode = Code.StructuredModule()
      self.globalReadBCode = Code.StructuredModule() # empty
      self.globalReadIncrements = Code.Module()
      self.globalReadIncrements.addCode(Code.Module("globalReadIncrementA"))
      self.globalReadIncrements.addCode(Code.Module("globalReadIncrementB"))
      self.localWriteACode = Code.Module()
      self.localWriteBCode = Code.Module()

    # the scheduled GlobalRead,Inc code of PAP is inside openSumAtLeastUnroll (if PAP=on)
    isPapTmp = isPap
    if kernel["PrefetchGlobalRead"]==2:
      # PGR=2 case, set isPap only if isNGLL is True. This is to generate NewTile code at NGLL in PAP + PGR=2 case
      isPapTmp = isPap and not isNGLL
    kStrOpenSum = self.openSumAtLeastUnroll(kernel, prefetch=False, isOptNLL=isOptNLL, isPap=isPapTmp)

    #if self.prefetchAcrossPersistent and kernel["PrefetchAcrossPersistentMode"] == 1 and isPap:
    if self.prefetchAcrossPersistent and isPap:
    #if self.prefetchAcrossPersistent and isPap \
    #   and (kernel["PrefetchAcrossPersistentMode"] == 0 or isOptNLL):
      kStr = ""
      #kStr += str(self.openPrefetchAcrossPersistent(kernel, isOptNLL=False, useBufferOOB=True))
      # For PAPMode 1, using isOptNLL true to generate prefetch code

      if kernel["PrefetchAcrossPersistentMode"] == 0:
        # generate openSumAtLeastUnroll code here
        kStr += kStrOpenSum
        kStrOpenSum = "" # empty OpenSum str to avoid inserting it again

      # isPap and kernel["PrefetchAcrossPersistentMode"] == 1 and isOptNLL==False,
      # no need to append NewTile code because it is already generated in OptNLL code
      # also, NGLL second NoLoadLoop case, we do not append code for NewTile
      forceNoTileCode = False
      if (isOptNLL==False or (not NLLfirst)):
        forceNoTileCode = True
      # PGR=2 and last loop case, we do not need GlobalRead code
      forceNoGRCode = False
      if kernel["PrefetchGlobalRead"] == 2 and NLLlast:
        forceNoGRCode = True

      newTileCodes = self.setupNewTile(kernel, self.tPA, self.tPB, isPap=True, isOptNLL=True, forceNoTileCode=forceNoTileCode, forceNoGRCode = forceNoGRCode)
      codes = '\n'.join([str(x) for x in newTileCodes])
      kStr += codes
      # openPrefetchAcrossPersistent should be after newTileCodes to set correct values to ShadowLimit
      # also, NGLL second NoLoadLoop case, we do not append code for Open/Close PAP
      if isOptNLL:
        if NLLfirst:
          kStr += str(self.openPrefetchAcrossPersistent(kernel, isOptNLL=False, useBufferOOB=True))
          kStr += str(self.closePrefetchAcrossPersistent(kernel, isOptNLL=False, useBufferOOB=True))
      kl.append(kStr)

    # skip generating OpenSum code here for SingleNLLOpt
    if not (isOptNLL and self.enableSingleNLLOpt):
      kl.append(kStrOpenSum)
      kStrOpenSum = "" # empty OpenSum str to avoid inserting it again

    if not self.numItersPLR:
      if self.enable["Wait"]:
        if kernel["DirectToLdsA"] or kernel["DirectToLdsB"]:
          kl.append(self.wait(kernel, tensorParametersA, tensorParametersB, 0, -1, -1, "10wait for global read"))
        # TODO: need to check if we correctly checked-in the temp VGPR used for Int8 LocalWrite (uDu, PGR=2)
        kl.append(self.wait(kernel, tensorParametersA, tensorParametersB, -1, 0, -1, "4wait for local write"))
      if self.enable["Sync"]:
        kl.append(self.syncThreads(kernel))

    # if DirectToVgpr and  ASEM is not multiple of DepthU*2, generate noLoadLoopBody twice for odd and even exit separately
    if ( kernel["DirectToVgprA"] or  kernel["DirectToVgprB"]) and (kernel["AssertSummationElementMultiple"] % (kernel["DepthU"] * 2) != 0):
      # generate additional No Load Loop Body code for odd case (to use the other Vreg set for DirectToVgpr)
      # 1. generate odd check
      name = ""
      if isNGLL:
        name += "NoGlobalLoadLoop"
      else:
        name += "NoLoadLoop"
      if isOptNLL:
        name += "Opt"
      else:
        name += "Ord"
      kl.append(self.openOddNoLoadLoopForDTV(kernel, isNGLL, name))
      # 2. generate  no Load Loop Body code for odd
      # backup
      self.saveLocalPointers(kernel)
      # deepCopy packCode for OptNLL noLoadLoop
      deepCopyPack = copy.deepcopy(pack)
      # keep StoreCInUnroll related code for the next noLoadLoop
      if kernel["StoreCInUnroll"]:
        self.backupStoreCInUnrollRelatedCode()
      self.noLoadLoopBody(kernel, tensorParametersA, tensorParametersB, kl, deepCopyPack, isOptNLL, isPap, isNGLL, NLLfirst, NLLlast, isDTVodd=True)
      # restore
      self.restoreLocalPointers(kernel)
      # restore StoreCInUnroll related code
      if kernel["StoreCInUnroll"]:
        self.restoreStoreCInUnrollRelatedCode()
      # 3. PAP enabled and isLast and odd code case, the last global load for DirectToVgpr is the seconde reg set.
      #    Need to copy to the first set for the next PK loop
      if isPap and NLLlast:
        kl.append(self.getWaitcntCodeForDirectToVgpr(kernel, 0, 0, False, oddLast=True))
        kl.append(self.generateOddEndVgprCopyForDTV(kernel))
      # 4. generate even start label
      kl.append(self.closeOddNoLoadLoopForDTV(kernel, isNGLL, name))
      # 5. generate  no Load Loop Body code for odd
      # need to re-initialize perIterLocalWriteCanSkip to avoid having incorrect lgkmcnt
      self.perIterLocalWriteCanSkip = [ 0 for i in range (kernel["LoopIters"]) ]
      self.noLoadLoopBody(kernel, tensorParametersA, tensorParametersB, kl, pack, isOptNLL, isPap, isNGLL, NLLfirst, NLLlast)
      # 6. generate even end label
      kl.append(self.generateEvenEndLabeNoLoadLoopForDTV(kernel, isNGLL, name))
    else:
      # generate no Load Loop Body code
      self.noLoadLoopBody(kernel, tensorParametersA, tensorParametersB, kl, pack, isOptNLL, isPap, isNGLL, NLLfirst, NLLlast)

    if NLLlast and isPap:
      # reset or swap local write offset
      # If DirectToLds is True, first LDS buffer is already used by lds global read and offset already points first one
      # Swap/Reset is not necessary
      # If DirectToLds is False, first LDS buffer is no used yet, need reset.
      if kernel["ExpandPointerSwap"]:
        if not kernel["DirectToLdsA"]:
          kl.append(self.comment("local write reset offsets a"))
          kl.append(self.localWriteResetOffsets(kernel,  False, tensorParametersA))
        if not kernel["DirectToLdsB"]:
          kl.append(self.comment("local write reset offsets b"))
          kl.append(self.localWriteResetOffsets(kernel,  False, tensorParametersB))
        kl.append(self.localReadResetOffsets(kernel,  tensorParametersA))
        kl.append(self.localReadResetOffsets(kernel,  tensorParametersB))

    # add OpenSum code here if it is not empty
    if kStrOpenSum != "":
      kl.append(kStrOpenSum)

    # Close code is necessary for both first and last (NGLL case(=NLLfirst) needs label)
    kl.append(self.closeSumAtLeastUnroll(kernel, prefetch=False, isOptNLL=isOptNLL, isPap=isPap, isNGLL=isNGLL))

    return kl

  ##############################################################################
  # Loop Body
  ##############################################################################
  def loopBody( self, kernel, tensorParametersA, tensorParametersB, kl, pack, lc, loopCopies, finalLoop, firstIter=False ):
    expand = kernel["ExpandPointerSwap"]

    # generate storeC code for StoreCInUnroll (need to call for not StoreCInUnroll case as well)
    self.generateStoreCCodeInUnrollLoop(kernel, lc & 1)

    # not generate openLoop for firstIter
    if not firstIter:
      kl.append(self.comment3("Unrolled Loop %u/%u - Begin" % (lc+1, loopCopies)))
      kl.append(self.openLoopCopy(kernel, lc))
    if kernel["PrefetchGlobalRead"] and not self.numItersPLR and not kernel["ScheduleIterAlg"] == 2:
      if self.enable["Wait"]:
        if kernel["DirectToLdsA"] or kernel["DirectToLdsB"]:
          kl.append(self.wait(kernel, tensorParametersA, tensorParametersB, 0, -1, -1, "11wait for global read"))
        kl.append(self.wait(kernel, tensorParametersA, tensorParametersB, 1, 0, -1, "1wait for local write"))
      if self.enable["Sync"]:
        kl.append(self.syncThreads(kernel, "4sync for global read"))

    kl.append(self.comment("Begin Each Unroll: Check VGPR.checkin for INT8 LW"))

    if self.enable["GlobalRead"]:
      # if DirectToVgprA is enabled, swap the order of global read (B->A)
      tensorParameters1st = tensorParametersA
      tensorParameters2nd = tensorParametersB
      tc1 = 'A'
      tc2 = 'B'
      if kernel["DirectToVgprA"]:
        tensorParameters1st, tensorParameters2nd = tensorParameters2nd, tensorParameters1st
        tc1, tc2 = tc2, tc1
      # unrolled loop: global read A, B
      # M0 update for directToLds
      vregSetIdxGR = 0
      if (kernel["DirectToVgpr%s"%tc1]):
        vregSetIdxGR = (kernel["PrefetchGlobalRead"] + lc ) % 2 # toggle vreg set for DirectToVgpr.
      self.dtlsM0UpdateACode = self.directToLdsM0Update(kernel, 1, tensorParameters1st, usePlaceHolder=True)
      self.globalReadACode  = self.globalReadDo(kernel, 1, tensorParameters1st, vregSetIdxGR)
      vregSetIdxGR = 0
      if (kernel["DirectToVgpr%s"%tc2]):
        vregSetIdxGR = (kernel["PrefetchGlobalRead"] + lc ) % 2 # toggle vreg set for DirectToVgpr.
      self.dtlsM0UpdateBCode = self.directToLdsM0Update(kernel, 1, tensorParameters2nd, usePlaceHolder=True)
      self.globalReadBCode = self.globalReadDo(kernel, 1, tensorParameters2nd, vregSetIdxGR)
    else:
      self.dtlsM0UpdateACode = Code.StructuredModule()
      self.globalReadACode = Code.StructuredModule() # empty
      self.dtlsM0UpdateBCode = Code.StructuredModule()
      self.globalReadBCode = Code.StructuredModule() # empty

    if self.enable["GlobalReadInc"]:
      # unrolled loop: increment global read addresses
      self.globalReadIncrements = self.globalReadIncrementAB(kernel, self.unrollIdx, 0)
    else:
      self.globalReadIncrements = Code.Module()
      self.globalReadIncrements.addCode(Code.Module("globalReadIncrementA"))
      self.globalReadIncrements.addCode(Code.Module("globalReadIncrementB"))

    if self.enable["LocalWrite"] and not kernel["NoLdsWriteCode"]:
      self.localWriteACode = self.localWriteDo(kernel, tensorParametersA)
      self.localWriteBCode = self.localWriteDo(kernel, tensorParametersB)
    else:
      self.localWriteACode = Code.Module()
      self.localWriteBCode = Code.Module()

    # localWriteEndIter is used to determine which iteration to put sync
    # if PGR=0, GR,LW,sync,LR will put at front of loop.
    localWriteEndIter = kernel["LoopIters"] - self.numItersPLR - 1

    # Schedule the global read, global read inc, and writes:
    unrollLoopHeaderCodeScheduled = False
    if not kernel["PrefetchGlobalRead"]:
      unrollLoopHeaderCodeScheduled = True
      self.makeSchedule(kernel, tensorParametersA, tensorParametersB, localWriteEndIter, firstIter=firstIter)
      kl.append(str(self.unrollLoopHeaderCode))

    # if not prefetch global, localWrite before mac's
    if not kernel["PrefetchGlobalRead"]:
      # unrolled loop: local write A, B
      if self.enable["Wait"]:
        kl.append(self.wait(kernel, tensorParametersA, tensorParametersB, 0, -1, -1, "5wait for global read"))
      if self.enable["Sync"]:
        kl.append(self.syncThreads(kernel, "PGR=0, prior iter done reading lds"))
      if self.enable["LocalWrite"] and not kernel["NoLdsWriteCode"]:
        kl.append(self.comment("local write a"))
        tempLWCodeModA = self.localWriteDo(kernel, tensorParametersA)
        kl.append(tempLWCodeModA)
        kl.append(self.comment("local write b"))
        tempLWCodeModB = self.localWriteDo(kernel, tensorParametersB)
        kl.append(tempLWCodeModB)
      if self.enable["Wait"]:
        kl.append(self.wait(kernel, tensorParametersA, tensorParametersB, -1, 0, -1, "2prefetch wait for local write"))
      if self.enable["Sync"]:
        kl.append(self.syncThreads(kernel))
        # debug Local state
        """
        kl.append("    /* print Local state */" + self.endLine)
        kl.append("    for (unsigned int i = serial; i < LDS_NUM_ELEMENTS; i+=NUM_THREADS) {%s" % self.endLine)
        kl.append("      printf(\\\"localMemory[%%06u] = %%.0f\\\\n\\\", i, localMemory[i]);%s" )
            % self.endLine
        kl.append("    }" + self.endLine)
        """

    # unrolled loop: prefetch local
    if self.numItersPLR and not kernel["PrefetchGlobalRead"]:
      if self.enable["LocalRead"]:
        for plrIdx in range(0, self.numItersPLR):
          pack[plrIdx] = Code.Module()
          for iui in range(0,kernel["InnerUnroll"]):
            if iui*self.numReadsIterCoalescedA < kernel["InnerUnroll"] and (not kernel["DirectToVgprA"]) : # no local read code if DirectToVgpr is enabled
              kl.append(self.comment("prefetch local a"))
              localReadCodeA, packCodeA = self.localReadDo(kernel, plrIdx*self.numIterPerCoalescedReadA, iui*self.numReadsIterCoalescedA, 0, tensorParametersA)
              kl.append(localReadCodeA)
              pack[plrIdx].addCode(packCodeA)
            if iui*self.numReadsIterCoalescedB < kernel["InnerUnroll"] and (not kernel["DirectToVgprB"]) : # no local read code if DirectToVgpr is enabled
              kl.append(self.comment("prefetch local b"))
              localReadCodeB, packCodeB = self.localReadDo(kernel, plrIdx*self.numIterPerCoalescedReadB, iui*self.numReadsIterCoalescedB, 0, tensorParametersB)
              kl.append(localReadCodeB)
              pack[plrIdx].addCode(packCodeB)
            if iui*self.numReadsIterCoalescedA < kernel["InnerUnroll"] and (not kernel["DirectToVgprA"]) : # no local read code if DirectToVgpr is enabled
              kl.append(self.comment1("local read increment a"))
              kl.append(self.localReadInc(kernel, iui, tensorParametersA))
            if iui*self.numReadsIterCoalescedB < kernel["InnerUnroll"]  and (not kernel["DirectToVgprB"]) : # no local read code if DirectToVgpr is enabled
              kl.append(self.comment1("local read increment b"))
              kl.append(self.localReadInc(kernel, iui, tensorParametersB))

    kl.append(self.closeString(kernel))
    kl.append(self.openString(kernel))

    pflr     = self.numItersPLR  # how many pf already done above

    ############################################################################
    # unrolled loop: mac iterations
    ############################################################################

    # double/quadruple the number of compute loop for each DepthU's worth of data read
    for uIdx in range(0, kernel["LoopIters"]*kernel["DepthULdsDivisor"]):
      u = uIdx % kernel["LoopIters"]    #   u: index in compute loop (in contrast to the notion of global read loop)
      uDu = uIdx // kernel["LoopIters"] # uDu: index of compute loop
      if u==0: # if at start of subloop...
        # ...update local write code
        if self.enable["LocalWrite"] and not kernel["NoLdsWriteCode"]:
          self.localWriteACode = self.localWriteDo(kernel, tensorParametersA, (uDu+1)%kernel["DepthULdsDivisor"])  # local write in loopcnt N targets data for loopcnt N+1
          self.localWriteBCode = self.localWriteDo(kernel, tensorParametersB, (uDu+1)%kernel["DepthULdsDivisor"])
        else:
          self.localWriteACode = Code.Module()
          self.localWriteBCode = Code.Module()

        # TODO schedule waitcnt/barrier in makeSubIterSchedule()
        if kernel["PrefetchGlobalRead"] and kernel["LoopIters"] in [1, 2] and uDu > 0:
          if self.enable["Wait"]:
            kl.append(self.wait(kernel, tensorParametersA, tensorParametersB, 1, 0, -1, "wait for local write"))
          if self.enable["Sync"]:
            kl.append(self.syncThreads(kernel, "sync for local read after write"))

        if not unrollLoopHeaderCodeScheduled:
          self.makeSchedule(kernel, tensorParametersA, tensorParametersB, localWriteEndIter, uDu, firstIter=firstIter, lastLoop=False, lastLc=(lc==loopCopies-1))
          kl.append(str(self.unrollLoopHeaderCode))

      # for PGR=0 where generator can't schedule the instructions (yet),
      # we duplicate the local write codegen and append to string list directly
      if not kernel["PrefetchGlobalRead"]:
        doWrite = False
        if uDu<kernel["DepthULdsDivisor"]-1 and u==kernel["LoopIters"]-self.numItersPLR:
          doWrite = True
          writeForNextLoop = 1
        if uDu>0 and self.numItersPLR==0 and u==0:
          assert doWrite==False # should be exclusive with the previous condition
          doWrite = True
          writeForNextLoop = 0
        # unrolled loop: local write A, B
        if doWrite:
          if self.enable["Wait"]:
            kl.append(self.wait(kernel, tensorParametersA, tensorParametersB, -1, -1, 0, "5wait for local read"))
          if self.enable["Sync"]:
            kl.append(self.syncThreads(kernel, "PGR=0, prior iter done reading lds"))
          if self.enable["LocalWrite"] and not kernel["NoLdsWriteCode"]:
            kl.append(self.comment("local write a"))
            tempLWCodeModA = self.localWriteDo(kernel, tensorParametersA, (uDu+writeForNextLoop)%kernel["DepthULdsDivisor"])
            kl.append(tempLWCodeModA)
            kl.append(self.comment("local write b"))
            tempLWCodeModB = self.localWriteDo(kernel, tensorParametersB, (uDu+writeForNextLoop)%kernel["DepthULdsDivisor"])
            kl.append(tempLWCodeModB)
          if self.enable["Wait"]:
            kl.append(self.wait(kernel, tensorParametersA, tensorParametersB, -1, 0, -1, "2prefetch wait for local write"))
          if self.enable["Sync"]:
            kl.append(self.syncThreads(kernel))

      # which loop iteration to reset the LRO,
      # note if PLR=0, isResetLroIter is False for all u
      isResetLroIter = (u == localWriteEndIter)
      isSwapAndResetLwoIter = isResetLroIter
      isSwapLroIter = isResetLroIter
      if kernel["ScheduleIterAlg"] == 3:
        isSwapAndResetLwoIter = (u == self.lwEndMfmaIndex//(self.numMfmaPerIter))
      extraComment = ""
      if kernel.enabledSplitLDS:
        extraComment += f" (uDu={uDu}) "
      if isResetLroIter:
        extraComment += " (reset local read pointers iteration) "
      if isSwapAndResetLwoIter:
        extraComment += " (swap and reset local write pointers iteration) "
      if isSwapLroIter:
        extraComment += " (swap local read pointers iteration) "

      kl.append(self.comment("iter %u%s"%(u,extraComment)))
      plrIdx = ((u+pflr) % (self.numVgprBuffer+1)) % kernel["LoopIters"]

      localReads = Code.Module()
      localReadsA = Code.Module()
      localReadsB = Code.Module()

      pointerLWCode = Code.Module()
      pointerLRCode = Code.Module()
      waitCode = Code.Module()  # may be overwritten (not added to) below
      macIterCode = Code.Module()
      waitLWCode = Code.Module()
      syncCode = Code.Module()

      if self.enable["LocalRead"]:
        hasLiveLdsData = kernel["PrefetchGlobalRead"] or (uDu < kernel["DepthULdsDivisor"]-1)
        # reads for current loop are done in previous iteration because of wider local read
        doReadA = (u < kernel["LoopIters"]/self.numIterPerCoalescedReadA - self.numItersPLR)
        doReadB = (u < kernel["LoopIters"]/self.numIterPerCoalescedReadB - self.numItersPLR)
        # reads for next loop
        doReadA = doReadA or (hasLiveLdsData and u > localWriteEndIter)
        doReadB = doReadB or (hasLiveLdsData and u > localWriteEndIter)
        # disable LocalRead if DirectToVgpr is enabled
        doReadA = doReadA and (not kernel["DirectToVgprA"])
        doReadB = doReadB and (not kernel["DirectToVgprB"])
        # double the number of VgprValu if self.vgprValuDouble is true
        plrIdxLR = plrIdx
        if self.vgprValuDouble and (lc & 1) == 0:
          # use the next buffer set (do not change the index of pack[])
          plrIdxLR += 1
        for iui in range(0,kernel["InnerUnroll"]):
          doReadA = doReadA and iui*self.numReadsIterCoalescedA < kernel["InnerUnroll"]
          doReadB = doReadB and iui*self.numReadsIterCoalescedB < kernel["InnerUnroll"]
          if doReadA:
            localReads.addText(self.comment("local read a"))
            localReadCodeA, packCodeA = self.localReadDo(kernel, plrIdxLR*self.numIterPerCoalescedReadA, iui*self.numReadsIterCoalescedA, 0, tensorParametersA)
            localReads.addCode(localReadCodeA)
            localReadsA.addCode(localReadCodeA)
            pack[plrIdx*self.numIterPerCoalescedReadA].addCode(packCodeA)
          if doReadB:
            localReads.addText(self.comment("local read b"))
            localReadCodeB, packCodeB = self.localReadDo(kernel, plrIdxLR*self.numIterPerCoalescedReadB, iui*self.numReadsIterCoalescedB, 0, tensorParametersB)
            localReads.addCode(localReadCodeB)
            localReadsB.addCode(localReadCodeB)
            pack[plrIdx*self.numIterPerCoalescedReadB].addCode(packCodeB)
          # Don't increment the LRO if we are going to reset them below:
          if not isResetLroIter or iui != kernel["InnerUnroll"]-1:
            if doReadA:
              localReads.addText(self.comment("local read increment a"))
              localReads.addText(self.localReadInc(kernel, iui, tensorParametersA))
            if doReadB:
              localReads.addText(self.comment("local read increment b"))
              localReads.addText(self.localReadInc(kernel, iui, tensorParametersB))

      if kernel["PrefetchGlobalRead"]:
        # wait code for DirectToVgpr
        if kernel["DirectToVgprA"] or kernel["DirectToVgprB"]:
          if self.enable["Wait"]:
            # not generate wait here
            #  1) for the first unroll with self.canOptimizePreLoopLWVmcnt = True
            #  2) local write code in previous u (u-1) has waitcnt vmcnt
            prevVmcnt = False
            prevLocalWrite = ""
            if (u > 0 and kernel["ScheduleIterAlg"] == 3):
              for up in range(u):
                prevLocalWrite += ' '.join([str(x) for x in self.perIterLocalWriteCode[up].flatitems()])
              prevVmcnt = "vmcnt" in prevLocalWrite
            if not (firstIter and u == 0 and self.canOptimizePreLoopLWVmcnt) and not prevVmcnt:
              retStr = self.getWaitcntCodeForDirectToVgpr(kernel, localWriteEndIter, u, firstIter)
              kl.append(retStr)
        # put barrier at localWriteEndIter+1
        if u == localWriteEndIter+1 or (u == (localWriteEndIter+1)%kernel["LoopIters"] and kernel["ScheduleIterAlg"] == 2):
          if self.enable["Wait"]:
            if kernel["DirectToLdsA"] or kernel["DirectToLdsB"]:
              # skip generating wait for global read again here in DirectToVgpr case or no DirectToVgpr + PGR=2
              # no DTV and PGR=2 case, wait is generated at sync (barrier), which is before next local read
              if not(kernel["DirectToVgprA"] or kernel["DirectToVgprB"]) and not kernel["PrefetchGlobalRead"]==2:
                kl.append(self.wait(kernel, tensorParametersA, tensorParametersB, 0, -1, -1, "12wait for global read"))
              else:
                # DirectToVgpr + DirectToLds case, add waitcnt vmcnt before s_barrier
                # Except for PGR=2 and Load C case. In that case, Load C is executed after necessary Load A and B.
                # Wait for Load C is already done here in PGR=2 case.
                needLoadC = kernel["StoreCInUnroll"] and (not kernel["AtomicAddC"]) and kernel["ProblemType"]["UseBeta"]
                if not (kernel["PrefetchGlobalRead"]==2 and needLoadC):
                  retStr = self.getWaitcntCodeForDirectToVgpr(kernel, localWriteEndIter, u, firstIter, beforeBarrier=True)
                  waitLWCode.addCode(retStr)
            # skip local write wait if DirectToVgpr + DirectToLds is enabled
            # (no local write code. Global read wait for DirectToLds is already done)
            if not kernel["NoLdsWriteCode"]:
              waitLWCode.addCode(self.wait(kernel, tensorParametersA, tensorParametersB, -1, 0, -1, "3wait for local write"))
          if self.enable["Sync"]:
            if kernel["DirectToVgprA"] or kernel["DirectToVgprB"]:
              # put only barrier for DirectToVgpr (to avoid generating waitcnt for global read)
              syncCode.addCode("s_barrier" + self.endLine)
            else:
              syncCode.addCode(self.syncThreads(kernel))

        if isSwapAndResetLwoIter: # ResetLroIter
          if self.enable["LocalWrite"]:
            # local write for next iter, used to have local writes here
            pointerLWCode.addText(self.comment("local write swap offsets a"))
            pointerLWCode.addText(self.localWriteSwapOffsets(kernel, expand, tensorParametersA))
            pointerLWCode.addText(self.comment("local write swap offsets b"))
            pointerLWCode.addText(self.localWriteSwapOffsets(kernel, expand, tensorParametersB))
            pointerLWCode.addText(self.localWriteInitPointers(kernel, tensorParametersA))
            pointerLWCode.addText(self.localWriteInitPointers(kernel, tensorParametersB))

        if isSwapLroIter: # ResetLroIter
          if self.enable["LocalRead"]:
            # Swap, reset, or increment the LRO:
            pointerLRCode.addText(self.comment("local read swap offsets a"))
            pointerLRCode.addText(self.localReadSwapOffsets(kernel, expand, tensorParametersA))
            pointerLRCode.addText(self.comment("local read swap offsets b"))
            pointerLRCode.addText(self.localReadSwapOffsets(kernel, expand, tensorParametersB))

      if isResetLroIter: # ResetLroIter
        if self.enable["LocalRead"]:
          pointerLRCode.addText(self.comment("local read init pointers a"))
          pointerLRCode.addText(self.localReadInitPointers(kernel, tensorParametersA))
          pointerLRCode.addText(self.comment("local read init pointers b"))
          pointerLRCode.addText(self.localReadInitPointers(kernel, tensorParametersB))

      # we initiate lgkmcnt to 0, then assigning it correct value in makeSubIterSchedule()
      if self.enable["Wait"]:
        if self.getConditionToSkipLocalWriteWait(kernel, True, u, kernel["LoopIters"] - 1):
          waitCode = self.wait(kernel, tensorParametersA, tensorParametersB, \
              -1, 0, 0, \
              "wait for prior local read local write")

      luIdx = (u) % (self.numVgprBuffer+1) # local to use for MACs
      if self.enable["MAC"]:
        if kernel["EnableMatrixInstruction"]:
          vregSetIdxMFMA = lc
          macIterCode.addCode(self.mfmaIter(kernel, u, kernel["InnerUnroll"], vregSetIdxMFMA, firstIter=firstIter and u == 0))
        else:
          macIterCode.addCode(self.macIter(kernel, luIdx, kernel["InnerUnroll"], True ))

      ###### unroll loop efficiency implementation######################################
      # unroll loop efficiency implementation
      ## split A&B fetch&MAC code into multiple groups
      ## splitting strategy   based on TT size
      ## 6x4 -> split  MAC blob(s) into group of 8(s) and 16 FMA instructions.
      ##        LDS fetch(es) into group of A{1-2)B(0) , A(3),B(1) (not implemented yet)
      ## 4x6 -> split  MAC blob(s) into group of 8(s) and 16 FMA instructions.
      ##        LDS fetch(es) into group of B{1-2)A(0) , B(3),A(1)
      ## 4x4 -> split into group of 8 and 8  MAC(s)
      ## 6x6 -> split into group of 12 MAC(s)
      ## 8x4/4x8 -> split into group of 16 and 16  MAC(s)
      ## 8x8 -> split into group of 16 MAC(s)
      ## supports only PLR=0
      ###############################################################################
      if self.numItersPLR or (not globalParameters["UnrollLoopEfficiencyEnable"]):
        subIterCode = self.makeSubIterSchedule(kernel, localReads, \
                        u, pointerLWCode, pointerLRCode, waitCode, macIterCode, waitLWCode, syncCode, pack[luIdx])
        kl.append(subIterCode) # add scheduled "other", local reads, local writes
        for item in list(pack[luIdx].items()):
          if item.tempVgpr != None:
            self.vgprPool.checkIn(item.tempVgpr)
            item.tempVgpr = None
        pack[luIdx] = Code.Module()
      else:
        macIterCode = Code.Module()
        MacitemsReorder = []
        if self.enable["MAC"]:
          luIdx = (u) % (self.numVgprBuffer+1) # local to use for MACs
          macIterCode.addCode(self.macCode(kernel, luIdx, kernel["InnerUnroll"] ))
        MacIteritems = macIterCode.flatitems()
        #remove last and second entry from list if AggressiveMode is set
        # re-insert them back later
        if (kernel["AggressivePerfMode"]):
          MacIteritems = MacIteritems[:-1]
          MacIteritems.pop(1)
        #print("number MacItems\n",len(MacIteritems))
        blockWidth = tensorParametersA["localReadInstruction"].blockWidth
        numVectorsPerTileA = (kernel["ThreadTile%u"%tensorParametersA["tensorIdx"]]/kernel["VectorWidth"])
        numReadsPerVectorA = (kernel["VectorWidth"] * tensorParametersA["bpe"] ) / (blockWidth*4)
        numVectorsPerTileB = (kernel["ThreadTile%u"%tensorParametersB["tensorIdx"]]/kernel["VectorWidth"])
        TotalnumLdsFetches = numVectorsPerTileA*numReadsPerVectorA + numVectorsPerTileB*numReadsPerVectorA
        ## Rules for applying kernel["UnrollLoopEfficiencyEnable"]
        ## if A+B fetches <= 3 no split approach
        if not TotalnumLdsFetches > 3:
          subIterCode = self.makeSubIterSchedule(kernel, localReads, \
                       u, pointerLWCode, pointerLRCode, waitCode, macIterCode)
          kl.append(subIterCode) # add scheduled "other", local reads, local writes
        else:
          if ((kernel["ThreadTile0"] == 6 and kernel["ThreadTile1"] == 4) or
             (kernel["ThreadTile0"] == 4 and kernel["ThreadTile1"] == 6)):
            numGroups = 2   #group0 = 8 MAC(s)  #group1 = 16 MAC(s) (6x4 - 4x2)
            # ldsItems for splitting lds(s)
            ldsItems = ([[4,2],[2,2]]) if kernel["ThreadTile0"] == 6 else ([[2,4],[2,2]])
            macItems = [8,16]
            waitCntItems = [0,0]
          elif (kernel["ThreadTile0"] == 4 and kernel["ThreadTile1"] == 4):
            numGroups = 2   #group0 = 8 MAC(s)  #group1 = 8  MAC(s) 2)
            ldsItems = ([[4,2],[0,2]])
            macItems = [8,8]
            waitCntItems = [0,0]
          elif (kernel["ThreadTile0"] == 6 and kernel["ThreadTile1"] == 6):
            numGroups = 2   #group0 = 8 MAC(s)  #group1 = 16 MAC(s) 2)
            ldsItems = ([[4,4],[2,2]])
            macItems = [16,20]
            waitCntItems = [0,0]
          elif ((kernel["ThreadTile0"] == 8 and kernel["ThreadTile1"] == 4) or
             (kernel["ThreadTile0"] == 4 and kernel["ThreadTile1"] == 8)):
            numGroups = 2   #group0 = 16 MAC(s)  #group1 = 16 MAC(s) 2)
            ldsItems = ([[4,4],[4,0]]) if kernel["ThreadTile0"] == 8 else ([[4,4],[0,4]])
            macItems = [16,16]
            waitCntItems = [0,0]
          elif (kernel["ThreadTile0"] == 8 and kernel["ThreadTile1"] == 8):
            numGroups = 2   #group0 = 8 MAC(s)  #group1 = 8 MAC(s) 2)
            #ldsItems = ([[4,4],[4,4]])
            macItems = [16,48]
            waitCntItems = [0,0]
          AitemsToReorder = localReadsA.flatitems()
          BitemsToReorder = localReadsB.flatitems()
          ##reorder code?? based on LDS fetch
          ## works for 2 groups.. needs fix for more than 2 groups
          for iter in range(0,numGroups):
            endIdx   = ldsItems[iter][0] if iter == 0 else kernel["ThreadTile%u"%tensorParametersA["tensorIdx"]]
            startIdx = 0  if iter == 0 else ldsItems[iter-1][1]
            for Bitems in range(startIdx, startIdx+ldsItems[iter][1]):
              for Aitems in range(0, endIdx):
                idx = Aitems+(kernel["ThreadTile%u"%tensorParametersA["tensorIdx"]]*Bitems)
                MacitemsReorder.append(MacIteritems[idx])
              if (iter != 0):
                for Bitems in range(0, ldsItems[iter-1][1]):
                  for Aitems in range(ldsItems[iter-1][0], kernel["ThreadTile%u"%tensorParametersA["tensorIdx"]]):
                     MacitemsReorder.append(MacIteritems[Aitems+((kernel["ThreadTile%u"%tensorParametersA["tensorIdx"]])*Bitems)])
          #print("Total number mac items A(%u)\n",len(MacitemsReorder))
          #print("Total number ds items A(%u)\n"%(TotalnumLdsFetches))
          #print("number ds items A_B(%u .. %u)\n"%(len(AitemsToReorder),len(BitemsToReorder)))
          #reorder LDS fetches so order in which A+B fetches matches MAC blob
          #e.g 8x4 original order in DGEMM case A[0-1]A[2-3]A[4-5]A[6-7]B[0-1][2-3]
          #we want to re-order them into A[0-1][2-3]B[0-1]B[2-3];  In all other except
          #DGEMM type, number of LDS fetches <=4 so no need for LDS re-order
          if self.enable["LocalRead"] and TotalnumLdsFetches > 4:
            localReads = Code.Module()
            for iter in range(0,numGroups):
              if len(AitemsToReorder):
                localReads.addText(self.comment("local read a"))
                numLocalReads = roundUp((ldsItems[iter][0])/kernel["VectorWidth"])
                ##print("number ds items A(%u..%u)\n"%(iter,numLocalReads))
                for idx in range(0,numLocalReads):
                  localReads.addCode(AitemsToReorder[0])
                  AitemsToReorder = AitemsToReorder[1:]
              if len(BitemsToReorder):
                numLocalReads = roundUp(ldsItems[iter][1]/kernel["VectorWidth"])
                ##print("number ds items B(%u..%u)\n"%(iter,numLocalReads))
                localReads.addText(self.comment("local read b"))
                for items in range(0,numLocalReads):
                  localReads.addCode(BitemsToReorder[0])
                  BitemsToReorder = BitemsToReorder[1:]
              if iter == 0:
                waitCntItems[iter] = TotalnumLdsFetches - ((ldsItems[iter][0])/kernel["VectorWidth"] + (ldsItems[iter][1])/kernel["VectorWidth"])
              elif iter+1 != numGroups:
                waitCntItems[iter] = TotalnumLdsFetches - ((ldsItems[iter][0])/kernel["VectorWidth"] + (ldsItems[iter][1])/kernel["VectorWidth"] + waitCntItems[iter-1])
              else:
                waitCntItems[iter] = 0
              #print("Waitcnt(%u..%u)\n"%(iter,waitCntItems[iter]))
          for iter in range(0,numGroups):
            #Mac Code
            #place holder for future work Instruction class for generting MAC instruction
            #FMAInstruction = MacInstruction(globalParameters["CurrentISA"])
            subIterCode = Code.Module()
            waitCode = Code.Module()
            macIterCodeGrp = Code.Module()
            doOnce = False
            if self.enable["MAC"]:
              numMacItems = macItems[iter]
              for Items in range(0,numMacItems):
                macItem = MacitemsReorder.pop(0)
                macIterCodeGrp.addCode(macItem)
                ## add s_setprio 1 when AggressivePerfMode ==1 as second instruction for second-last blob macCode
                if (kernel["AggressivePerfMode"] and not doOnce):
                    macIterCodeGrp.addInst("s_setprio ","1","Raise priority while processing macs")
                    doOnce = True
              ## add s_setprio 0 when AggressivePerfMode ==1 as last instruction
              if (kernel["AggressivePerfMode"]):
                macIterCodeGrp.addInst("s_setprio ","0","Reset priority after macs")
            #print("ReadWaitcnt(%u..%u)\n"%(iter,waitCntItems[iter]))
            #print("WriteCodeCount(%d..%u)\n",u,self.perIterLocalWriteCode[u].count())
            if (iter == 0):
              if self.enable["Wait"]:
                #calculate lgkmcnt value including read+write for first iteration
                waitCntVal = waitCntItems[iter] + 1 if (self.perIterLocalWriteCode[u].count()>0) else waitCntItems[iter]
                # read + write instructions lgkmcnt (1=> for write)
                # build waitCnt using new lgkmcnt
                waitCode = Code.WaitCnt(self.version, waitCntVal,-1,"wait for prior local read")
              subIterCode = self.makeSubIterSchedule(kernel, localReads, \
                       u, pointerLWCode, pointerLRCode, waitCode, macIterCodeGrp)
            else:
                #last group only pointer + localWrite Code
              if self.enable["Wait"]:
                waitCode = Code.WaitCnt(self.version, waitCntItems[iter],-1,"wait for prior local read & local writes")
              subIterCode.addCode(waitCode)
              subIterCode.addCode(macIterCodeGrp)
            kl.append(subIterCode) # add scheduled "other", local reads, local writes
    kl.append(self.closeString(kernel))
    kl.append(self.openString(kernel))

    # close unrolled loop
    if expand:
      if not finalLoop:
        kl.append(self.comment3("Unrolled Loop - End %u/%u"%(lc+1, loopCopies)))
      else:
        kl.append(self.comment3("Unrolled Loop - End %u/%u (final)"%(lc+1, loopCopies)))

        # add wait for global read here canOptimizePreLoopLWVmcnt is true and DirectToVgpr is true
        # StoreCInUnroll does not require this wait because wait code is generated at the top of inner loop
        if kernel["PrefetchGlobalRead"] and self.canOptimizePreLoopLWVmcnt and (kernel["DirectToVgprA"] or kernel["DirectToVgprB"]) \
          and (not kernel["StoreCInUnroll"]):
          retStr = self.getWaitcntCodeForDirectToVgpr(kernel, localWriteEndIter, u=0, firstIter=False)
          kl.append(retStr)

    else:
      kl.append(self.comment3("Unrolled Loop - End"))

    oddLabel = lc == 0
    kl.append(self.closeLoop(kernel, self.unrollIdx, finalLoop, loopCopies, oddLabel=oddLabel))

  ##############################################################################
  # Kernel Body
  ##############################################################################
  def kernelBody( self, kernel, tensorParametersA, tensorParametersB ):
    expand = kernel["ExpandPointerSwap"]

    ####################################
    # Begin String
    kl = []
    kl.append(self.openString(kernel))

    ####################################
    # Function Prefix
    kl.append(self.comment3("Function Prefix"))
    kl.append(self.functionPrefix(kernel))

    ####################################
    # Function Signature
    ####################################
    kl.append(self.comment3("Begin Kernel"))
    kl.append(self.functionSignaturePrefix(kernel))

    beforeFunctionSignature = '\n'.join([str(x) for x in kl])
    kl = []

    kl.append(self.functionSignatureSuffix(kernel))
    kl.append(self.functionBegin(kernel))

    kl.append(self.comment3("Allocate Resources"))
    kl.append(self.allocateResources(kernel))

    if self.enable["PreLoop"]:
      ####################################
      # Local Read Addresses
      ####################################
      kl.append(self.comment3("Local Read Addresses"))

      # tile assignments
      kl.append(self.comment("local read addresses: tile assignments a/b"))
      kl.append(self.lraTileAssignment(kernel, tensorParametersA, tensorParametersB))

      # final offsets
      kl.append(self.comment("local read addresses: final offsets a"))
      kl.append(self.lraFinalOffset(kernel, tensorParametersA))
      kl.append(self.comment("local read addresses: final offsets b"))
      kl.append(self.lraFinalOffset(kernel, tensorParametersB))

      # declare addresses
      kl.append(self.comment("local read addresses: declare addresses a"))
      kl.append(self.lraDeclareAddresses(kernel, tensorParametersA))
      kl.append(self.comment("local read addresses: declare addresses b"))
      kl.append(self.lraDeclareAddresses(kernel, tensorParametersB))

    # doShadowInit performs initialization in the 'shadow' of the global mem prefetch
    self.doShadowInit = 0
    if kernel["PrefetchGlobalRead"]:
      if self.actualSummationLoops == 1:
        self.doShadowInit = 2 # 2 is both store setup and initC
      else:
        # can't do shadow initC with multiple summation since this resets the ValuC counters
        # on each unroll iteration.
        self.doShadowInit = 1 # 1 is just store setup

    if self.prefetchAcrossPersistent:
      # SrdC/D init before persistent loop
      kl.append(self.globalWriteWorkGroupInitBeforePersistentLoop(kernel))

      # init code for StoreCInUnroll (only once before persistent kernel loop)
      # SrdC/D init has to be done beforehand
      if self.storeCInUnroll:
        kl.append(self.initStoreCInUnroll(kernel))

      # first prefetch is outside persistent loop, subsequent prefetch will
      # be integrated into no-load-loop
      kl += self.setupNewTile(kernel, tensorParametersA, tensorParametersB, isPap=False, isOptNLL=False)
      kl.append(self.openPersistentLoop(kernel))
    else:
      # prefetch is inside persistent loop
      kl.append(self.openPersistentLoop(kernel))
      kl += self.setupNewTile(kernel, tensorParametersA, tensorParametersB, isPap=False, isOptNLL=False)

    pack = [ Code.Module() for i in range (self.numVgprBuffer+1) ]
    self.preLoopLocalWriteCode = None

    if kernel["PrefetchGlobalRead"]:
      if self.doShadowInit:
        kl.append(self.openShadowInit(kernel))
        # init code for StoreCInUnroll per each persistent kernel loop iteration
        # before generate new srdC/D (in globalWriteWorkGroupInit())
        if self.storeCInUnroll:
          kl.append(self.initStoreCInUnrollPerPersistentLoop(kernel))
        kl.append(self.globalWriteWorkGroupInit(kernel))
        # after genarating new SrdC,D, swap with backup values so that previous srdC,D is used in unroll loop for StoreCInUnroll
        if self.storeCInUnroll:
          kl.append(self.swapSrdCDandBackup(kernel))
        if self.doShadowInit == 2:
          kl.append(self.initC(kernel)) # initC while waiting for global reads
        kl.append(self.closeShadowInit(kernel))

      if self.enable["Wait"] and not self.canOptimizePreLoopLWVmcnt:
        kl.append(self.wait(kernel, tensorParametersA, tensorParametersB, 0, -1, -1, "8wait for global read"))
        # These cases loop back and run the prefetch loop again
        # we need an extra barrier to ensure that the ds_reads (either for SR or MFMA) from previous iteration
        # have finished before we generate the prefetch for the next summation index.
        if kernel["PersistentKernel"] or self.actualSummationLoops>1:
          kl.append( self.indent + self.syncStr + "// for PersistentKernel " + self.endLine )

      if self.enable["LocalWrite"]:
        # local write
        self.preLoopLocalWriteCode = self.preLoopLocalWriteDo(kernel, tensorParametersA, tensorParametersB)
        kl.append(self.preLoopLocalWriteCode)
        # swap local ptrs
        kl.append(self.comment("local write swap a"))
        kl.append(self.localWriteSwapOffsets(kernel, expand, tensorParametersA))
        kl.append(self.comment("local write swap b"))
        kl.append(self.localWriteSwapOffsets(kernel, expand, tensorParametersB))
        kl.append(self.localWriteInitPointers(kernel, tensorParametersA))
        kl.append(self.localWriteInitPointers(kernel, tensorParametersB))

      if kernel["PrefetchGlobalRead"] == 2:
        kl.append(self.openPrefetchGlobalRead2(kernel))
        if self.enable["GlobalRead"]:
          # if DirectToVgprA is enabled, swap the order of global read (B->A)
          tensorParameters1st = tensorParametersA
          tensorParameters2nd = tensorParametersB
          if kernel["DirectToVgprA"]:
            tensorParameters1st, tensorParameters2nd = tensorParameters2nd, tensorParameters1st
          kl.append(str(self.directToLdsM0Update(kernel, 1, tensorParameters1st)))
          kl.append(str(self.globalReadDo(kernel, 0, tensorParameters1st, 1)))
          kl.append(str(self.directToLdsM0Update(kernel, 1, tensorParameters2nd)))
          kl.append(str(self.globalReadDo(kernel, 0, tensorParameters2nd, 1)))

          # swap local ptrs again if DirectToLds is enabled
          if kernel["DirectToLdsA"]:
            kl.append(self.comment("local write swap a"))
            kl.append(self.localWriteSwapOffsets(kernel, expand, tensorParametersA))
            kl.append(self.localWriteInitPointers(kernel, tensorParametersA))
          if kernel["DirectToLdsB"]:
            kl.append(self.comment("local write swap b"))
            kl.append(self.localWriteSwapOffsets(kernel, expand, tensorParametersB))
            kl.append(self.localWriteInitPointers(kernel, tensorParametersB))

        kl.append(self.closePrefetchGlobalRead2(kernel))

      # prefetch-local
      if self.numItersPLR:
        # not generate wait for local write if LDS write code is not generated
        if self.enable["Wait"] and not kernel["NoLdsWriteCode"]:
          # TODO: need to check if we correctly checked-in the temp VGPR used for Int8 LocalWrite (uDu, PGR=2)
          kl.append(self.wait(kernel, tensorParametersA, tensorParametersB, -1, 0, -1, "0prefetch wait for local write"))
        if self.enable["Sync"]:
          kl.append(self.syncThreads(kernel))

        # in some cases need an extra copy of the LDS read with appropriate double buffer offsets
        if self.enable["LocalRead"]:
          for plrIdx in range(0, self.numItersPLR):
            pack[plrIdx] = Code.Module()
            # no matter EPS or PAP, only prefect local once per plrIdx
            # for espi in range(0, (self.prefetchAcrossPersistent and kernel["ExpandPointerSwap"])+1):
            for espi in range(0, 1):
              for iui in range(0,kernel["InnerUnroll"]):
                if iui*self.numReadsIterCoalescedA < kernel["InnerUnroll"] and (not kernel["DirectToVgprA"]) : # no local read code if DirectToVgpr is enabled
                  kl.append(self.comment("local read prefetch a"))
                  localReadCodeA, packCodeA = self.localReadDo(kernel, plrIdx*self.numIterPerCoalescedReadA, iui*self.numReadsIterCoalescedA, espi, tensorParametersA)
                  kl.append(localReadCodeA)
                  pack[plrIdx].addCode(packCodeA)
                if iui*self.numReadsIterCoalescedB < kernel["InnerUnroll"] and (not kernel["DirectToVgprB"]) : # no local read code if DirectToVgpr is enabled
                  kl.append(self.comment("local read prefetch b"))
                  localReadCodeB, packCodeB = self.localReadDo(kernel, plrIdx*self.numIterPerCoalescedReadB, iui*self.numReadsIterCoalescedB, espi, tensorParametersB)
                  kl.append(localReadCodeB)
                  pack[plrIdx].addCode(packCodeB)
                if iui*self.numReadsIterCoalescedA < kernel["InnerUnroll"] and (not kernel["DirectToVgprA"]) : # no local read code if DirectToVgpr is enabled
                  kl.append(self.comment("local read inc a"))
                  kl.append(self.localReadInc(kernel, iui, tensorParametersA))
                if iui*self.numReadsIterCoalescedB < kernel["InnerUnroll"] and (not kernel["DirectToVgprB"]) : # no local read code if DirectToVgpr is enabled
                  kl.append(self.comment("local read inc b"))
                  kl.append(self.localReadInc(kernel, iui, tensorParametersB))
      kl.append(self.closeSumAtLeastUnroll(kernel, prefetch=True, isOptNLL=False, isPap=False, isNGLL=False))

    loopCopies = 2 if expand else 1

    if self.useInitAccVgprOpt:
      # generate first iteration code for init accvgpr opt
      kl.append(self.comment3("First Unrolled Iter for InitAccVgprOpt - Begin"))
      # open loop without Label
      kl.append(self.openLoop(kernel, self.unrollIdx, noLabelGen=True))
      self.loopBody( kernel, tensorParametersA, tensorParametersB, kl, pack, 0, loopCopies, False, firstIter=True )

    # open unrolled summation loop
    kl.append(self.comment3("Unrolled Loop(s) - Begin"))
    # In StoreCInUnroll case, LoopCounter check code is already generated. We need only LoopBeginLabel
    beginLabelOnly = kernel["StoreCInUnroll"]
    kl.append(self.openLoop(kernel, self.unrollIdx, beginLabelOnly=beginLabelOnly))

    lcStart = 0
    if self.useInitAccVgprOpt:
      lcStart = 1 if loopCopies == 2 else 0
    for lc in range(0, loopCopies):
      loopIndex = lcStart + lc
      if loopIndex >= loopCopies:
        loopIndex -= loopCopies
      # loop body code generation
      finalLoop = lc == loopCopies - 1
      self.loopBody( kernel, tensorParametersA, tensorParametersB, kl, pack, loopIndex, loopCopies, finalLoop )

    kl.append(self.comment("Before NLL: Check VGPR.checkin for INT8 LW"))

    # swap local write, read again before noLoadLoop if PrefetchGlobalRead and DirectToLds is enabled
    # In DirectToLds enabled case, local write address is necessary for prefetch global read (for m0).
    # However, even exit with DirectToLds will not pass with this code (limitation).
    # So far, this code is to make odd exit case (i.e. k is multiple of 2*depthU) pass for DirectToVgpr
    if not self.useInitAccVgprOpt and kernel["PrefetchGlobalRead"] and self.enable["LocalWrite"] and kernel["ExpandPointerSwap"]:
      # local write for next iter, used to have local writes here
      if(kernel["DirectToLdsA"]):
        kl.append(self.comment("local write swap offsets a"))
        kl.append(self.localWriteSwapOffsets(kernel, expand, tensorParametersA))
      if(kernel["DirectToLdsB"]):
        kl.append(self.comment("local write swap offsets b"))
        kl.append(self.localWriteSwapOffsets(kernel, expand, tensorParametersB))
    # swap local read point for self.useInitAccVgprOpt
    if self.useInitAccVgprOpt and kernel["ExpandPointerSwap"]:
      if self.enable["LocalRead"]:
        kl.append(self.comment("local read swap offsets a"))
        kl.append(self.localReadSwapOffsets(kernel, expand, tensorParametersA))
        kl.append(self.comment("local read swap offsets b"))
        kl.append(self.localReadSwapOffsets(kernel, expand, tensorParametersB))

    if kernel["PrefetchGlobalRead"] == 2:
      # re-generate store code for StoreCInUnroll (odd=0,isLast=False))
      self.generateStoreCCodeInUnrollLoop(kernel, 0, isLast=False)
      isOptNLL=False
      isPap=False
      if self.prefetchAcrossPersistent:
        isOptNLL = True
        isPap = True
      kl += self.noLoadLoop(kernel, tensorParametersA, tensorParametersB, isOptNLL=isOptNLL, isPap=isPap, isNGLL=True, pack=pack)

    # re-generate store code for StoreCInUnroll (no increment code (isLast=True))
    # this should be after NGLL code for PGR=2
    odd = 1
    self.generateStoreCCodeInUnrollLoop(kernel, odd, isLast=True)

    # This "NoLoad" loop is a copy of the unroll loop but with global loads + LDS writes removed
    # doShadowInit is required since this pushes up the store SRD initialization before the NLL
    # OptNLL only allowed for single summation index  - for multiple summation we (currently)
    # execute the NLL inside each unroll iteration not just once at the end.
    if kernel["PrefetchGlobalRead"]:
      if not kernel["SuppressNoLoadLoop"]:

        firstNLLgenerated = False
        if kernel["KernelLanguage"] == "Assembly" and kernel["OptNoLoadLoop"] and \
           kernel["BufferLoad"] and kernel["BufferStore"] and self.doShadowInit and \
           kernel["LocalSplitU"]==1 and kernel["GlobalSplitU"] == 1 and \
           self.actualSummationLoops==1:

          firstNLLgenerated = True

          # two different noLoadLoops:
          # 1. OptNLL & PAP global-read interleaved (only for PAP=ON)
          # (2. OptNLL : No PAP global-read (For PAP=OFF, or PAP=ON but the last tile))
          #  -> this is unified with 1. global-read is invalidated at the last tile.
          # 3. OrdinaryNLL (Not Opt.)
          self.saveLocalPointers(kernel)
          # deepCopy packCode for OptNLL noLoadLoop
          deepCopyPack = copy.deepcopy(pack)
          # keep StoreCInUnroll related code for the next noLoadLoop
          if kernel["StoreCInUnroll"]:
            self.backupStoreCInUnrollRelatedCode()
          isPap = self.prefetchAcrossPersistent
          kl += self.noLoadLoop(kernel, tensorParametersA, tensorParametersB, isOptNLL=True, isPap=isPap, isNGLL=False, pack=deepCopyPack)
          self.restoreLocalPointers(kernel)
          # restore StoreCInUnroll related code
          if kernel["StoreCInUnroll"]:
            self.restoreStoreCInUnrollRelatedCode()

        # skip second NLL code if enableSingleNLLOpt
        if not (self.enableSingleNLLOpt and firstNLLgenerated):
          papMode = self.prefetchAcrossPersistent and kernel["PrefetchAcrossPersistentMode"] == 1
          kl += self.noLoadLoop(kernel, tensorParametersA, tensorParametersB, isOptNLL=False, isPap=papMode, isNGLL=False, pack=pack)
        else:
          # generate PrefetchGlobalLastIterEnd label
          kl.append(self.closeSumAtLeastUnroll(kernel, prefetch=False, isOptNLL=False, isPap=False, isNGLL=False))

        if kernel["StoreCInUnroll"]:
          # end process for StoreCInUnroll per PersistentLoop (NoOptNLL)
          kl.append(self.endProcessPersistentLoopforStoreCInUnrollNoOptNLL(kernel))

      # if PGR, last few iterations will have PLR,
      # and those PLR will not be used(register not checkIn) if without NoLoadLoop
      else:
        for i in range(self.numVgprBuffer):
          for item in list(pack[i].items()):
            if item.tempVgpr != None:
              self.vgprPool.checkIn(item.tempVgpr)
              item.tempVgpr = None

    if self.staggerU and self.actualSummationLoops>1:
      kl.append(self.comment("remove stagger offsets"))
      kl.append(self.removeStagger(kernel, tensorParametersA))
      kl.append(self.removeStagger(kernel, tensorParametersB))

    if not self.noTailLoop:
      ########################################
      # Tail Loop
      # PackSummationDims=1 requires that the tile slice does not cross DepthU
      # which means tail loop not needed.
      ########################################
      self.inTailLoop = True
      if kernel["LoopTail"] and not kernel["PackSummationDims"]:
        kl.append(self.comment3("Tail Loop"))

        # Update local write pointers in case the upcoming global reads are writing directly to LDS:
        if self.enable["LocalWrite"]:
          if kernel["PrefetchGlobalRead"]:
            kl.append(self.comment("local write reset offsets a"))
            kl.append(self.localWriteResetOffsets(kernel,  kernel["ExpandPointerSwap"], tensorParametersA))
            if kernel["ExpandPointerSwap"]:
              # reset local write offset in asm code as well
              kl.append(self.localWriteResetOffsets(kernel, False, tensorParametersA))
            kl.append(self.comment("local write reset offsets b"))
            kl.append(self.localWriteResetOffsets(kernel,  kernel["ExpandPointerSwap"], tensorParametersB))
            if kernel["ExpandPointerSwap"]:
              # reset local write offset in asm code as well
              kl.append(self.localWriteResetOffsets(kernel, False, tensorParametersB))

        if self.enable["GlobalRead"]:
          # tail: global read
          kl.append(self.calculateLoopNumIter(kernel, -1, False))
          if self.staggerU and self.actualSummationLoops==1:
            kl.append(self.comment("remove stagger offsets for tail loop"))
            kl.append(self.removeStagger(kernel, tensorParametersA))
            kl.append(self.removeStagger(kernel, tensorParametersB))

          # if DirectToVgprA is enabled, swap the order of global read (B->A)
          tensorParameters1st = tensorParametersA
          tensorParameters2nd = tensorParametersB
          tc1 = 'a'
          tc2 = 'b'
          if kernel["DirectToVgprA"]:
            tensorParameters1st, tensorParameters2nd = tensorParameters2nd, tensorParameters1st
            tc1, tc2 = tc2, tc1
          kl.append(self.comment("Update M0 for DTLDS"))
          tmpStr = str(self.directToLdsM0Update(kernel, 1, tensorParameters1st))
          tmpStr = tmpStr.replace("__placeholder__", str(0))
          kl.append(tmpStr)
          kl.append(self.comment("global read %s"%tc1))
          vregSetIdx = 0
          kl.append(str(self.globalReadDo(kernel, 2, tensorParameters1st, vregSetIdx)))
          kl.append(self.comment("Update M0 for DTLDS"))
          tmpStr = str(self.directToLdsM0Update(kernel, 1, tensorParameters2nd))
          tmpStr = tmpStr.replace("__placeholder__", str(0))
          kl.append(tmpStr)
          kl.append(self.comment("global read %s"%tc2))
          vregSetIdx = 0
          kl.append(str(self.globalReadDo(kernel, 2, tensorParameters2nd, vregSetIdx)))
        if self.enable["Wait"]:
          kl.append(self.wait(kernel, tensorParametersA, tensorParametersB, 0, -1, -1, "2wait for global read"))
        if self.enable["Sync"]:
          kl.append(self.syncThreads(kernel))

        # the following read/write addresses could be modified in recalcLocal(Read|Write)Addresses due to policy change
        self.oriLraA = None # back up original local read address vgpr
        self.oriLraB = None
        self.oriLwaA = None # back up original local write address vgpr
        self.oriLwaB = None
        for uDu in range(0, kernel["DepthULdsDivisor"]):
          if kernel.enabledSplitLDS:
            # change local write policy from interleave-K to fractional as tail loop
            # iterate LDS read address one unit of K at a time
            kl.append(self.comment("Recalc local write offsets"))
            kl.append(self.recalcLocalWriteAddresses(kernel, tensorParametersA, uDu))
            kl.append(self.recalcLocalWriteAddresses(kernel, tensorParametersB, uDu))
          if self.enable["Sync"]:
            if uDu > 0:
              kl.append(self.comment("sync before local write"))
              kl.append(self.syncThreads(kernel))
          if self.enable["LocalWrite"] and not kernel["NoLdsWriteCode"]:
            # tail: local write
            kl.append(self.localWriteInitPointers(kernel, tensorParametersA))
            kl.append(self.localWriteInitPointers(kernel, tensorParametersB))
            kl.append(self.comment("local write a"))
            tempLWCodeModA = self.localWriteDo(kernel, tensorParametersA, None)
            kl.append(tempLWCodeModA)
            kl.append(self.comment("local write b"))
            tempLWCodeModB = self.localWriteDo(kernel, tensorParametersB, None)
            kl.append(tempLWCodeModB)
          # change local read policy from wider local read to one unit of K at a time
          kl.append(self.comment("Recalc local read offsets"))
          kl.append(self.recalcLocalReadAddressesAB(kernel))
          if self.enable["Wait"]:
            # TODO: need to check if we correctly checked-in the temp VGPR used for Int8 LocalWrite (uDu, PGR=2)
            kl.append(self.wait(kernel, tensorParametersA, tensorParametersB, -1, 0, -1, "5wait for local write"))
          if self.enable["Sync"]:
            kl.append(self.syncThreads(kernel))
          #kl.append(self.dumpLds(kernel, 0, 8))

          # tail: re-init local read addresses
          if kernel["PrefetchGlobalRead"]:
            kl.append(self.comment("local read reset offsets a"))
            kl.append(self.localReadResetOffsets(kernel, tensorParametersA))
            kl.append(self.comment("local read reset offsets b"))
            kl.append(self.localReadResetOffsets(kernel, tensorParametersB))
            kl.append(self.comment("local read init pointers a"))
            kl.append(self.localReadInitPointers(kernel, tensorParametersA))
            kl.append(self.comment("local read init pointers b"))
            kl.append(self.localReadInitPointers(kernel, tensorParametersB))
          # tail: macs
          kl.append(self.comment("tail loop: macs"))
          kl.append(self.openLoop(kernel, -1, uDu if kernel.enabledSplitLDS else None))

          # Try to use InnerUnroll in the tail loop if allowed:
          KinInnerUnroll = kernel["InnerUnroll"]
          if kernel["EnableMatrixInstruction"]:
            KinInnerUnroll *= kernel["MatrixInstK"]

          tailLoopInnerUnroll = 1
          if (kernel["AssertSummationElementMultiple"] % KinInnerUnroll == 0):
            tailLoopInnerUnroll = kernel["InnerUnroll"]
          elif (kernel["LocalDotLayout"] > 1) and (kernel["InnerUnroll"] == kernel["LocalDotLayout"]):
            tailLoopInnerUnroll = kernel["InnerUnroll"]
          # need to unroll tail loop for the following cases
          mEnd = 1
          if kernel["DirectToVgprA"] or kernel["DirectToVgprB"]:
            mEnd = kernel["DepthU"]//KinInnerUnroll
          # need to cover different local read inc values for the following DirectToLds case
          elif kernel["DirectToLds"] and kernel["EnableMatrixInstruction"] and kernel["InnerUnroll"] == 1 and\
               (kernel["GlobalLoadVectorWidthA"] * self.bpeAB > 4 or kernel["GlobalLoadVectorWidthB"] * self.bpeAB > 4
                or kernel["ThreadSeparateGlobalReadA"] or kernel["ThreadSeparateGlobalReadB"]) and \
               kernel["DepthU"] // kernel["MatrixInstK"] > 2:
            mEnd = kernel["DepthU"] // (kernel["MatrixInstK"] * 2)

          for mValue in range(mEnd):
            pack[0] = Code.Module()
            for iui in range(0, tailLoopInnerUnroll):
              if self.enable["LocalRead"]:
                doReadA = not kernel["DirectToVgprA"]
                doReadB = not kernel["DirectToVgprB"]
                if doReadA:
                  # Reading 16-bit data from LDS requires packing when ECC enabled
                  kl.append(self.comment("local read a"))
                  localReadCodeA, packCodeA = self.localReadDo(kernel, 0, iui, 0, tensorParametersA)
                  kl.append(localReadCodeA)
                  pack[0].addCode(packCodeA)
                if doReadB:
                  kl.append(self.comment("local read b"))
                  localReadCodeB, packCodeB = self.localReadDo(kernel, 0, iui, 0, tensorParametersB)
                  kl.append(localReadCodeB)
                  pack[0].addCode(packCodeB)
                # adjustment for DirectToLds case
                iuiParam = iui + tailLoopInnerUnroll * mValue
                if doReadA:
                  kl.append(self.comment("local read inc a"))
                  kl.append(self.localReadInc(kernel, iuiParam, tensorParametersA))
                if doReadB:
                  kl.append(self.comment("local read inc b"))
                  kl.append(self.localReadInc(kernel, iuiParam, tensorParametersB))
            if self.enable["Wait"]:
              kl.append(self.wait(kernel, tensorParametersA, tensorParametersB, -1, -1, 0, "4wait for local read"))

            if kernel["EnableMatrixInstruction"]:
              kl.append(pack[0])
              # vgpr.checkin for all the checked-out vgpr in LocalRead
              for item in list(pack[0].items()):
                if item.tempVgpr != None:
                  self.vgprPool.checkIn(item.tempVgpr)
                  item.tempVgpr = None
              pack[0] = Code.Module()

            if self.enable["MAC"]:
              if kernel["EnableMatrixInstruction"]:
                # DirectToVgpr is not applicable for tail loop
                vregSetIdxMFMA = 0
                kl.append(self.mfmaIter(kernel, 0, tailLoopInnerUnroll, vregSetIdxMFMA, False, True))
              else:
                kl.append(self.macIter(kernel, 0, tailLoopInnerUnroll, True, True))

            finalLoop = mValue == mEnd - 1
            kl.append(self.closeLoop(kernel, -1, finalLoop, loopCopies, uDu if kernel.enabledSplitLDS else None))
      # always emit the skip-tail-loop label
      kl.append(self.closeLoop(kernel, -1, None, loopCopies, emitEndLabelOnly=True))
      # tail: close
      self.inTailLoop = False

    # extra summation loops: global increment and close
    for i in reversed(range(self.otherSummationLoops)):
      kl.append(self.comment("global read inc AB"))
      kl.append(self.globalReadIncrementAB(kernel, i, 0))
      kl.append(self.closeLoop(kernel, i, True, loopCopies))

    if self.prefetchAcrossPersistent and kernel["PrefetchAcrossPersistentMode"] != 1:
      kl.append(str(self.openPrefetchAcrossPersistent(kernel, isOptNLL=False)))
      kl += self.setupNewTile(kernel, self.tPA, self.tPB, isPap=True, isOptNLL=False)
      kl.append(str(self.closePrefetchAcrossPersistent(kernel, isOptNLL=False)))

    kl.append(self.endSummation(kernel))
    if self.enable["PostLoop"]:
      if not self.doShadowInit:
        kl.append(self.globalWriteWorkGroupInit(kernel))

      ####################################
      # Shift Vector Components
      ####################################
      if kernel["EdgeType"] == "ShiftPtr":
        # GuaranteeNoPartial means each component in the vector loads is always valid.  In this case we
        # don't need the unshift code

        # shift vector components d0
        if not kernel["GuaranteeNoPartialA"] and self.readTileDimVectorA:
          kl.append(self.comment("shift vector components d0"))
          kl.append(self.shiftVectorComponents(kernel, tensorParametersA))

        # shift vector components d1, for MFMA version, B never entered this
        if not kernel["GuaranteeNoPartialB"] and self.readTileDimVectorB:
          kl.append(self.comment("shift vector components d1"))
          kl.append(self.shiftVectorComponents(kernel, tensorParametersB))

      # complex declare tmp registers
      kl.append(self.complexDeclareTmpRegisters(kernel))

      ####################################
      # LocalSplitU reduction
      ####################################
      #if kernel["NumThreads"]%kernel["MacroTile0"] == 0:
      if kernel["LocalSplitU"] > 1:
        kl.append(self.comment3("LocalSplitU Reduction"))
        if self.enable["Sync"]:
          kl.append(self.syncThreads(kernel))

        # LocalSplitU: local write
        kl.append(self.comment("LocalSplitU: local write"))
        kl.append(self.localSplitULocalWrite(kernel))

        # LocalSplitU: local read
        kl.append(self.comment("LocalSplitU: local read"))
        kl.append(self.localSplitULocalRead(kernel))

        # LocalSplitU: local read
        kl.append(self.comment("LocalSplitU: reduction"))
        kl.append(self.localSplitUReduction(kernel))

        # LocalSplitU: global write indices
        kl.append(self.comment("LocalSplitU: global write indices"))
        kl.append(self.localSplitUGlobalWriteIndices(kernel))

        # LocalSplitU: global write
        kl.append(self.comment("LocalSplitU: global write"))
        kl.append(self.localSplitUGlobalWrite(kernel))


      else:
        ####################################
        # NOT LocalSplitU
        ####################################

        # global write indices
        kl.append(self.comment("not-LocalSplitU: global write indices"))
        kl.append(self.notLocalSplitUGlobalWriteIndices(kernel))

        # global write
        kl.append(self.comment("not-LocalSplitU: global write"))
        kl.append(self.notLocalSplitUGlobalWrite(kernel))

    # After we know the #-of-globalwrite instructions, we can go back to replace the pre-loop LW vmcnt
    # Note that currently, this code-replacement occurs only when PrefetchAcrossPersistent=True,
    # otherwise, nothing is changed
    if self.preLoopLocalWriteCode != None:
      self.replacePreLoopLWVmcnt(kernel)

    # function suffix
    kl.append(self.functionEnd(kernel, True))
    kl.append(self.functionSuffix(kernel))

    kl.append(self.closeString(kernel))
    kStr = '\n'.join([str(x) for x in kl])
    afterFunctionSignature = kStr

    error = self.overflowedResources

    # function signature last since it needs to know how many gprs were actually used
    kStr = beforeFunctionSignature + self.functionSignature(kernel) + afterFunctionSignature
    return (error,kStr)



  ##############################################################################
  #
  #   Functions to Write Kernel Segments
  #
  ##############################################################################

  def comment1(self, text):
    """
    single line comment
    """

    s = ""
    s += self.indent
    s += self.commentPrefix
    s += " %s " % text
    s += self.commentSuffix
    s += self.endLine
    return s

  def comment(self, text):
    """
    comment with prior newline
    """

    s = ""
    s += self.endLine
    s += self.comment1(text)
    return s

  def comment3(self, text):
    """
    3-line comment
    """

    s = ""
    s += self.endLine
    s += self.indent
    s += self.commentPrefix
    s += self.commentHR
    s += self.commentSuffix
    s += self.endLine

    for line in text.split("\n"):
      s += self.indent
      s += self.commentPrefix
      s += " %-38s " % line
      s += self.commentSuffix
      s += self.endLine

    s += self.indent
    s += self.commentPrefix
    s += self.commentHR
    s += self.commentSuffix
    s += self.endLine
    return s

  ##############################################################################
  # Init Kernel
  ##############################################################################
  @abc.abstractmethod
  def initKernel(self, kernel, tensorParametersA, tensorParametersB ):

    self.staggerU = kernel["StaggerU"] and (kernel["KernelLanguage"]=="Source" or kernel["BufferLoad"])
    self.tPA = tensorParametersA
    self.tPB = tensorParametersB

    # Only assembly supports scheduling
    self.canSchedule = (kernel["KernelLanguage"] == "Assembly")

    if self.canSchedule:
      self.scheduleGlobalRead = kernel["ScheduleGlobalRead"] \
          and kernel["PrefetchGlobalRead"]
    else:
      self.scheduleGlobalRead = 0

    if self.canSchedule:
      self.scheduleLocalWrite = kernel["ScheduleLocalWrite"] \
          and kernel["PrefetchGlobalRead"]
    else:
      self.scheduleLocalWrite = 0

    if self.canSchedule:
      self.scheduleIterAlg = kernel["ScheduleIterAlg"]
    else:
      self.scheduleIterAlg = 0

    self.prefetchAcrossPersistent = kernel["PrefetchAcrossPersistent"]

    self.storeCInUnroll = kernel["StoreCInUnroll"]

    self.noTailLoop = kernel["NoTailLoop"]

    self.actualSummationLoops = 1 if kernel["PackSummationDims"] else kernel["ProblemType"]["NumIndicesSummation"]
    self.otherSummationLoops  = self.actualSummationLoops-1
    self.otherSummations      = kernel["ProblemType"]["NumIndicesSummation"]-1 # not loops but summations vars

    # If 0, unroll loop is decremented by 1 each iteration and scaled by DEPTHU when number of summation elements
    # is required.
    # if 1, unroll loop starts at 0 and increments by DEPTHU.  No scaling is required.  This mode is required
    # for pack summation dims, but can also be used independently and this is useful for isolation and testing.
    self.unrollIncIsDepthU = kernel["UnrollIncIsDepthU"] or kernel["PackSummationDims"] \
                             or bool(kernel["ProblemType"]["ZeroPadA"]) or bool(kernel["ProblemType"]["ZeroPadB"])

    # turn on parts of prefetchAcrossPersistent code for testing
    self.prefetchAcrossPersistent0 = 0 or self.prefetchAcrossPersistent
    self.canOptimizePreLoopLWVmcnt = kernel["OptPreLoopVmcnt"]

    self.enable = {}
    dkp = kernel["DisableKernelPieces"]
    # Can locally overrid these by changing True to False or
    # use the DisableKernelPieces for a quick search (see Common.py)
    self.enable["PreLoop"]        = True and not (dkp>0 and dkp >= 7) and not dkp == -7
    self.enable["GlobalRead"]     = True and not (dkp>0 and dkp >= 2) and not dkp == -2
    self.enable["GlobalReadInc"]  = True and not (dkp>0 and dkp >= 7) and not dkp == -7
    self.enable["LocalWrite"]     = True and not (dkp>0 and dkp >= 3) and not dkp == -3
    self.enable["LocalRead"]      = True and not (dkp>0 and dkp >= 4) and not dkp == -4
    self.enable["Wait"]           = True and not (dkp>0 and dkp >= 5) and not dkp == -5
    self.enable["Sync"]           = True and not (dkp>0 and dkp >= 5) and not dkp == -5
    self.enable["MAC"]            = True and not (dkp>0 and dkp >= 6) and not dkp == -6
    self.enable["PostLoop"]       = True and not (dkp>0 and dkp >= 1) and not dkp == -1

    #if dkp:
    #  print "\nKernelWriter enable:", self.enable

    if kernel["KernelLanguage"] == "Source":
      self.language = globalParameters["RuntimeLanguage"]
    else:
      self.language = "ASM"
    self.indexChars = []
    for i in range(0, len(globalParameters["IndexChars"])):
      self.indexChars.append(globalParameters["IndexChars"][i])
    self.indexChars[kernel["ProblemType"]["Index0"]] \
        = "0" + self.indexChars[kernel["ProblemType"]["Index0"]]
    self.indexChars[kernel["ProblemType"]["Index1"]] \
        = "1" + self.indexChars[kernel["ProblemType"]["Index1"]]
    self.unrollIdx = kernel["ProblemType"]["NumIndicesSummation"]-1
    self.unrollChar = \
        self.indexChars[kernel["ProblemType"]["IndicesSummation"][\
        self.unrollIdx]]
    self.tileChar0 = self.indexChars[kernel["ProblemType"]["Index0"]]
    self.tileChar1 = self.indexChars[kernel["ProblemType"]["Index1"]]
    self.tileCharA = self.tileChar0 if (kernel["ProblemType"]["Tensor0"]==0) \
        else self.tileChar1
    self.tileCharB = self.tileChar0 if (kernel["ProblemType"]["Tensor0"]==1) \
        else self.tileChar1

    """
    if kernel["ProblemType"]["Tensor0"]==0:
      kernel["ThreadTileA"] = kernel["ThreadTile0"]
      kernel["ThreadTileB"] = kernel["ThreadTile1"]
      kernel["SubGroupA"] = kernel["SubGroup0"]
      kernel["SubGroupB"] = kernel["SubGroup1"]
      kernel["MacroTileA"] = kernel["MacroTile0"]
      kernel["MacroTileB"] = kernel["MacroTile1"]
    else:
      kernel["ThreadTileB"] = kernel["ThreadTile0"]
      kernel["ThreadTileA"] = kernel["ThreadTile1"]
      kernel["SubGroupB"] = kernel["SubGroup0"]
      kernel["SubGroupA"] = kernel["SubGroup1"]
      kernel["MacroTileB"] = kernel["MacroTile0"]
      kernel["MacroTileA"] = kernel["MacroTile1"]
    """

    ########################################
    # derrive global-read-coalesce-group from local in config
    """
    if kernel["ProblemType"]["TLUA"]:
      self.globalReadCoalesceGroupA = kernel["LocalWriteCoalesceGroupA"]
    else:
      self.globalReadCoalesceGroupA = not kernel["LocalWriteCoalesceGroupA"]
    if kernel["ProblemType"]["TLUB"]:
      self.globalReadCoalesceGroupB = kernel["LocalWriteCoalesceGroupB"]
    else:
      self.globalReadCoalesceGroupB = not kernel["LocalWriteCoalesceGroupB"]
    """
    self.globalReadCoalesceGroupA = kernel["GlobalReadCoalesceGroupA"]
    self.globalReadCoalesceGroupB = kernel["GlobalReadCoalesceGroupB"]
    """
    # original parameters
    NumLoadsCoalesced -> NumLoadsPerpendicular
    # new intermediate parameters
    numReadsTile # nrt
    numReadsUnroll # nru
    numReadsTileVecComp # nrvt
    numReadsUnrollVecComp # nrvu
    numWritesCoal # nwc
    numWritesPerp # nwp
    numWritesCoalVecComp # nwvc
    numWritesPerpVecComp # nwvp
    readTileComponents (based on grcv)
    readTileVector
    """

    # TODO load sub-vector
    vwa = kernel["GlobalLoadVectorWidthA"]
    vwb = kernel["GlobalLoadVectorWidthB"]

    # allow LocalReadVectorWidthB for TLUB + MatrixInstruction
    self.allowLRVWBforTLUandMI = kernel["allowLRVWBforTLUandMI"]

    self.numItersPLR = kernel["PrefetchLocalRead"]%kernel["LoopIters"]
    self.numVgprBuffer = kernel["LoopIters"] if kernel["PrefetchLocalRead"] > kernel["LoopIters"] else kernel["PrefetchLocalRead"]
    # merge N iteration's read into 1 iteration if can't coalesce read
    # ex, A can coalesce read, B can't
    # MergeRead 0: ds_readAx1 ds_readBx1 mfma | ds_readAx1 ds_readBx1 mfma | => ds_readAx2 ds_readBx1 mfma | ds_readBx1 mfma |
    # MergeRead 1: ds_readAx1 ds_readBx1 mfma | ds_readAx1 ds_readAx1 mfma | => ds_readAx2 ds_readBx1 ds_readBx1 mfma | mfma |
    MergeRead = 0
    if not kernel["ProblemType"]["TLUA"] or MergeRead or self.allowLRVWBforTLUandMI:
      if kernel["DirectToVgprA"]:
        # DirectToVgprA case, ignore LocalReadVectorWidth and use GlobalLoadVectorWidth instead.
        self.lrvwA = vwa
      else:
        self.lrvwA = kernel["LocalReadVectorWidth"]
    else:
      if kernel["EnableMatrixInstruction"]:
        self.lrvwA = kernel["MIInputPerThread"]
      else:
        self.lrvwA = 1
    if not kernel["ProblemType"]["TLUB"] or MergeRead or self.allowLRVWBforTLUandMI:
      if kernel["DirectToVgprB"]:
        # DirectToVgprB case, ignore LocalReadVectorWidth and use GlobalLoadVectorWidth instead.
        self.lrvwB = vwb
      else:
        self.lrvwB = kernel["LocalReadVectorWidth"]
    else:
      if kernel["EnableMatrixInstruction"]:
        self.lrvwB = kernel["MIInputPerThread"]
      else:
        self.lrvwB = 1

    # DirectToVgprB + VW > 1 case, set lrvwB = VW
    # DirectToVgprB case, global load data directly goes to Vgpr.
    # If VW=2, it means lrwvB is 2.
    if kernel["DirectToVgprB"] and kernel["VectorWidth"] > 1:
      self.lrvwB = kernel["VectorWidth"]
    # DirectToVgpr + TLU=False case
    # set lrvw = VW
    self.vgprValuDouble = False
    #if kernel["DirectToVgprA"] and kernel["PrefetchLocalRead"] > 1 and (not kernel["ProblemType"]["TLUA"]) and kernel["VectorWidth"] > 1:
    if kernel["DirectToVgprA"] and (not kernel["ProblemType"]["TLUA"]) and (not kernel["ProblemType"]["TLUB"]) or \
       kernel["DirectToVgprB"] and (not kernel["ProblemType"]["TLUB"]) and (not kernel["ProblemType"]["TLUA"]):
      self.lrvwA = max(self.lrvwA, self.lrvwB)
      self.lrvwB = self.lrvwA
      if kernel["DepthU"] // kernel["MatrixInstK"] <= 2 and self.lrvwA > 1:
        # need to double vgprValu to avoid local read overwritting vgprValu registers
        self.vgprValuDouble = True
 
    # Wider LocalRead
    if kernel["EnableMatrixInstruction"]:
      self.numReadsIterCoalescedA = self.lrvwA // kernel["MIInputPerThread"]
      self.numReadsIterCoalescedB = self.lrvwB // kernel["MIInputPerThread"]
      if self.allowLRVWBforTLUandMI:
        if kernel["ProblemType"]["TLUA"]:
          self.numReadsIterCoalescedA = 1
        self.numReadsIterCoalescedB = 1
    else:
      self.numReadsIterCoalescedA  = 1
      self.numReadsIterCoalescedB  = 1
    self.numIterPerCoalescedReadA = max(1,self.numReadsIterCoalescedA//kernel["InnerUnroll"])
    self.numIterPerCoalescedReadB = max(1,self.numReadsIterCoalescedB//kernel["InnerUnroll"])

    if kernel["ScheduleIterAlg"] == 3 or kernel["ScheduleIterAlg"] == 2:
      self.numMfmaPerIter = kernel["MIWaveTile"][0] * kernel["MIWaveTile"][1] * kernel["InnerUnroll"]
      if kernel["ProblemType"]["DataType"].isComplex(): self.numMfmaPerIter *= 4

    ########################################
    # read vectors or vector components
    ########################################
    if kernel["ProblemType"]["TLUA"]: # NT no transpose
      self.numReadsTileA = kernel["NumLoadsCoalescedA"]
      self.numReadsUnrollA = kernel["NumLoadsPerpendicularA"]
      if kernel["GlobalReadCoalesceVectorA"]: # read vectors
        self.readTileDimComponentsA = False # Vector
        self.readTileDimVectorA = True # Vector
        self.readUnrollDimComponentsA = False # Scalar
        self.readUnrollDimVectorA = False # Scalar
        self.numReadsTileVecCompA = vwa
        self.numReadsUnrollVecCompA = 1
      else: # read components, write components
        self.readTileDimComponentsA = False # Scalar
        self.readTileDimVectorA = False # Scalar
        self.readUnrollDimComponentsA = kernel["VectorWidth"] > 1 # Components
        self.readUnrollDimVectorA = False # Components
        self.numReadsTileVecCompA = 1
        self.numReadsUnrollVecCompA = vwa
    else: # TN yes transpose
      self.numReadsTileA = kernel["NumLoadsPerpendicularA"]
      self.numReadsUnrollA = kernel["NumLoadsCoalescedA"]
      if kernel["GlobalReadCoalesceVectorA"]: # read vector
        self.readTileDimComponentsA = False # Scalar
        self.readTileDimVectorA = False # Scalar
        self.readUnrollDimComponentsA = False # Vector
        self.readUnrollDimVectorA = True # Vector
        self.numReadsUnrollVecCompA = vwa
        self.numReadsTileVecCompA = 1
      else: # read components, write vectors
        self.readTileDimComponentsA = kernel["VectorWidth"] > 1 # Components
        self.readTileDimVectorA = False # Components
        self.readUnrollDimComponentsA = False # Scalar
        self.readUnrollDimVectorA = False # Scalar
        # NEW
        self.numReadsUnrollVecCompA = 1
        self.numReadsTileVecCompA = vwa

    ########################################
    # write vectors or vector components
    ########################################
    if kernel["ProblemType"]["TLUA"] != kernel["UnrollMajorLDSA"]: # NT no transpose
      self.numWritesCoalA = kernel["NumLoadsCoalescedA"]
      if kernel["GlobalReadCoalesceVectorA"]: # read vectors, write vectors
        self.writeUnrollDimComponentsA = False # Scalar
        if kernel["LocalDotLayout"]>1:
          self.writeTileDimComponentsA = kernel["GlobalReadVectorWidth"] > 1 # Components
          writeCoal = False
        else:
          self.writeTileDimComponentsA = False # Vector
          writeCoal = True
      else: # read components, write components
        self.writeTileDimComponentsA = False # Scalar
        self.writeUnrollDimComponentsA = kernel["GlobalReadVectorWidth"] > 1 # Components
        writeCoal = False
    else: # TN yes transpose
      self.numWritesCoalA = kernel["NumLoadsPerpendicularA"]
      if kernel["GlobalReadCoalesceVectorA"]: # read vector, write components
        self.writeUnrollDimComponentsA = False # Scalar
        if kernel["LocalDotLayout"]>1:
          self.writeTileDimComponentsA = kernel["GlobalReadVectorWidth"] > 1 # Components
          # LDS writes with LDL>1 will never be coalesced
          writeCoal = False
        else:
          self.writeTileDimComponentsA = kernel["GlobalReadVectorWidth"] > 1 # Components
          writeCoal = False
      else: # read components, write vectors
        self.writeTileDimComponentsA = False # Vector
        self.writeUnrollDimComponentsA = False # Scalar
        writeCoal = True

    # writeCoal indicates writes should be done in the coal dim
    # else in perp
    if writeCoal:
      self.numWritesCoalVecCompA = vwa // kernel["DepthULdsDivisor"]
      self.numWritesPerpVecCompA = 1
    else:
      self.numWritesCoalVecCompA = 1
      self.numWritesPerpVecCompA = vwa
    del writeCoal

    self.numReadVectorComponentsA = kernel["GlobalLoadVectorWidthA"] \
        if (self.readTileDimComponentsA \
        or self.readUnrollDimComponentsA) else 1
    # self.numWriteVectorComponentsA = kernel["GlobalLoadVectorWidthA"] \
    #     if (self.writeTileDimComponentsA \
    #     or self.writeUnrollDimComponentsA) else 1
    # self.numReadTileVectorComponentsA = kernel["GlobalLoadVectorWidthA"] \
    #     if self.readTileDimComponentsA else 1 # for branches
    # convert tile/unroll to para/perp
    if kernel["ProblemType"]["TLUA"]:
      self.numReadsCoalVecCompA = self.numReadsTileVecCompA
      self.numReadsPerpVecCompA = self.numReadsUnrollVecCompA
      # for asm
      self.readCoalescedComponentsA  = self.readTileDimComponentsA
      # self.readCoalescedVectorA      = self.readTileDimVectorA  # Not Used
      self.readPerpendicularComponentsA  = self.readUnrollDimComponentsA
      # self.readPerpendicularVectorA      = self.readUnrollDimVectorA  # Not Used
    else:
      self.numReadsCoalVecCompA = self.numReadsUnrollVecCompA
      self.numReadsPerpVecCompA = self.numReadsTileVecCompA
      # for asm
      self.readCoalescedComponentsA  = self.readUnrollDimComponentsA
      # self.readCoalescedVectorA      = self.readUnrollDimVectorA  # Not Used
      self.readPerpendicularComponentsA  = self.readTileDimComponentsA
      # self.readPerpendicularVectorA      = self.readTileDimVectorA  # Not Used

    ####################################
    # read vectors or vector components b
    ####################################
    if kernel["ProblemType"]["TLUB"]: # NT no transpose
      self.numReadsTileB = kernel["NumLoadsCoalescedB"]
      self.numReadsUnrollB = kernel["NumLoadsPerpendicularB"]
      if kernel["GlobalReadCoalesceVectorB"]:
        self.readTileDimComponentsB = False # Vector
        self.readTileDimVectorB = True # Vector
        self.readUnrollDimComponentsB = False # Scalar
        self.readUnrollDimVectorB = False # Scalar
        self.numReadsTileVecCompB = vwb
        self.numReadsUnrollVecCompB = 1
      else:
        self.readTileDimComponentsB = False # Scalar
        self.readTileDimVectorB = False # Scalar
        self.readUnrollDimComponentsB = kernel["VectorWidth"] > 1 # Components
        self.readUnrollDimVectorB = False # Components
        # NEW
        self.numReadsTileVecCompB = 1
        self.numReadsUnrollVecCompB = vwb
    else: # TN yes transpose
      self.numReadsTileB = kernel["NumLoadsPerpendicularB"]
      self.numReadsUnrollB = kernel["NumLoadsCoalescedB"]
      if kernel["GlobalReadCoalesceVectorB"]:
        self.readTileDimComponentsB = False # Scalar
        self.readTileDimVectorB = False # Scalar
        self.readUnrollDimComponentsB = False # Vector
        self.readUnrollDimVectorB = True # Vector
        self.numReadsUnrollVecCompB = vwb
        self.numReadsTileVecCompB = 1
      else:
        self.readTileDimComponentsB = kernel["VectorWidth"] > 1 # Components
        self.readTileDimVectorB = False # Components
        self.readUnrollDimComponentsB = False # Scalar
        self.readUnrollDimVectorB = False # Scalar
        # NEW
        self.numReadsUnrollVecCompB = 1
        self.numReadsTileVecCompB = vwb

    ####################################
    # write vectors or vector components b
    ####################################
    if kernel["ProblemType"]["TLUB"] != kernel["UnrollMajorLDSB"]: # NT no transpose
      self.numWritesCoalB = kernel["NumLoadsCoalescedB"]
      if kernel["GlobalReadCoalesceVectorB"]:
        self.writeUnrollDimComponentsB = False # Vector
        if kernel["LocalDotLayout"]>1:
          self.writeTileDimComponentsB = kernel["GlobalReadVectorWidth"] > 1 # Components
          writeCoal = False
        else:
          self.writeTileDimComponentsB = False # Vector
          writeCoal = True
      else:
        self.writeTileDimComponentsB = False # Scalar
        self.writeUnrollDimComponentsB = kernel["GlobalReadVectorWidth"] > 1 # Components
        # NEW
        self.numWritesCoalVecCompB = 1
        self.numWritesPerpVecCompB = vwb
    else: # TN yes transpose
      self.numWritesCoalB = kernel["NumLoadsPerpendicularB"]
      if kernel["GlobalReadCoalesceVectorB"]:
        self.writeUnrollDimComponentsB = False
        if kernel["LocalDotLayout"]>1:
          self.writeTileDimComponentsB = kernel["GlobalReadVectorWidth"] > 1 # Components
          # LDS writes with LDL>1 will never be coalesced
          writeCoal = False
        else:
          self.writeTileDimComponentsB = kernel["GlobalReadVectorWidth"] > 1 # Components
          writeCoal = False
      else:
        self.writeTileDimComponentsB = False # Vector
        self.writeUnrollDimComponentsB = False # Scalar
        # NEW
        self.numWritesCoalVecCompB = vwb
        self.numWritesPerpVecCompB = 1

    # writeCoal indicates writes should be done in the coal dim
    # else in perp
    if writeCoal:
      self.numWritesCoalVecCompB = vwb // kernel["DepthULdsDivisor"]
      self.numWritesPerpVecCompB = 1
    else:
      self.numWritesCoalVecCompB = 1
      self.numWritesPerpVecCompB = vwb
    del writeCoal

    # numReadVectorComponentsB is refers to global reads
    self.numReadVectorComponentsB = kernel["GlobalLoadVectorWidthB"] \
        if (self.readTileDimComponentsB \
        or self.readUnrollDimComponentsB) else 1
    # self.numWriteVectorComponentsB = kernel["GlobalLoadVectorWidthB"] \
    #     if (self.writeTileDimComponentsB \
    #     or self.writeUnrollDimComponentsB) else 1
    # self.numReadTileVectorComponentsB = kernel["GlobalLoadVectorWidthB"] \
    #     if self.readTileDimComponentsB else 1 # for branches
    # convert tile/unroll to para/perp
    if kernel["ProblemType"]["TLUB"]:
      self.numReadsCoalVecCompB = self.numReadsTileVecCompB
      self.numReadsPerpVecCompB = self.numReadsUnrollVecCompB
      # for asm
      self.readCoalescedComponentsB  = self.readTileDimComponentsB
      # self.readCoalescedVectorB      = self.readTileDimVectorB  # Not Used
      self.readPerpendicularComponentsB  = self.readUnrollDimComponentsB
      # self.readPerpendicularVectorB      = self.readUnrollDimVectorB  # Not Used
    else:
      self.numReadsCoalVecCompB = self.numReadsUnrollVecCompB
      self.numReadsPerpVecCompB = self.numReadsTileVecCompB
      # for asm
      self.readCoalescedComponentsB  = self.readUnrollDimComponentsB
      # self.readCoalescedVectorB      = self.readUnrollDimVectorB  # Not Used
      self.readPerpendicularComponentsB  = self.readTileDimComponentsB
      # self.readPerpendicularVectorB      = self.readTileDimVectorB  # Not Used

    ####################################
    # load sizes
    """
    if kernel["ProblemType"]["TLUA"]:
      kernel["LSCA"] = kernel["MacroTileA"] \
          / kernel["NumLoadsCoalescedA"]
      kernel["LSPA"] = kernel["DepthU"] / kernel["NumLoadsPerpendicularA"]
    else:
      kernel["LSCA"] = kernel["DepthU"] / kernel["NumLoadsCoalescedA"]
      kernel["LSPA"] = kernel["MacroTileA"] \
          / kernel["NumLoadsPerpendicularA"]
    if kernel["ProblemType"]["TLUB"]:
      kernel["LSCB"] = kernel["MacroTileB"] \
          / kernel["NumLoadsCoalescedB"]
      kernel["LSPB"] = kernel["DepthU"] / kernel["NumLoadsPerpendicularB"]
    else:
      kernel["LSCB"] = kernel["DepthU"] / kernel["NumLoadsCoalescedB"]
      kernel["LSPB"] = kernel["MacroTileB"] \
          / kernel["NumLoadsPerpendicularB"]
    kernel["LVCA"] = kernel["LSCA"] / kernel["GlobalLoadVectorWidthA"]
    kernel["LVCB"] = kernel["LSCB"] / kernel["GlobalLoadVectorWidthB"]
    kernel["LVPA"] = kernel["LSPA"] / kernel["GlobalLoadVectorWidthA"]
    kernel["LVPB"] = kernel["LSPB"] / kernel["GlobalLoadVectorWidthB"]
    """

    self.getTensorParameters(tensorParametersA, kernel, True)
    self.getTensorParameters(tensorParametersB, kernel, False)

    tensorParametersA["PackBatchDims"] = kernel["PackBatchDims"] if kernel["PackBatchDims"] & 0x1 else 0
    tensorParametersB["PackBatchDims"] = kernel["PackBatchDims"] if kernel["PackBatchDims"] & 0x2 else 0
    tensorParametersA["PackedIndices"] = kernel["PackedC%uIndicesX"%self.tPA["tile01Idx"]]
    tensorParametersB["PackedIndices"] = kernel["PackedC%uIndicesX"%self.tPB["tile01Idx"]]

    # condition(s) to enable init accvgpr opt (initialize only the last set of accvgpr instead of whole accvgpr)
    self.useInitAccVgprOpt = False
    # enable for the following conditions
    if kernel["StoreCInUnroll"]:
      self.useInitAccVgprOpt = True
    if (kernel["DirectToVgprA"] or kernel["DirectToVgprB"]):
      self.useInitAccVgprOpt = True
    # force to disable for the following conditions
    if self.useInitAccVgprOpt:
      if kernel["PrefetchGlobalRead"] == 2:
        # PGR=2 case, K > DepthU * 2 is necessary ( if not noTailLoop, need > DepthU * 3)
        # (kernel["AssertSizeGreaterThan"][3] > DepthU * 2 (or 3)
        minDUnum = 2 if self.noTailLoop else 3
        if not (3 in kernel["AssertSizeGreaterThan"].keys() and kernel["AssertSizeGreaterThan"][3] >= kernel["DepthU"] * minDUnum):
          print2("InitAccVgprOpt is disabled because AssertSizeGreaterThan for K is not greater than DepthU * %u"%minDUnum)
          self.useInitAccVgprOpt = False
      if kernel["PrefetchGlobalRead"] == 1:
        # PGR=1 case, K > DepthU * 1 is necessary ( if not noTailLoop, need > DepthU * 2)
        # (kernel["AssertSizeGreaterThan"][3] > DepthU * 2 (or 3)
        minDUnum = 1 if self.noTailLoop else 2
        if not (3 in kernel["AssertSizeGreaterThan"].keys() and kernel["AssertSizeGreaterThan"][3] >= kernel["DepthU"] * minDUnum):
          print2("InitAccVgprOpt is disabled because AssertSizeGreaterThan for K is not greater than DepthU * %u"%minDUnum)
          self.useInitAccVgprOpt = False

    # condition(s) to enable singleNLL opt
    self.enableSingleNLLOpt = False
    if self.noTailLoop and not (self.prefetchAcrossPersistent and kernel["PrefetchAcrossPersistentMode"] == 0):
      if kernel["StoreCInUnroll"]:
        self.enableSingleNLLOpt = True
      # so far, not enabled for DirectToVgpr
      # Performance is better with Tensile, but does not perform better with HPL
      #if kernel["DirectToVgprA"] or kernel["DirectToVgprB"]:
      #  self.enableSingleNLLOpt = True

  @staticmethod
  def zpForSumIdx(sumIdx, zeroPad):
     """ Returns zero-pad for specified sumIdx if it matches or None if not """
     return next((zpi for zpi in zeroPad if zpi[1] == sumIdx), None)


  ##############################################################################
  # Open String
  ##############################################################################
  @abc.abstractmethod
  def openString(self, kernel):
    return ""

  ##############################################################################
  # Close String
  ##############################################################################
  @abc.abstractmethod
  def closeString(self, kernel):
    return ""

  ##############################################################################
  # Function Prefix
  ##############################################################################
  @abc.abstractmethod
  def functionPrefix(self, kernel):
    return ""

  ##############################################################################
  # Function Signature Prefix
  ##############################################################################
  @abc.abstractmethod
  def functionSignaturePrefix(self, kernel):
    return ""

  ##############################################################################
  # Function Signature
  ##############################################################################
  @abc.abstractmethod
  def functionSignature(self, kernel ):
    return ""

  ##############################################################################
  # Function Signature Suffix
  ##############################################################################
  @abc.abstractmethod
  def functionSignatureSuffix(self, kernel):
    return ""

  ##############################################################################
  # Function Begin
  ##############################################################################
  @abc.abstractmethod
  def functionBegin(self, kernel):
    return ""

  ##############################################################################
  # Allocate Resources
  ##############################################################################
  @abc.abstractmethod
  def allocateResources(self, kernel):
    return ""


  ##############################################################################
  # Open Persistent Loop
  # init iteration counter, define loop target
  ##############################################################################
  @abc.abstractmethod
  def openPersistentLoop(self, kernel):
    return ""


  ##############################################################################
  # Global Read Addresses: Work-Group
  ##############################################################################
  @abc.abstractmethod
  def graWorkGroup(self, kernel, isPap):
    return ""

  ##############################################################################
  # Get Params For Tensor A/B
  ##############################################################################
  def getTensorParameters(self, tP, kernel, tA):
    tP["mirror"] = bool(kernel["ProblemType"]["MirrorDims%s" % ("A" if tA else "B")])
    if tA: # A
      tP["isA"] = True                                      # is this tensor A
      tP["isB"] = False                                     # is this tensor B
      tP["bpe"] = int(4*kernel["ProblemType"]["DataType"].numRegisters())
      tP["tensorChar"] = "A"                                # tensor character A/B
      tP["tensorIdx"] = 0                                   # tensor index A=0, B=1
      tP["tileChar"] = self.tileCharA                       # tile char I0 or J1
      tP["tileIdx"] = kernel["ProblemType"]["Index01A"]     # is the tile dimension of A the 0th or 1th index, i.e. Aki, tileIdx=0
      tP["tile01Idx"] = 1 if tP["tileIdx"] else 0
      tP["lsc"] = "LSCA"                                    # load size coalesced A, number of elements that get loaded along coalesced dimension with each load
      tP["lsp"] = "LSPA"                                    # load size perpendicular A, number of elements that get loaded along non-coalesced dimension with each load
      tP["lvc"] = "LVCA"                                    # "load size" in terms of number of short-vectors and not elements
      tP["lvp"] = "LVPA"                                    # "load size" in terms of number of short-vectors and not elements
      tP["rtv"] = self.readTileDimVectorA                   # bool in the tile dimension, reads will read vectors
      tP["rtc"] = self.readTileDimComponentsA               # bool in the tile dimension, reads will read vector components
      #tP["ruv"] = self.readUnrollDimVectorA
      #tP["nlvc"] = self.numReadVectorComponentsA
      #tP["nwvc"] = self.numWriteVectorComponentsA
      tP["wg"] = "WorkGroup%u" % (tP["tile01Idx"])# these are storing the actual strong to lookup the number from kernel dictionary
      tP["prevWg"] = "PrevWorkGroup0"                       # used for prefetch-across-persistent #NHWC TO-do
      tP["sg"] = "SubGroup%u" % (tP["tile01Idx"])
      tP["tt"] = "ThreadTile%u" % (tP["tile01Idx"])
      tP["mt"] = "MacroTile%u" % (tP["tile01Idx"])
      tP["grcg"] = self.globalReadCoalesceGroupA            # global reads are coalesced along threads
      tP["grcv"] = kernel["GlobalReadCoalesceVectorA"]      # global reads are vector reads, and lds writes will be components if transposing
      tP["tlu"] = kernel["ProblemType"]["TLUA"]             # thread stride is less than unroll stride, i.e., not transposing matrix
      tP["ia"] = kernel["ProblemType"]["IndexAssignmentsA"] # array of index assignments
      #tP["nlc"] = kernel["NumLoadsCoalescedA"]
      #tP["nlp"] = kernel["NumLoadsPerpendicularA"]
      #tP["nlcv"] = self.numReadsCoalVecCompA
      tP["nlpv"] = self.numReadsPerpVecCompA                # num vector components perpendicular to coalesced; =1 or VW
      # NEW
      tP["nrt"] = self.numReadsTileA                        # number of reads along tile dimension
      tP["nrtv"] = self.numReadsTileVecCompA                # number of vector components along tile dimension; =1 or VW
      tP["nru"] = self.numReadsUnrollA                      # number of reads along unroll dimension
      tP["nruv"] = self.numReadsUnrollVecCompA              # number of vector components along unroll dimension; =1 or VW
      tP["nrc"] = kernel["NumLoadsCoalescedA"]              # number of reads along coalesced dimension
      tP["nrcv"] = self.numReadsCoalVecCompA                # number of vector components along coalesced dimension
      tP["nrp"] = kernel["NumLoadsPerpendicularA"]          # number of reads along perpendicular dimension
      tP["nrpv"] = self.numReadsPerpVecCompA                # number of vector components along perpendicular dimension
      tP["nwcv"] = self.numWritesCoalVecCompA               # number of vector component writes along coalesced dimension
      tP["nwpv"] = self.numWritesPerpVecCompA               # number of vector component writes along perpendicular dimension
      tP["glvw"] = kernel["GlobalLoadVectorWidthA"]
      # asm
      tP["rcc"] = self.readCoalescedComponentsA             # read vector components along coalesced dimensions
      # tP["rcv"] = self.readCoalescedVectorA                 # read vector along coalesced dimension
      tP["rpc"] = self.readPerpendicularComponentsA         # read vector components along perpendicular dimension
      # tP["rpv"] = self.readPerpendicularVectorA             # read vector along perpendicular dimension
      tP["ruc"] = self.readUnrollDimComponentsA             # read vector components along unroll dimension
      tP["wtc"] = self.writeTileDimComponentsA              # write vector components along tile dimension
      tP["wuc"] = self.writeUnrollDimComponentsA            # write vector components along unroll dimension
      tP["idx"] = kernel["ProblemType"]["Index0"]           # index 0 is tile dimension belonging to A. Note 'idx' may not be in tP['ia'].
      tP["rc"] = kernel["ProblemType"]["IndexAssignmentsA"][0] \
          in [kernel["ProblemType"]["Index01A"], \
          kernel["ProblemType"]["IndexUnroll"]]             # can read coalesced
      tP["NonTemporal"] = kernel["NonTemporalA"]            # non-temporal read type
    else: # B
      tP["isA"] = False
      tP["isB"] = True
      tP["bpe"] = int(4*kernel["ProblemType"]["DataType"].numRegisters())
      tP["tensorChar"] = "B"
      tP["tensorIdx"] = 1
      tP["tileChar"] = self.tileCharB
      tP["tileIdx"] = kernel["ProblemType"]["Index01B"]
      tP["tile01Idx"] = 1 if tP["tileIdx"] else 0
      tP["lsc"] = "LSCB"
      tP["lsp"] = "LSPB"
      tP["lvc"] = "LVCB"
      tP["lvp"] = "LVPB"
      tP["rtv"] = self.readTileDimVectorB
      tP["rtc"] = self.readTileDimComponentsB
      #tP["ruv"] = self.readUnrollDimVectorB
      #tP["nlvc"] = self.numReadVectorComponentsB
      #tP["nwvc"] = self.numWriteVectorComponentsB
      tP["wg"] = "WorkGroup%u" % (tP["tile01Idx"])
      tP["prevWg"] = "PrevWorkGroup1"
      tP["sg"] = "SubGroup%u" % (tP["tile01Idx"])
      tP["tt"] = "ThreadTile%u" % (tP["tile01Idx"])
      tP["mt"] = "MacroTile%u" % (tP["tile01Idx"])
      tP["grcg"] = self.globalReadCoalesceGroupB
      tP["grcv"] = kernel["GlobalReadCoalesceVectorB"]
      tP["tlu"] = kernel["ProblemType"]["TLUB"]
      tP["ia"] = kernel["ProblemType"]["IndexAssignmentsB"]
      # NEW
      tP["nrt"] = self.numReadsTileB
      tP["nrtv"] = self.numReadsTileVecCompB
      tP["nru"] = self.numReadsUnrollB
      tP["nruv"] = self.numReadsUnrollVecCompB
      tP["nrc"] = kernel["NumLoadsCoalescedB"]
      tP["nrcv"] = self.numReadsCoalVecCompB
      tP["nrp"] = kernel["NumLoadsPerpendicularB"]
      tP["nrpv"] = self.numReadsPerpVecCompB
      tP["nwcv"] = self.numWritesCoalVecCompB
      tP["nwpv"] = self.numWritesPerpVecCompB
      tP["glvw"] = kernel["GlobalLoadVectorWidthB"]
      # asm
      tP["rcc"] = self.readCoalescedComponentsB
      # tP["rcv"] = self.readCoalescedVectorB
      tP["rpc"] = self.readPerpendicularComponentsB
      # tP["rpv"] = self.readPerpendicularVectorB
      tP["ruc"] = self.readUnrollDimComponentsB
      tP["wtc"] = self.writeTileDimComponentsB
      tP["wuc"] = self.writeUnrollDimComponentsB
      tP["idx"] = kernel["ProblemType"]["Index1"]
      tP["rc"] = kernel["ProblemType"]["IndexAssignmentsB"][0] \
          in [kernel["ProblemType"]["Index01B"], \
          kernel["ProblemType"]["IndexUnroll"]] # can read coalesced
      tP["NonTemporal"] = kernel["NonTemporalB"]

  ##############################################################################
  # Global Read Addresses: Tile Assignment A/B
  ##############################################################################
  @abc.abstractmethod
  def graTileAssignment(self, kernel, tP):
    return ""

  ##############################################################################
  # Global Read Addresses: Unroll Assignment A/B
  ##############################################################################
  @abc.abstractmethod
  def graUnrollAssignment(self, kernel, tP):
    return ""

  ##############################################################################
  # Global Read Addresses: Other Free Assignments
  ##############################################################################
  @abc.abstractmethod
  def graOtherFreeAssignments(self, kernel):
    return ""

  ##############################################################################
  # Global Read Addresses: Other Summation Assignments
  ##############################################################################
  @abc.abstractmethod
  def graOtherSummationAssignments(self, kernel):
    return ""

  ##############################################################################
  # Global Read Addresses: Tile Offsets A/B
  ##############################################################################
  @abc.abstractmethod
  def graTileOffsets(self, kernel, tP):
    return ""

  ##############################################################################
  # Global Read Addresses: Unroll Offsets A/B
  ##############################################################################
  @abc.abstractmethod
  def graUnrollOffsets(self, kernel, tP):
    return ""

  ##############################################################################
  # Global Read Addresses: Branch A/B
  ##############################################################################
  @abc.abstractmethod
  def graBranch(self, kernel, tP):
    return ""

  ##############################################################################
  # Global Read Addresses: Shift A/B
  ##############################################################################
  @abc.abstractmethod
  def graShift(self, kernel, tP):
    return ""

  ##############################################################################
  # Global Read Addresses: Final Offsets A/B
  ##############################################################################
  @abc.abstractmethod
  def graFinalOffsets(self, kernel, tP):
    return ""

  ##############################################################################
  # Global Read Addresses: Addresses A/B
  ##############################################################################
  @abc.abstractmethod
  def graAddresses(self, kernel, tP, isPap=False):
    return ""

  ##############################################################################
  # Global Read Addresses: Increments A/B
  # This function declares the increments
  ##############################################################################
  @abc.abstractmethod
  def graIncrements(self, kernel, loopIdx, tP):
    return ""

  ##############################################################################
  # Local Write Addresses: Tile Assignment A/B
  ##############################################################################
  @abc.abstractmethod
  def lwaTileAssignment(self, kernel, tP):
    return ""

  ##############################################################################
  # Local Write Addresses: Unroll Assignment A/B
  ##############################################################################
  @abc.abstractmethod
  def lwaUnrollAssignment(self, kernel, tP):
    return ""

  ##############################################################################
  # Local Write Addresses: First Offset A/B
  ##############################################################################
  @abc.abstractmethod
  def lwaFirstOffset(self, kernel, tP, uDu):
    return ""

  ##############################################################################
  # Local Write Addresses: Final Offsets A/B
  ##############################################################################
  @abc.abstractmethod
  def lwaFinalOffsets(self, kernel, tP):
    return ""

  ##############################################################################
  # Local Write Addresses: Declare Addresses A/B
  ##############################################################################
  @abc.abstractmethod
  def lwaDeclareAddresses(self, kernel, tP):
    return ""

  ##############################################################################
  # Local Read Addresses: Tile Assignment
  ##############################################################################
  @abc.abstractmethod
  def lraTileAssignment(self, kernel, tPA, tPB):
    return ""

  ##############################################################################
  # Local Read Addresses: Final Offset A/B
  ##############################################################################
  @abc.abstractmethod
  def lraFinalOffset(self, kernel, tP):
    return ""

  ##############################################################################
  # Local Read Addresses for direct LDS : Final Offset A/B
  ##############################################################################
  @abc.abstractmethod
  def directToLdsLraOffset(self, kernel, finalVgpr, tmp1, tmp2, tP):
    return ""

  ##############################################################################
  # Local Read Addresses offset conversion for DTL + NLC > 1
  ##############################################################################
  @abc.abstractmethod
  def lraOffsetConversionForDTLandNLC(self, kernel, tP, offset_val, generateAsm=False, \
                                      finalVgpr=None, tmp1=None, tmp2=None):
    return ""

  ##############################################################################
  # Local Read Addresses: Declare Addresses A/B
  ##############################################################################
  @abc.abstractmethod
  def lraDeclareAddresses(self, kernel, tP):
    return ""

  ##############################################################################
  # Recalculate local read addresses A/B
  ##############################################################################
  @abc.abstractmethod
  def recalcLocalReadAddressesAB(self, kernel):
    return ""

  ##############################################################################
  # Recalculate local write addresses A/B
  ##############################################################################
  @abc.abstractmethod
  def recalcLocalWriteAddresses(self, kernel, tP, uDu):
    return ""

  ##############################################################################
  # Declare Loop Num Iterations
  ##############################################################################
  @abc.abstractmethod
  def declareLoopNumIter(self, kernel):
    return ""

  ##############################################################################
  # Define stagger parms that will be used in calculateStagger
  ##############################################################################
  @abc.abstractmethod
  def declareStaggerParms(self, kernel):
    return ""


  ##############################################################################
  # Calculate and apply stagger offsets and edge
  ##############################################################################
  @abc.abstractmethod
  def calculateStagger(self, kernel, loopIdx):
    return ""

  ##############################################################################
  # Remove stagger offset (before tail loop)
  ##############################################################################
  @abc.abstractmethod
  def removeStagger(self, kernel):
    return ""

  ##############################################################################
  # Calculate Loop Num Iter
  ##############################################################################
  @abc.abstractmethod
  def calculateLoopNumIter(self, kernel, loopIdx, isPap):
    return ""


  ##############################################################################
  # openShadowInit:
  # Top of shadow init code
  ##############################################################################
  @abc.abstractmethod
  def openShadowInit(self, kernel):
    return ""

  ##############################################################################
  # closeShadowInit:
  # Top of shadow init code
  ##############################################################################
  @abc.abstractmethod
  def closeShadowInit(self, kernel):
    return ""

  ##############################################################################
  # Initialize C
  ##############################################################################
  @abc.abstractmethod
  def initC(self, kernel):
    return ""

  ##############################################################################
  # Open Loop
  # loopIdx<0 : tail loop
  ##############################################################################
  @abc.abstractmethod
  def openLoop(self, kernel, loopIdx, uDu, noLabelGen, beginLabelOnly):
    return ""

  ##############################################################################
  # Close Loop
  ##############################################################################
  @abc.abstractmethod
  def closeLoop(self, kernel, loopIdx, finalLoop, loopCopies, uDu, emitEndLabelOnly, oddLabel=False):
    return ""

  ##############################################################################
  # Open Loop Copy
  ##############################################################################
  @abc.abstractmethod
  def openLoopCopy(self, kernel, lc):
      return ""

  ##############################################################################
  # End Summation
  ##############################################################################
  @abc.abstractmethod
  def endSummation(self, kernel, label = None, isOptNLL = False):
    return ""
  
  ##############################################################################
  # MAC Iteration
  # useMacro : if true, call the MAC* macro. If False, inline the MACs
  ##############################################################################
  @abc.abstractmethod
  def macIter(self, kernel, bufferIdx, iuiCount, useMacro, isTail=False):
    return ""

  ##############################################################################
  # At Least 1 Unroll
  ##############################################################################
  @abc.abstractmethod
  def openSumAtLeastUnroll(self, kernel, prefetch, isOptNLL, isPap):
    return ""

  @abc.abstractmethod
  def closeSumAtLeastUnroll(self, kernel, prefetch, isOptNLL, isPap, isNGLL):
    return ""

  ##############################################################################
  # Global Read: Increment A/B
  ##############################################################################
  @abc.abstractmethod
  def globalReadIncrementAB(self, kernel, loopIdx, prefetchIndex, incs=1):
    return ""

  ##############################################################################
  # Global Read: Do It A/B
  # mode: 0=prefetch, 1=unroll loop, 2=guardK
  ##############################################################################
  @abc.abstractmethod
  def globalReadDo(self, kernel, mode, tP, vregSetIdx=0):
    return ""

  ##############################################################################
  # directToLds m0 update: Do It A/B
  # mode: 0=prefetch, 1=unroll loop, 2=guardK
  ##############################################################################
  @abc.abstractmethod
  def directToLdsM0Update(self, kernel, mode, tP, usePlaceHolder=False):
    return ""

  ##############################################################################
  # Local Write: Swap Offsets A/B
  ##############################################################################
  @abc.abstractmethod
  def localWriteSwapOffsets(self, kernel, internalPointerSwap, tP):
    return ""

  ##############################################################################
  # Local Write: Reset Offsets A/B
  ##############################################################################
  @abc.abstractmethod
  def localWriteResetOffsets(self, kernel, internalPointerSwap, tP):
    return ""

  ##############################################################################
  # Local Write: Init Pointers A/B
  ##############################################################################
  @abc.abstractmethod
  def localWriteInitPointers(self, kernel, tP):
    return ""

  ##############################################################################
  # Local Write in Prefetch Pass (PreLoop): Do It A/B
  ##############################################################################
  @abc.abstractmethod
  def preLoopLocalWriteDo(self, kernel, tPA, tPB):
    return ""

  ##############################################################################
  # Replace the determined vmcnt in PreLoop LocalWrite
  ##############################################################################
  @abc.abstractmethod
  def replacePreLoopLWVmcnt(self, kernel):
    return ""

  ##############################################################################
  # Local Write: Do It A/B
  ##############################################################################
  @abc.abstractmethod
  def localWriteDo(self, kernel, tP, uDu):
    return ""

  ##############################################################################
  # Local Read: Swap Offsets A/B
  ##############################################################################
  @abc.abstractmethod
  def localReadSwapOffsets(self, kernel, internalPointerSwap, tP):
    return ""

  ##############################################################################
  # Local Read: Reset Offsets A/B
  ##############################################################################
  @abc.abstractmethod
  def localReadResetOffsets(self, kernel, tP):
    return ""

  ##############################################################################
  # Local Read: Init Pointers A/B
  ##############################################################################
  @abc.abstractmethod
  def localReadInitPointers(self, kernel, tP):
    return ""

  ##############################################################################
  # Local Read: Increment A/B
  ##############################################################################
  @abc.abstractmethod
  def localReadInc(self, kernel, tP):
    return ""

  ##############################################################################
  # Local Read: Do It A/B
  ##############################################################################
  @abc.abstractmethod
  def localReadDo(self, kernel, bufferIdx, innerUnrollIndex, epsi, tP):
    return ""

  ##############################################################################
  # Shift Vector Components d0/1
  ##############################################################################
  @abc.abstractmethod
  def shiftVectorComponents(self, kernel, tP):
    return ""

  ##############################################################################
  # Complex Declare Tmp Registers
  ##############################################################################
  @abc.abstractmethod
  def complexDeclareTmpRegisters(self, kernel):
    return ""

  ##############################################################################
  # LocalSplitU: Local Write
  ##############################################################################
  @abc.abstractmethod
  def localSplitULocalWrite(self, kernel):
    return ""

  ##############################################################################
  # LocalSplitU: Local Read
  ##############################################################################
  @abc.abstractmethod
  def localSplitULocalRead(self, kernel):
    return ""

  ##############################################################################
  # LocalSplitU: Reduction
  ##############################################################################
  @abc.abstractmethod
  def localSplitUReduction(self, kernel):
    return ""

  ##############################################################################
  # globalWriteWorkGroupInitBeforePersistentLoop:
  ##############################################################################
  @abc.abstractmethod
  def globalWriteWorkGroupInitBeforePersistentLoop(self, kernel):
    return ""

  ##############################################################################
  # globalWriteWorkGroupInit:
  # Perform work-group granularity init
  ##############################################################################
  @abc.abstractmethod
  def globalWriteWorkGroupInit(self, kernel):
    return ""

  ##############################################################################
  # LocalSplitU: Global Write Indices
  ##############################################################################
  @abc.abstractmethod
  def localSplitUGlobalWriteIndices(self, kernel):
    return ""

  ##############################################################################
  # LocalSplitU: Global Write
  ##############################################################################
  @abc.abstractmethod
  def localSplitUGlobalWrite(self, kernel):
    return ""

  ##############################################################################
  # Not LocalSplitU: Global Write Indices
  ##############################################################################
  @abc.abstractmethod
  def notLocalSplitUGlobalWriteIndices(self, kernel):
    return ""

  ##############################################################################
  # Not LocalSplitU: Global Write
  ##############################################################################
  @abc.abstractmethod
  def notLocalSplitUGlobalWrite(self, kernel):
    return ""

  @abc.abstractmethod
  def openPrefetchAcrossPersistent(self, kernel, isOptNLL=False, useBufferOOB=False):
    return ""

  @abc.abstractmethod
  def closePrefetchAcrossPersistent(self, kernel, isOptNLL=False, useBufferOOB=False):
    return ""

  ##############################################################################
  # init for StoreCInUnroll
  ##############################################################################
  @abc.abstractmethod
  def initStoreCInUnroll(self, kernel):
    return ""

  ##############################################################################
  # init for StoreCInUnroll per Persistent Loop
  ##############################################################################
  @abc.abstractmethod
  def initStoreCInUnrollPerPersistentLoop(self, kernel):
    return ""

  ##############################################################################
  # init for StoreCInUnroll per Unroll Loop
  ##############################################################################
  @abc.abstractmethod
  def initStoreCInUnrollPerUnrollLoop(self, kernel, needInit):
    return ""

  ##############################################################################
  # swap SrdC and SrdCbackup, SrdD and SrdDbackup
  ##############################################################################
  @abc.abstractmethod
  def swapSrdCDandBackup(self, kernel):
    return ""

  ##############################################################################
  # C/D address increment value for StoreCInUnroll
  ##############################################################################
  @abc.abstractmethod
  def generateCorDaddrIncrementForStoreCInUnroll(self, kernel, CorD, odd, tmpSgprWork):
    return ""

  ##############################################################################
  # get address/gpr index increment frequency for StoreCInUnroll
  ##############################################################################
  @abc.abstractmethod
  def getAddrGprIdxIncrementFrequencyForStoreCInUnroll(self, kernel):
    return ""

  ##############################################################################
  # generate post process for StoreCInUnroll loop
  ##############################################################################
  @abc.abstractmethod
  def generatePostProcessForStoreCInUnrollLoop(self, kernel, needPost):
    return ""

  ##############################################################################
  # restore SrdCbackup and SrdDbackup
  ##############################################################################
  @abc.abstractmethod
  def restoreSrdCandDBackup(self, kernel):
    return ""

  ##############################################################################
  # reset storeC sync objects
  ##############################################################################
  @abc.abstractmethod
  def resetStoreCsyncObject(self, kernel):
    return ""

  ##############################################################################
  # set storeC sync objects
  ##############################################################################
  @abc.abstractmethod
  def setStoreCsyncObject(self, kernel):
    return ""

  ##############################################################################
  # end process for StoreCInUnroll per PersistentLoop (OptNLL)
  ##############################################################################
  @abc.abstractmethod
  def endProcessPersistentLoopforStoreCInUnrollOptNLL(self, kernel):
    return ""

  ##############################################################################
  # end process for StoreCInUnroll per PersistentLoop (NoOptNLL)
  ##############################################################################
  @abc.abstractmethod
  def endProcessPersistentLoopforStoreCInUnrollNoOptNLL(self, kernel):
    return ""

  ##############################################################################
  # number of storeC code in template for StoreCInUnroll
  ##############################################################################
  @abc.abstractmethod
  def getNumberOfStoreCInTemplate(self, kernel):
    return ""

  ##############################################################################
  # number of LoadC code in template for StoreCInUnroll
  ##############################################################################
  @abc.abstractmethod
  def getNumberOfLoadCInForLoadC(self, kernel):
    return ""

  ##############################################################################
  # generate storeCInUnroll post loop code
  ##############################################################################
  @abc.abstractmethod
  def generateStoreInUnrollPostLoop(self, kernel, isOptNLL, isDTVodd):
    return ""

  ##############################################################################
  # openOddNoLoadLoopForDTV
  # generate open code for DirectToVgpr + odd exit case in noLoadLoop code
  ##############################################################################
  @abc.abstractmethod
  def openOddNoLoadLoopForDTV(self, kernel, isNGLL, name):
    return ""

  ##############################################################################
  # closeOddNoLoadLoopForDTV
  # generate close code for DirectToVgpr + odd exit case in noLoadLoop code
  ##############################################################################
  @abc.abstractmethod
  def closeOddNoLoadLoopForDTV(self, kernel, isNGLL, name):
    return ""

  ##############################################################################
  # generateEvenEndLabeNoLoadLoopForDTV
  # generate even end label for DirectToVgpr
  ##############################################################################
  @abc.abstractmethod
  def generateEvenEndLabeNoLoadLoopForDTV(self, kernel, isNGLL, name):
    return ""

  ##############################################################################
  # generateOddEndVgprCopyForDTV
  # generate odd end vgpr copy for DirectToVgpr
  ##############################################################################
  @abc.abstractmethod
  def generateOddEndVgprCopyForDTV(self, kernel):
    return ""

  ##############################################################################
  # PrefetchGlobalRead2
  ##############################################################################
  @abc.abstractmethod
  def openPrefetchGlobalRead2(self, kernel):
    return ""

  @abc.abstractmethod
  def closePrefetchGlobalRead2(self, kernel):
    return ""

  ##############################################################################
  # Function End
  ##############################################################################
  @abc.abstractmethod
  def functionEnd(self, kernel, addLabel=True):
    return ""

  ##############################################################################
  # Function Suffix
  ##############################################################################
  @abc.abstractmethod
  def functionSuffix(self, kernel):
    return ""

  ##############################################################################
  # Kernel Body Prefix
  ##############################################################################
  @abc.abstractmethod
  def kernelBodyPrefix(self, kernel, tPA, tPB ):
    return ""


  ##############################################################################
  # Kernel Body Suffix
  ##############################################################################
  @abc.abstractmethod
  def kernelBodySuffix(self, kernel, tPA, tPB ):
    return ""

  ##############################################################################
  # WaitCnt
  ##############################################################################
  @abc.abstractmethod
  def wait(self, kernel, tPA, tPB, globalRead, localWrite, localRead, comment):
    return ""

  ##############################################################################
  # SyncThreads
  ##############################################################################
  @abc.abstractmethod
  def syncThreads(self, kernel):
    return self.indent + self.syncStr + self.endLine

  ##############################################################################
  # MapAcctoArch
  ##############################################################################
  @abc.abstractmethod
  def MapAcctoArchRegs(self, kernel, option):
    return ""

  ##############################################################################
  # openmovaccVgpr
  ##############################################################################
  @abc.abstractmethod
  def openmovaccVgpr(self, kernel, backupSgpr):
    return ""

  ##############################################################################
  # getAccVgprCode
  ##############################################################################
  @abc.abstractmethod
  def getAccVgprCode(self,kernel,odd):
    return ""

  ##############################################################################
  # closemovaccVgpr
  ##############################################################################
  @abc.abstractmethod
  def closemovaccVgpr(self, kernel, backupSgpr):
    return ""


  ##############################################################################
  #
  #   Entry Functions
  #
  ##############################################################################


  ##############################################################################
  # get kernel name
  ##############################################################################
  def getKernelFileBase(self, kernel):
    if isCustomKernelConfig(kernel):
      fileBase = kernel["CustomKernelName"]
    elif globalParameters["ShortNames"]:
      fileBase = Solution.getNameSerial(kernel, self.kernelSerialNaming)
    else:
      fileBase = self.shortenFileBase(kernel)
    return fileBase

  def getKernelName(self, kernel):
    kernelName = Solution.getNameMin(kernel, self.kernelMinNaming)
    return kernelName

  def getKernelSource(self, kernel):
    """
    Returns the source of the kernel, either C++ or assembly.
    """


    fileString = ""
    self.tPA = tensorParametersA = {}
    self.tPB = tensorParametersB = {}
    self.initKernel(kernel, tensorParametersA, tensorParametersB )
    fileString += self.kernelBodyPrefix( kernel, tensorParametersA, \
        tensorParametersB )
    self.stringIdx = 0
    (error, kb) = self.kernelBody( kernel, tensorParametersA, tensorParametersB)

    fileString += kb
    fileString += self.kernelBodySuffix( kernel, tensorParametersA, \
        tensorParametersB )

    if error != 0:
      if globalParameters["ForceGenerateKernel"]:
        print ("warning: Generating kernel source resulted in error {}, but ForceGenerateKernel=1 so saving source".format(error))
      else:
        raise RuntimeError("Generating kernel source resulted in error {}".format(error))

    return fileString

  def getAssemblyDirectory(self):
      return Common.ensurePath(os.path.join(globalParameters["WorkingPath"], "assembly"))

  def byteArrayScriptSource(self):
    return """
#!/usr/bin/env python

fileString = ""
fileString += "/*******************************************************************************\\n"
fileString += "* Copyright (C) 2016 Advanced Micro Devices, Inc. All rights reserved.\\n"
fileString += "*\\n"
fileString += "* Permission is hereby granted, free of charge, to any person obtaining a copy\\n"
fileString += '* of this software and associated documentation files (the \"Software\"), to deal\\n'
fileString += "* in the Software without restriction, including without limitation the rights\\n"
fileString += "* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-\\n"
fileString += "* ies of the Software, and to permit persons to whom the Software is furnished\\n"
fileString += "* to do so, subject to the following conditions:\\n"
fileString += "*\\n"
fileString += "* The above copyright notice and this permission notice shall be included in all\\n"
fileString += "* copies or substantial portions of the Software.\\n"
fileString += "*\\n"
fileString += '* THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-\\n'
fileString += "* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS\\n"
fileString += "* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR\\n"
fileString += "* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER\\n"
fileString += "* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-\\n"
fileString += "* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.\\n"
fileString += "*******************************************************************************/\\n\\n"
fileString += "/**************************************************\\n"
fileString += "* This file was generated by Tensile:             *\\n"
fileString += "* https://github.com/ROCmSoftwarePlatform/Tensile *\\n"
fileString += "**************************************************/\\n\\n\\n"
import os.path
fileString += '#include "Kernels.h"\\n\\n'
fileString += "/* code object byte array */\\n\\n"
codeObjectFileNames = [f for f in os.listdir(".") if (os.path.isfile(f) and f.endswith(".co"))]
for codeObjectFileName in codeObjectFileNames:
  print codeObjectFileName
  print "\\n"
  kernelName=os.path.splitext(codeObjectFileName)[0]
  codeObjectFile = open(codeObjectFileName, "r")
  codeObjectByteArray = bytearray(codeObjectFile.read())
  codeObjectFile.close()
# write code object byte array for asm
  fileString += "const unsigned char %s_coba[%u] = {\\n" % (kernelName, len(codeObjectByteArray))
  for byteIdx in range(0, len(codeObjectByteArray)):
    byte = codeObjectByteArray[byteIdx]
    fileString += "0x%02x" % byte
    if byteIdx < len(codeObjectByteArray)-1:
      fileString += ","
    else:
      fileString += "};\\n"
    if byteIdx % 16 == 15:
      fileString += "\\n"
  text_file = open("Kernels.cpp", "w")
  text_file.write("%s" % fileString)
  text_file.close()
"""

  def writeByteArrayScript(self):
    asmPath = self.getAssemblyDirectory()

    bytearrayFileName = os.path.join(asmPath,"insert_byte_array.py")
    if not os.path.isfile(bytearrayFileName):
      with open(bytearrayFileName, 'w') as bytearrayFile:
        bytearrayFile.write(self.byteArrayScriptSource())
      os.chmod(bytearrayFileName, 0o777)
    return bytearrayFileName

  def getReplacementKernelPath(self, kernel):
    if not kernel["ReplacementKernel"] and not isCustomKernelConfig(kernel): #kernel["CustomKernelName"]:
      return None

    kernelName = self.getKernelName(kernel)

    if isCustomKernelConfig(kernel):
      return os.path.join(globalParameters["CustomKernelDirectory"], (kernelName + ".s"))
    else: # Replacement kernel
      return ReplacementKernels.Get(kernelName)

  def shortenFileBase(self, kernel):
    base = self.getKernelName(kernel)
    if len(base) <= globalParameters["MaxFileName"]:
      return base

    import hashlib
    import base64

    pivot = globalParameters["MaxFileName"] * 3 // 4
    firstPart = base[:pivot]
    secondPart = base[pivot:]

    secondHash = hashlib.sha256(secondPart.encode()).digest()
    secondPart = base64.b64encode(secondHash, b'_-').decode()

    return firstPart + secondPart

  def getKernelObjectAssemblyFile(self, kernel):
    asmPath = self.getAssemblyDirectory()
    # write assembly file to assembly directory
    kernelName = self.getKernelFileBase(kernel)
    fileBase = os.path.join(asmPath, kernelName )
    assemblyFileName = "%s.s" % fileBase

    replacementKernel = self.getReplacementKernelPath(kernel)

    if replacementKernel is not None:
      self.tPA = tensorParametersA = {}
      self.tPB = tensorParametersB = {}
      if isCustomKernelConfig(kernel):
        kernelFoundMessage = "Custom kernel filename "
        # ISA version, such as 803
        self.kernel = kernel
        self.language = "ASM"
        self.version = globalParameters["CurrentISA"]
        if "ISA" in kernel:
          self.version = tuple(kernel["ISA"])
        if not globalParameters["AsmCaps"][self.version]["SupportedISA"]:
          defaultIsa = (9,0,0)
          print("warning: ISA:", self.version, " is not supported; overriding with ", defaultIsa)
          self.version = defaultIsa
      else:
        kernelFoundMessage = "replacement_assemblyFilename "
        self.initKernel(kernel, tensorParametersA, tensorParametersB )

      shutil.copyfile(replacementKernel, assemblyFileName)
      if globalParameters["PrintLevel"] >= 1:
        print(kernelFoundMessage + assemblyFileName)
    else:
      kernelSource = self.getKernelSource(kernel)

      if globalParameters["PrintLevel"] >= 2:
        print("write_assemblyFilename %s" % assemblyFileName)

      with open(assemblyFileName, 'w') as assemblyFile:
        assemblyFile.write(kernelSource)

    return assemblyFileName

  def getAssembledKernelObjectFile(self, kernel):
    assemblyFileName = self.getKernelObjectAssemblyFile(kernel)

    base, ext = os.path.splitext(assemblyFileName)
    objectFileName = base + '.o'

    args = self.getCompileArgs(assemblyFileName, objectFileName)
    if globalParameters["PrintCodeCommands"]:
      print (' '.join(args), " && ")

    # change to use  check_output to force windows cmd block util command finish
    try:
      out = subprocess.check_output(args, stderr=subprocess.STDOUT, cwd=self.getAssemblyDirectory())
      print2(out)
    except subprocess.CalledProcessError as err:
      print(err.output)
      raise

    return objectFileName

  def getSingleCodeObjectFile(self, kernel):
    objectFileName = self.getAssembledKernelObjectFile(kernel)

    base, ext = os.path.splitext(objectFileName)
    coFileName = base + '.co'

    args = self.getLinkCodeObjectArgs([objectFileName], coFileName)
    if globalParameters["PrintCodeCommands"]:
      print (' '.join(args))

    # change to use  check_output to force windows cmd block util command finish
    try:
      out = subprocess.check_output(args, stderr=subprocess.STDOUT, cwd=self.getAssemblyDirectory())
      print2(out)
    except subprocess.CalledProcessError as err:
      print(err.output)
      raise

    return coFileName

  def getByteArrayCobaDefinition(self, varName, byteArray):
    s = self.comment("code object byte array")
    s += "const unsigned char %s_coba[%u] = {\n" % (varName, len(byteArray))

    if len(byteArray) != 0:
      s += "0x%02x" % byteArray[0]
      for byteIdx, byte in enumerate(byteArray[1:]):
        if byteIdx % 16 == 15:
          s += ",\n0x%02x" % byte
        else:
          s += ",0x%02x" % byte

    s += '};\n'
    return s

  def getFileCobaDefinition(self, varName, fileName):
    with open(fileName, 'rb') as f:
      byteArray = bytearray(f.read())
    return self.getByteArrayCobaDefinition(varName, byteArray)

  ##############################################################################
  def getSourceFileString(self, kernel):
    """
    Returns a string suitable for placing in Kernels.cpp.  This means the actual kernel source in the case
    of a source kernel, or an assembled code object byte array definition in the case of an assembly kernel,
    or an empty string in the case that CodeFromFiles is true.

    In the case of an assembly kernel, this function has the side effect of creating the following files:
     * An assembly source file
     * An object file
     * A code object file
     * A Python script which can create byte array variable definitions.
    """

    try:
      if kernel["KernelLanguage"] == "Assembly":
        # asmPath = self.getAssemblyDirectory()
        # kernelName = self.getKernelName(kernel)

        # Skip if .o files will have already been built for this file
        # @TODO remove need for this with better code organization
        if kernel.duplicate:
          self.language = "ASM"
          return (0, "")
        if globalParameters["GenerateSourcesAndExit"]:
          # only create the assembly file.
          self.getKernelObjectAssemblyFile(kernel)
          return (0, "")
        else:
          self.writeByteArrayScript()
          self.getSingleCodeObjectFile(kernel)

          # I guess in this case we are making sure that the code object file exists by executing the code
          # above but we aren't placing it into the source.
          return (0, "")

          # Old client debug option
          # return (0, self.getFileCobaDefinition(kernelName, os.path.join(asmPath, coFile)))

      else:
        return (0, self.getKernelSource(kernel))

    except subprocess.CalledProcessError as exc:
      if isinstance(exc.cmd, collections.Sequence):
        print("Command: ")
        print(' '.join(exc.cmd))
        print("returned non-zero exit status ", exc.returncode)
      else:
        print(exc)
      return (-1, "")
    except RuntimeError as exc:
      if globalParameters["PrintSolutionRejectionReason"]:
        print(exc)
      return (-2, "")

  ##############################################################################
  # header file string
  ##############################################################################
  def getHeaderFileString(self, kernel):
    kernelName = self.getKernelName(kernel)
    fileString = "" # CHeader
    if not hasattr(self, "language"):
        raise AttributeError(f"Error processing {kernelName}: language attribute not found!")
    if self.language == "HIP" or self.language == "OCL":
      if not globalParameters["MergeFiles"]:
        fileString += CHeader
        fileString += "#pragma once\n\n"
        if self.language == "HIP":
          fileString += "#include <hip/hip_runtime.h>\n"
          fileString += "#include <hip/hip_fp16.h>\n"
          fileString += "#include <KernelHeader.h>\n"
          fileString += "\n"
        else:
          fileString += "#include <string>\n"
      if self.language == "OCL":
        fileString += "extern const char * const %s_src;\n" % kernelName
      else:
        fileString += self.functionSignature(kernel)
        fileString += ";\n"
    else:
      if not globalParameters["MergeFiles"] or globalParameters["NumMergedFiles"] > 1:
        fileString += "#pragma once\n\n"
      if not globalParameters["CodeFromFiles"]:
        fileString += "extern const unsigned char %s_coba[]; // code object byte array\n" % kernelName

    return fileString

  ##############################################################################
  # flip Vreg set for DirectToVgpr in global read
  ##############################################################################
  def flipVregSetForDirectToVgprInGlobalRead(self, kernel, itemStr):
    # need to swap VGPR register set for odd code
    baseName = "G2LA" if kernel["DirectToVgprA"] else "G2LB" # only one of them is enabled
    set0 = baseName + "0"
    set1 = baseName + "1"
    if set0 in itemStr:
      # replace set0 with set1
      itemStr = itemStr.replace(set0, set1)
    elif set1 in itemStr:
      # replace set1 with set0
      itemStr = itemStr.replace(set1, set0)
    return itemStr

  ##############################################################################
  # return number of store instructions
  ##############################################################################
  def getNumStoreInst(self, str):
    ret = 0
    ret += str.count("_buffer_store")  # count _buffer_store
    ret += str.count("_global_store")  # count _global_store
    ret += str.count("buffer_atomic_add")   # count buffer_atomic_add
    ret += str.count("global_atomic_add")   # count global_atomic_add
    return ret

  ##############################################################################
  # return number of load instructions
  ##############################################################################
  def getNumLoadInst(self, str):
    ret = 0
    ret += str.count("_buffer_load")  # count _buffer_load
    ret += str.count("_global_load")  # count _global_load
    return ret

  ##############################################################################
  # waitcnt code for DirectToVgpr
  ##############################################################################
  def getWaitcntCodeForDirectToVgpr(self, kernel, localWriteEndIter, u, firstIter, isPap=True, beforeBarrier=False, NLLlast=False, oddLast=False):
    retStr = ""
    # generate wait
    if (kernel["DirectToVgprA"] or kernel["DirectToVgprB"]):
      if self.enable["Wait"]:
        pgr2 = kernel["PrefetchGlobalRead"] == 2
        numGlobalReadA = kernel["NumLoadsPerpendicularA"] * kernel["NumLoadsCoalescedA"] * self.numReadVectorComponentsA
        numGlobalReadB = kernel["NumLoadsPerpendicularB"] * kernel["NumLoadsCoalescedB"] * self.numReadVectorComponentsB
        numGlobalRead = numGlobalReadA if kernel["DirectToVgprA"] else numGlobalReadB
        numGlobalReadAll = numGlobalReadA + numGlobalReadB
        numGlobalStoreC = 0
        numReadsIterCoalesced = self.numReadsIterCoalescedA if kernel["DirectToVgprA"] else self.numReadsIterCoalescedB
        waitComment = "global read wait for DirectToVgpr"
        # delay DirectToVgpr global read (from previous iteration) which is not referred yet
        numRegsIn1set = (numGlobalRead // kernel["LoopIters"]) * numReadsIterCoalesced
        numSet = (u + numReadsIterCoalesced) // numReadsIterCoalesced
        numSetMod = (u + numReadsIterCoalesced) % numReadsIterCoalesced
        if numSetMod > 0:
          # if mod > 0, wait is already done by mod == 0 case and no need to wait for same set of global read
          return ""
        needToWait = numGlobalRead - numSet * numRegsIn1set
        if not isPap:
          # not isPap case, no global load A, B in no load loop. Reset numGlobalReadAll and numGlobalRead
          numGlobalReadAll = 0
          numGlobalRead = 0
        if pgr2:
          # PGR=2 case, add numGlobalReadAll for second set of prefetch
          needToWait += numGlobalReadAll
        if u > 0:
          # count number of global read for i < u
          count = 0
          for i in range(u):
            globalReadStr = ' '.join([str(x) for x in self.perIterGlobalReadCode[i].flatitems()])
            count += self.getNumLoadInst(globalReadStr)
            # PGR=2 case, global read is in LocalWriteCode
            localWriteStr = ' '.join([str(x) for x in self.perIterLocalWriteCode[i].flatitems()])
            count += self.getNumLoadInst(localWriteStr)
          needToWait += count
          if u == localWriteEndIter + 1 and beforeBarrier:
            # beforeBarrier case, reduce the amount of non-Vgpr global read
            needToWait -= (numGlobalReadAll - numGlobalRead)
        # adjustment for oddLast
        # oddLast case or ScheduleIterAlg < 3 case, ignore all of above and set 0
        if oddLast or kernel["ScheduleIterAlg"] < 3:
          needToWait = 0
        if kernel["StoreCInUnroll"]:
          # In StoreCInUnroll case,
          # 1) last iteration case (u == localWriteEndIter + 1)
          #  1-1) if StoreC is already executed in the previous u, add number of executed buffer_store/atomic_add
          #      (global read C wait is already done in this case)
          #  1-2) else, add number of global read C to numGlobalReadAll

          # count number of StoreC in template
          tmpStr = ' '.join([str(x) for x in self.StoreCUnrollCode.flatitems()])
          numGlobalStoreCinTemplate  = self.getNumStoreInst(tmpStr) # count store instructions
          numGlobalStoreC = 0

          if u == localWriteEndIter + 1:
            if beforeBarrier:
              # before barrier case (DirectToLds+DirectToVgpr), put waitcnt vmcnt just before barrier (before ds_read)
              # In that case, StoreC is already done. Add number of store C from template to vmcnt.
              numGlobalStoreC += numGlobalStoreCinTemplate
              # It means LoadC wait is already done. Deduct the number of load C in template
              # count number of Load in template
              tmpStr = ' '.join([str(x) for x in self.LoadCUnrollCode.flatitems()])
              numGlobalLoadCinTemplate  = self.getNumLoadInst(tmpStr)  # count load instructions
              needToWait -= numGlobalLoadCinTemplate
            else:
              # check if store C is already in perIterLocalWriteCode
              for i in range(u):
                # scheduled storeC in unroll is in LocalWriteCode
                localWriteStr = ' '.join([str(x) for x in self.perIterLocalWriteCode[i].flatitems()])
                numGlobalStoreC += self.getNumStoreInst(localWriteStr)
              # no LDS write (DirectToLds+DirectToVgpr) and not beforeBarrier and not firstIter case, 
              # no need to wait for StoreC in previous iteration
              # Then, add the number of storeC in template
              #if kernel["NoLdsWriteCode"] and not firstIter:
              #  numGlobalStoreC += numGlobalStoreCinTemplate
          # 2) add number of store C from previous iter to needToWait
          #   2-1) not firstIter and u < localWriteEndIter + 1 case
          #   2-2) noLoadC and last NoLoadLoop
          needLoadC = (not kernel["AtomicAddC"]) and kernel["ProblemType"]["UseBeta"]
          if not firstIter and (u < localWriteEndIter + 1 or ((not needLoadC) and NLLlast)):
            numGlobalStoreC += numGlobalStoreCinTemplate

          # oddLast case, ignore all of above and set numGlobalStoreCinTemplate
          if oddLast:
            numGlobalStoreC = numGlobalStoreCinTemplate

          # add numGlobalStoreC to needToWait
          needToWait += numGlobalStoreC
          waitComment = "global read/store wait for DirectToVgpr with StoreCInUnroll (StoreC=%u)"%(numGlobalStoreC)

        # vmcnt should not go over MaxVmcnt
        maxVmcnt = globalParameters["AsmCaps"][self.version]["MaxVmcnt"]
        needToWait = min(needToWait, maxVmcnt)

        retStr = "s_waitcnt vmcnt(%u) // %s\n"%(needToWait, waitComment)
    return retStr

  ##############################################################################
  # Backup StoreCInUnroll related code
  ##############################################################################
  def backupStoreCInUnrollRelatedCode(self):
    # keep StoreCInUnrollPreCode, StoreCUnrollPostCode for the next noLoadLoop
    self.StoreCUnrollPreCodeBackup = copy.deepcopy(self.StoreCUnrollPreCode)
    self.StoreCUnrollPostCodeBackup = copy.deepcopy(self.StoreCUnrollPostCode)

  ##############################################################################
  # Restore StoreCInUnroll related code
  ##############################################################################
  def restoreStoreCInUnrollRelatedCode(self):
    self.StoreCUnrollPreCode = self.StoreCUnrollPreCodeBackup
    self.StoreCUnrollPostCode = self.StoreCUnrollPostCodeBackup
    self.StoreCUnrollLoopCodeStarted = 0

  ##############################################################################
  # generate storeC code in UnrollLoop
  ##############################################################################
  def generateStoreCCodeInUnrollLoop(self, kernel, odd, isLast=False):
    self.LoadCUnrollCode = Code.Module()
    self.StoreCUnrollCode = Code.Module()
    self.StoreCUnrollPreCode = Code.Module()
    self.StoreCUnrollPostCode = Code.Module()
    self.numItemsBeforeStoreC = 0
    self.StoreCUnrollStartComment ="Start of StoreCInUnroll code"
    self.StoreCUnrollStoreStartComment ="Start of StoreCInUnroll Store code"
    self.StoreCUnrollLoopCodeStarted = 0  # 0:not StoreC code started, 1: started
    if kernel["StoreCInUnroll"]:
      needInit = not odd
      needPost = odd
      needInc  = (not isLast) or kernel["StoreCInUnrollPostLoop"]
      backupSgpr = self.getTmpSgpr(2).idx()  # allocate all tmp register here
      tmpSgprWork = backupSgpr + 1
      needAddrC = (not kernel["AssertCEqualsD"]) and kernel["ProblemType"]["UseBeta"]

      # init/inc code is necessary if inc frequency is 1
      needInit = needInit or (self.getAddrGprIdxIncrementFrequencyForStoreCInUnroll(kernel) == 1)
      needPost = needPost or (self.getAddrGprIdxIncrementFrequencyForStoreCInUnroll(kernel) == 1)

      # generate init code for StoreCInUnroll per Unroll Loop
      initPerUnrollCode = self.initStoreCInUnrollPerUnrollLoop(kernel, needInit)

      # loadC
      for x in self.LoadCTemplate.items():
        # Load C case, insert Init per unroll code before Load C (setup vgpr offset for loadC and StoreC)
        s = initPerUnrollCode + str(x)
        initPerUnrollCode = "" # reset initPerUnrollCode so that it is not inserted again
        self.LoadCUnrollCode.addText(s)
      # Addr C increment code (no increment for isLast (and not PostLoop))
      if needInc and needAddrC:
        oddParam = needPost
        kStr = self.generateCorDaddrIncrementForStoreCInUnroll(kernel, "C", oddParam, tmpSgprWork)
        self.LoadCUnrollCode.addText(kStr)

      if initPerUnrollCode != "":
        # If init code is not inserted (no Load C case), insert it to the top of StoreC list (setup vgpr offset for StoreC)
        self.StoreCUnrollPreCode.addText(initPerUnrollCode)
        initPerUnrollCode = "" # reset initPerUnrollCode so that it is not inserted again

      # these 3 items need to be in the same set
      #  open gpr indexing
      #  accVgpr (need gpr indexing)
      #  close gpr indexing
      kStr = self.openmovaccVgpr(kernel, backupSgpr)
      # odd case, use + (1 iteration) for gpr index, but not necessary if index frequency is 1
      oddGprIndex = odd and (self.getAddrGprIdxIncrementFrequencyForStoreCInUnroll(kernel) > 1)
      kStr += self.getAccVgprCode(kernel, oddGprIndex)
      first, second = self.closemovaccVgpr(kernel, backupSgpr)
      kStr += first
      self.StoreCUnrollPreCode.addText(kStr)
      # put second part of close gpr indexing separately (for better scheduling)
      self.StoreCUnrollPreCode.addText(second)
      # Alpha
      kStr = ""
      for x in self.AlphaOpTemplate.items():
        kStr += str(x)

      if kStr != "":
        self.StoreCUnrollPreCode.addText(kStr)

      # count the number of items before StoreC (before beta)
      self.numItemsBeforeStoreC = len(list(self.StoreCUnrollPreCode.items()))

      # StoreC

      # put marker comment to recognize start point of StoreC code
      # this must be the first item in self.StoreCUnrollCode.
      self.StoreCUnrollCode.addComment0(self.StoreCUnrollStartComment)
      # add necessary dummy based on number of mfma instructions between local write items
      # put enough interval (=3) for LocalWritePerMfma == -1 case
      numMfma = 3 if kernel["LocalWritePerMfma"] == -1 else roundUp(1/kernel["LocalWritePerMfma"])
      n = self.numItemsBeforeStoreC - numMfma # first numMfma items are inserted at the start comment and following mfmas
      while n >= numMfma:
        self.StoreCUnrollCode.addText("")
        n -= numMfma

      # insert items in postProcessList between StoreC/AtomicAdd (StoreVectorWidth=1 only)
      imod = Code.Module()
      imod.addComment0(self.StoreCUnrollStoreStartComment)
      StartComment = str(imod)

      # Beta
      kStrBeta = ""
      for x in self.BetaOpTemplate.items():
        kStrBeta += str(x)
      # double complex case or num of store == 1 case, put beta instruction separately
      if kStrBeta != "" and (kernel["ProblemType"]["DestDataType"].isDoubleComplex() or self.getNumberOfStoreCInTemplate(kernel) == 1):
        # combine beta code with first StoreC comment to avoid generating beta before alpha
        self.StoreCUnrollCode.addText(kStrBeta + StartComment)
        kStrBeta = ""
        StartComment = ""

      # number of instructions(items) of increment code between MFMAs
      putCount =  1
      postProcessListIndex = 0
      # generate post process for StoreCInUnroll loop
      # 1) increment gpr indexing (new value in tmp). Put this as separate item in StoreCUnrollCode
      # 2-1) increment StoreC address  (new value in tmp)
      # 2-2) check enable count and apply new values when necessary
      postProcessList = []
      finalAddrIncList = []
      if needInc:
        postProcessList, finalAddrIncList = self.generatePostProcessForStoreCInUnrollLoop(kernel, needPost)

      for x in self.StoreCTemplate.items():
        kStr = ""
        if x == self.StoreCTemplate.items()[0]:
          kStr += kStrBeta + StartComment # combine beta code with first StoreC. first item case, add marker comment
          StartComment = ""
        strX = str(x)
        kStr += strX
        if x != self.StoreCTemplate.items()[-1]:
          # not the last StoreC
          # add postprocess code or empty between StoreC
          self.StoreCUnrollCode.addCode(kStr)
          end = kernel["StoreCInUnrollInterval"] - 1
          for i in range(end):
            if postProcessListIndex < len(postProcessList):
              self.StoreCUnrollCode.addText(postProcessList[postProcessListIndex])
              postProcessListIndex += 1
            else:
              self.StoreCUnrollCode.addText("") # add empty str to add interval between Store codes
        else:
          # last StoreC
          if not (kernel["StoreCInUnrollPostLoop"] and isLast):
            # last element and not StoreCInUnrollPostLoop+isLast case
            self.StoreCUnrollCode.addCode(kStr)
            # add remaining postprocess, finalAddrInc code in StoreCUnrollPostCode
            count = 0
            kStr = ""
            for i in range(postProcessListIndex, len(postProcessList)):
              kStr += postProcessList[i]
              count+=1
              if count == putCount:
                self.StoreCUnrollPostCode.addText(kStr)
                count = 0
                kStr = ""
            for i in range(len(finalAddrIncList)):
              kStr += finalAddrIncList[i]
              count+=1
              if count == putCount:
                self.StoreCUnrollPostCode.addText(kStr)
                count = 0
                kStr = ""
            if count > 0:
              self.StoreCUnrollPostCode.addText(kStr)
          else:
            # not last element or StoreCInUnrollPostLoop+isLast
            # add all remaining items in postProcessList and finalAddrInc code after the last StoreC (in the same item)
            for item in (postProcessList[postProcessListIndex:] + finalAddrIncList):
              kStr += item
            self.StoreCUnrollCode.addCode(kStr)