File: rocblas_matrix.cpp

package info (click to toggle)
rocblas 6.4.4-4
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,082,776 kB
  • sloc: cpp: 244,923; f90: 50,012; python: 50,003; sh: 24,630; asm: 8,917; makefile: 150; ansic: 107; xml: 36; awk: 14
file content (539 lines) | stat: -rw-r--r-- 21,984 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/* ************************************************************************
 * Copyright (C) 2024 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
 * ies of the Software, and to permit persons to whom the Software is furnished
 * to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
 * PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
 * CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * ************************************************************************ */

#include "rocblas_matrix.hpp"
#include "int64_helpers.hpp"
#include "rocblas_math.hpp"

__device__ inline uint64_t
    pseudo_random(size_t i, size_t j, size_t b, rocblas_int M, rocblas_int N, size_t offset = 0)
{
    uint64_t s = (i + j * M + b * M * N) * 6364136223846793005ULL + 1442695040888963407ULL;
    // Run a few extra iterations to make the generators diverge
    // in case the seeds are still poor (consecutive ints)
    for(int i = 0; i < 2 + offset; i++)
    {
        s ^= s << 13;
        s ^= s >> 7;
        s ^= s << 17;
    }
    return s;
}

template <typename T>
struct trig_functor
{
    __device__ T
        operator()(size_t i, size_t j, size_t b, rocblas_int M, rocblas_int N, bool seedReset)
    {
        size_t idx = i + j * M + b * M * N;
        return T(seedReset ? cos(idx) : sin(idx));
    }
};

template <typename T>
struct identity_functor
{
    __device__ T operator()(size_t i, size_t j, size_t, rocblas_int, rocblas_int, bool)
    {
        return i == j ? T(1) : T(0);
    }
};

template <typename T>
struct zero_functor
{
    __device__ T operator()(size_t, size_t, size_t, rocblas_int, rocblas_int, bool)
    {
        return T(0);
    }
};

template <typename T>
struct hpl_functor
{
    __device__ T operator()(size_t i, size_t j, size_t b, rocblas_int M, rocblas_int N, bool)
    {
        auto r = pseudo_random(i, j, b, M, N);
        return T(double(r) / double(std::numeric_limits<decltype(r)>::max()) - 0.5);
    }
};

template <>
struct hpl_functor<rocblas_bf8>
{
    const std::array<float, 121> normal_values_bf8
        = {-0.0000076294f, -0.0000152588f, -0.0000228882f, -0.0000305176f, -0.0000381470f,
           -0.0000457764f, -0.0000534058f, -0.0000610352f, -0.0000762939f, -0.0000915527f,
           -0.0001068115f, -0.0001220703f, -0.0001525879f, -0.0001831055f, -0.0002136230f,
           -0.0002441406f, -0.0003051758f, -0.0003662109f, -0.0004272461f, -0.0004882812f,
           -0.0006103516f, -0.0007324219f, -0.0008544922f, -0.0009765625f, -0.0012207031f,
           -0.0014648438f, -0.0017089844f, -0.0019531250f, -0.0024414062f, -0.0029296875f,
           -0.0034179688f, -0.0039062500f, -0.0048828125f, -0.0058593750f, -0.0068359375f,
           -0.0078125000f, -0.0097656250f, -0.0117187500f, -0.0136718750f, -0.0156250000f,
           -0.0195312500f, -0.0234375000f, -0.0273437500f, -0.0312500000f, -0.0390625000f,
           -0.0468750000f, -0.0546875000f, -0.0625000000f, -0.0781250000f, -0.0937500000f,
           -0.1093750000f, -0.1250000000f, -0.1562500000f, -0.1875000000f, -0.2187500000f,
           -0.2500000000f, -0.3125000000f, -0.3750000000f, -0.4375000000f, -0.5000000000f,
           0.0000000000f,  0.0000076294f,  0.0000152588f,  0.0000228882f,  0.0000305176f,
           0.0000381470f,  0.0000457764f,  0.0000534058f,  0.0000610352f,  0.0000762939f,
           0.0000915527f,  0.0001068115f,  0.0001220703f,  0.0001525879f,  0.0001831055f,
           0.0002136230f,  0.0002441406f,  0.0003051758f,  0.0003662109f,  0.0004272461f,
           0.0004882812f,  0.0006103516f,  0.0007324219f,  0.0008544922f,  0.0009765625f,
           0.0012207031f,  0.0014648438f,  0.0017089844f,  0.0019531250f,  0.0024414062f,
           0.0029296875f,  0.0034179688f,  0.0039062500f,  0.0048828125f,  0.0058593750f,
           0.0068359375f,  0.0078125000f,  0.0097656250f,  0.0117187500f,  0.0136718750f,
           0.0156250000f,  0.0195312500f,  0.0234375000f,  0.0273437500f,  0.0312500000f,
           0.0390625000f,  0.0468750000f,  0.0546875000f,  0.0625000000f,  0.0781250000f,
           0.0937500000f,  0.1093750000f,  0.1250000000f,  0.1562500000f,  0.1875000000f,
           0.2187500000f,  0.2500000000f,  0.3125000000f,  0.3750000000f,  0.4375000000f,
           0.5000000000f};

    __device__ rocblas_bf8
        operator()(size_t i, size_t j, size_t b, rocblas_int M, rocblas_int N, bool)
    {
        return rocblas_bf8(
            normal_values_bf8[pseudo_random(i, j, b, M, N) % normal_values_bf8.size()]);
    }
};

template <>
struct hpl_functor<rocblas_f8>
{
    const std::array<float, 113> normal_values_f8
        = {-0.0009765625f, -0.0019531250f, -0.0029296875f, -0.0039062500f, -0.0048828125f,
           -0.0058593750f, -0.0068359375f, -0.0078125000f, -0.0087890625f, -0.0097656250f,
           -0.0107421875f, -0.0117187500f, -0.0126953125f, -0.0136718750f, -0.0146484375f,
           -0.0156250000f, -0.0175781250f, -0.0195312500f, -0.0214843750f, -0.0234375000f,
           -0.0253906250f, -0.0273437500f, -0.0292968750f, -0.0312500000f, -0.0351562500f,
           -0.0390625000f, -0.0429687500f, -0.0468750000f, -0.0507812500f, -0.0546875000f,
           -0.0585937500f, -0.0625000000f, -0.0703125000f, -0.0781250000f, -0.0859375000f,
           -0.0937500000f, -0.1015625000f, -0.1093750000f, -0.1171875000f, -0.1250000000f,
           -0.1406250000f, -0.1562500000f, -0.1718750000f, -0.1875000000f, -0.2031250000f,
           -0.2187500000f, -0.2343750000f, -0.2500000000f, -0.2812500000f, -0.3125000000f,
           -0.3437500000f, -0.3750000000f, -0.4062500000f, -0.4375000000f, -0.4687500000f,
           -0.5000000000f, 0.0000000000f,  0.0009765625f,  0.0019531250f,  0.0029296875f,
           0.0039062500f,  0.0048828125f,  0.0058593750f,  0.0068359375f,  0.0078125000f,
           0.0087890625f,  0.0097656250f,  0.0107421875f,  0.0117187500f,  0.0126953125f,
           0.0136718750f,  0.0146484375f,  0.0156250000f,  0.0175781250f,  0.0195312500f,
           0.0214843750f,  0.0234375000f,  0.0253906250f,  0.0273437500f,  0.0292968750f,
           0.0312500000f,  0.0351562500f,  0.0390625000f,  0.0429687500f,  0.0468750000f,
           0.0507812500f,  0.0546875000f,  0.0585937500f,  0.0625000000f,  0.0703125000f,
           0.0781250000f,  0.0859375000f,  0.0937500000f,  0.1015625000f,  0.1093750000f,
           0.1171875000f,  0.1250000000f,  0.1406250000f,  0.1562500000f,  0.1718750000f,
           0.1875000000f,  0.2031250000f,  0.2187500000f,  0.2343750000f,  0.2500000000f,
           0.2812500000f,  0.3125000000f,  0.3437500000f,  0.3750000000f,  0.4062500000f,
           0.4375000000f,  0.4687500000f,  0.5000000000f};

    __device__ rocblas_f8
        operator()(size_t i, size_t j, size_t b, rocblas_int M, rocblas_int N, bool)
    {
        return rocblas_f8(normal_values_f8[pseudo_random(i, j, b, M, N) % normal_values_f8.size()]);
    }
};

template <typename T>
struct rand_int_functor
{
    __device__ T operator()(size_t i, size_t j, size_t b, rocblas_int M, rocblas_int N, bool)
    {
        return T(double(pseudo_random(i, j, b, M, N) % 10 + 1));
    }
};

template <typename T>
struct rand_int_zero_one_functor
{
    __device__ T operator()(size_t i, size_t j, size_t b, rocblas_int M, rocblas_int N, bool)
    {
        return T(double(pseudo_random(i, j, b, M, N) % 2));
    }
};

template <typename T>
struct rand_nan_functor
{
    template <typename UINT_T, int SIG, int EXP, typename REAL_T = T>
    __device__ __host__ REAL_T random_nan_data(uint64_t r)
    {
        static_assert(sizeof(UINT_T) == sizeof(REAL_T), "Type sizes do not match");
        union
        {
            UINT_T u;
            REAL_T fp;
        } x;
        do
            x.u = (UINT_T)r;
        while(!(x.u & (((UINT_T)1 << SIG) - 1))); // Reject Inf (mantissa == 0)
        x.u |= (((UINT_T)1 << EXP) - 1) << SIG; // Exponent = all 1's
        return x.fp; // NaN with random bits
    }
    __device__ T operator()(size_t i, size_t j, size_t b, rocblas_int M, rocblas_int N, bool)
    {
        return T(0);
    }
};

template <>
__device__ double rand_nan_functor<double>::operator()(
    size_t i, size_t j, size_t b, rocblas_int M, rocblas_int N, bool)
{
    return random_nan_data<uint64_t, 52, 11>(pseudo_random(i, j, b, M, N));
}
template <>
__device__ float rand_nan_functor<float>::operator()(
    size_t i, size_t j, size_t b, rocblas_int M, rocblas_int N, bool)
{
    return random_nan_data<uint32_t, 23, 8>(pseudo_random(i, j, b, M, N));
}
template <>
__device__ rocblas_half rand_nan_functor<rocblas_half>::operator()(
    size_t i, size_t j, size_t b, rocblas_int M, rocblas_int N, bool)
{
    return random_nan_data<uint16_t, 10, 5>(pseudo_random(i, j, b, M, N));
}
template <>
__device__ rocblas_bfloat16 rand_nan_functor<rocblas_bfloat16>::operator()(
    size_t i, size_t j, size_t b, rocblas_int M, rocblas_int N, bool)
{
    return random_nan_data<uint16_t, 7, 8>(pseudo_random(i, j, b, M, N));
}
template <>
__device__ rocblas_double_complex rand_nan_functor<rocblas_double_complex>::operator()(
    size_t i, size_t j, size_t b, rocblas_int M, rocblas_int N, bool)
{
    return rocblas_double_complex(
        random_nan_data<uint64_t, 52, 11, double>(pseudo_random(i, j, b, M, N, 0)),
        random_nan_data<uint64_t, 52, 11, double>(pseudo_random(i, j, b, M, N, 1)));
}
template <>
__device__ rocblas_float_complex rand_nan_functor<rocblas_float_complex>::operator()(
    size_t i, size_t j, size_t b, rocblas_int M, rocblas_int N, bool)
{
    return rocblas_float_complex(
        random_nan_data<uint32_t, 23, 8, float>(pseudo_random(i, j, b, M, N, 0)),
        random_nan_data<uint32_t, 23, 8, float>(pseudo_random(i, j, b, M, N, 1)));
}

template <>
struct rand_nan_functor<rocblas_f8>
{
    const rocblas_f8      value = rocblas_f8(rocblas_nan_rng()); // Single NaN
    __device__ rocblas_f8 operator()(size_t, size_t, size_t, rocblas_int, rocblas_int, bool)
    {
        return value;
    }
};

template <>
struct rand_nan_functor<rocblas_bf8>
{
    const rocblas_bf8      value = rocblas_bf8(rocblas_nan_rng{}); // Single NaN
    __device__ rocblas_bf8 operator()(size_t, size_t, size_t, rocblas_int, rocblas_int, bool)
    {
        return value;
    }
};

template <typename T>
struct non_rep_bf16_vals_functor
{
    const rocblas_half ieee_half_vals[4] = {2028, 2034, 2036, 2038};
    __device__ T       operator()(size_t i, size_t j, size_t, rocblas_int M, rocblas_int, bool)
    {
        return T(ieee_half_vals[(i + j * M) % 4]);
    }
};

template <typename T>
struct alt_impl_small_functor
{
    __device__ T operator()(size_t i, size_t j, size_t, rocblas_int M, rocblas_int, bool)
    {
        const rocblas_half ieee_half_small(0.0000607967376708984375);
        return T(ieee_half_small);
    }
};

template <typename T>
struct alt_impl_big_functor
{
    __device__ T operator()(size_t i, size_t j, size_t, rocblas_int M, rocblas_int, bool)
    {
        const rocblas_half ieee_half_large(65280.0);
        return T(ieee_half_large);
    }
};

template <int DIM_X, int DIM_Y, typename T, typename F>
ROCBLAS_KERNEL(DIM_X* DIM_Y)
rocblas_init_matrix_kernel(F                         f,
                           rocblas_int               M,
                           rocblas_int               N,
                           T*                        Aa,
                           rocblas_stride            offset,
                           int64_t                   lda,
                           rocblas_stride            stride,
                           rocblas_check_matrix_type matrix_type,
                           char                      uplo,
                           bool                      seedReset,
                           bool                      alternating_sign)
{
    rocblas_int i = blockIdx.x * blockDim.x + threadIdx.x;
    rocblas_int j = blockIdx.y * blockDim.y + threadIdx.y;
    rocblas_int b = blockIdx.z;
    if(i >= M || j >= N)
    {
        return;
    }
    auto* A     = load_ptr_batch(Aa, b, offset, stride);
    auto  value = f(i, j, b, M, N, seedReset);
    if(alternating_sign)
    {
        value = (i ^ j) & 1 ? value : negate(value);
    }
    if(matrix_type == rocblas_client_general_matrix)
    {
        A[i + j * lda] = value;
    }
    else
    {
        if(i == j)
        {
            A[i + j * lda]
                = (matrix_type == rocblas_client_hermitian_matrix) ? std::real(value) : value;
        }
        else if(j < i)
        {
            if(matrix_type == rocblas_client_hermitian_matrix)
            {
                A[i + j * lda] = value;
                A[j + i * lda] = conjugate(value);
            }
            else if(matrix_type == rocblas_client_symmetric_matrix)
            {
                A[i + j * lda] = A[j + i * lda] = value;
            }
            else if(matrix_type == rocblas_client_triangular_matrix)
            {
                A[uplo == 'U' ? j + i * lda : i + j * lda] = value;
                A[uplo == 'U' ? i + j * lda : j + i * lda] = T(0);
            }
            // TODO diagonally dominant?
        }
    }
}

template <typename T, typename F>
rocblas_status rocblas_init_matrix_template(F&&                             f,
                                            rocblas_handle                  handle,
                                            char                            uplo,
                                            rocblas_check_matrix_type       matrix_type,
                                            device_strided_batch_matrix<T>& dA,
                                            bool                            seedReset = false,
                                            bool alternating_sign                     = false)
{
    //Graph capture do not support any use of sync APIs.
    //Quick return: check numerics not supported
    if(handle->is_stream_in_capture_mode())
    {
        return rocblas_status_internal_error;
    }

    T*             A              = dA[0];
    int64_t        m_64           = dA.m();
    int64_t        n_64           = dA.n();
    int64_t        lda            = dA.lda();
    int64_t        batch_count_64 = dA.batch_count();
    rocblas_stride offset         = 0; // is this ever not zero?
    rocblas_stride stride         = dA.stride();

    //Quick return if possible. Not Argument error
    if(!m_64 || !n_64 || !batch_count_64 || !A)
        return rocblas_status_success;

    hipStream_t rocblas_stream = handle->get_stream();

    for(int64_t b_base = 0; b_base < batch_count_64; b_base += c_i64_grid_YZ_chunk)
    {
        auto    a_ptr       = adjust_ptr_batch(A, b_base, stride);
        int32_t batch_count = int32_t(std::min(batch_count_64 - b_base, c_i64_grid_YZ_chunk));

        for(int64_t n_base = 0; n_base < n_64; n_base += c_i64_grid_YZ_chunk)
        {
            int32_t n = int32_t(std::min(n_64 - n_base, c_i64_grid_YZ_chunk));

            rocblas_stride col_offset = offset + n_base * lda;

            for(int64_t m_base = 0; m_base < m_64; m_base += c_i64_grid_X_chunk)
            {
                int32_t m = int32_t(std::min(m_64 - m_base, c_i64_grid_X_chunk));

                rocblas_stride shift = col_offset + m_base;

                static constexpr int DIM_X    = 16;
                static constexpr int DIM_Y    = 16;
                rocblas_int          blocks_X = (m - 1) / DIM_X + 1;
                rocblas_int          blocks_Y = (n - 1) / DIM_Y + 1;

                dim3 blocks(blocks_X, blocks_Y, batch_count);
                dim3 threads(DIM_X, DIM_Y);

                ROCBLAS_LAUNCH_KERNEL((rocblas_init_matrix_kernel<DIM_X, DIM_Y>),
                                      blocks,
                                      threads,
                                      0,
                                      rocblas_stream,
                                      f,
                                      m,
                                      n,
                                      a_ptr,
                                      shift,
                                      lda,
                                      stride,
                                      matrix_type,
                                      uplo,
                                      seedReset,
                                      alternating_sign);
            }
        }
    }
    RETURN_IF_HIP_ERROR(hipStreamSynchronize(rocblas_stream));
    return rocblas_status_success;
}

template <typename T, bool altInit>
void rocblas_init_matrix(rocblas_handle                  handle,
                         device_strided_batch_matrix<T>& dA,
                         const Arguments&                arg,
                         rocblas_check_nan_init          nan_init,
                         rocblas_check_matrix_type       matrix_type,
                         bool                            seedReset,
                         bool                            alternating_sign)
{
    // TODO seedReset
    // seed is the same for every call to this routine

    if(nan_init == rocblas_client_alpha_sets_nan && rocblas_isnan(arg.alpha))
    {
        CHECK_HIP_ERROR(
            rocblas_init_matrix_template(rand_nan_functor<T>(), handle, arg.uplo, matrix_type, dA));
    }
    else if(nan_init == rocblas_client_beta_sets_nan && rocblas_isnan(arg.beta))
    {
        CHECK_HIP_ERROR(
            rocblas_init_matrix_template(rand_nan_functor<T>(), handle, arg.uplo, matrix_type, dA));
    }
    else if(arg.initialization == rocblas_initialization::hpl)
    {
        CHECK_HIP_ERROR(rocblas_init_matrix_template(
            hpl_functor<T>(), handle, arg.uplo, matrix_type, dA, false, alternating_sign));
    }
    else if(arg.initialization == rocblas_initialization::rand_int)
    {
        CHECK_HIP_ERROR(rocblas_init_matrix_template(
            rand_int_functor<T>(), handle, arg.uplo, matrix_type, dA, false, alternating_sign));
    }
    else if(arg.initialization == rocblas_initialization::rand_int_zero_one)
    {
        CHECK_HIP_ERROR(rocblas_init_matrix_template(rand_int_zero_one_functor<T>(),
                                                     handle,
                                                     arg.uplo,
                                                     matrix_type,
                                                     dA,
                                                     false,
                                                     alternating_sign));
    }
    else if(arg.initialization == rocblas_initialization::trig_float)
    {
        CHECK_HIP_ERROR(rocblas_init_matrix_template(
            trig_functor<T>(), handle, arg.uplo, matrix_type, dA, seedReset));
    }
    else if(arg.initialization == rocblas_initialization::denorm)
    {
        if(altInit)
            CHECK_HIP_ERROR(rocblas_init_matrix_template(
                alt_impl_small_functor<T>(), handle, arg.uplo, matrix_type, dA));
        else
            CHECK_HIP_ERROR(rocblas_init_matrix_template(
                alt_impl_big_functor<T>(), handle, arg.uplo, matrix_type, dA));
    }
    else if(arg.initialization == rocblas_initialization::denorm2)
    {
        if(altInit)
            CHECK_HIP_ERROR(rocblas_init_matrix_template(
                non_rep_bf16_vals_functor<T>(), handle, arg.uplo, matrix_type, dA));
        else
            CHECK_HIP_ERROR(rocblas_init_matrix_template(
                identity_functor<T>(), handle, arg.uplo, matrix_type, dA));
    }
    else if(arg.initialization == rocblas_initialization::zero)
    {
        CHECK_HIP_ERROR(hipMemset(dA[0], 0, sizeof(T) * dA.nmemb()));
    }
    else
    {
#ifdef GOOGLE_TEST
        FAIL() << "unknown initialization type";
        return;
#else
        rocblas_cerr << "unknown initialization type" << std::endl;
        rocblas_abort();
#endif
    }
}

#ifdef INST
#error INST IS ALREADY DEFINED
#endif
#define INST(T, altInit)                                                                 \
    template void rocblas_init_matrix<T, altInit>(rocblas_handle handle,                 \
                                                  device_strided_batch_matrix<T> & dA,   \
                                                  const Arguments&          arg,         \
                                                  rocblas_check_nan_init    nan_init,    \
                                                  rocblas_check_matrix_type matrix_type, \
                                                  bool                      seedReset,   \
                                                  bool                      alternate_sign)

INST(signed char, true);
INST(int, true);
INST(float, true);
INST(double, true);
INST(rocblas_float_complex, true);
INST(rocblas_double_complex, true);
INST(rocblas_half, true);
INST(rocblas_bfloat16, true);
INST(rocblas_f8, true);
INST(rocblas_bf8, true);

INST(signed char, false);
INST(int, false);
INST(float, false);
INST(double, false);
INST(rocblas_float_complex, false);
INST(rocblas_double_complex, false);
INST(rocblas_half, false);
INST(rocblas_bfloat16, false);
INST(rocblas_f8, false);
INST(rocblas_bf8, false);

#undef INST