1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
/* ************************************************************************
* Copyright (C) 2018-2025 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
* ies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ************************************************************************ */
#pragma once
#include "testing_common.hpp"
template <typename T>
void testing_spr2_bad_arg(const Arguments& arg)
{
auto rocblas_spr2_fn = arg.api & c_API_FORTRAN ? rocblas_spr2<T, true> : rocblas_spr2<T, false>;
auto rocblas_spr2_fn_64
= arg.api & c_API_FORTRAN ? rocblas_spr2_64<T, true> : rocblas_spr2_64<T, false>;
for(auto pointer_mode : {rocblas_pointer_mode_host, rocblas_pointer_mode_device})
{
rocblas_local_handle handle{arg};
CHECK_ROCBLAS_ERROR(rocblas_set_pointer_mode(handle, pointer_mode));
rocblas_fill uplo = rocblas_fill_upper;
int64_t N = 100;
int64_t incx = 1;
int64_t incy = 1;
DEVICE_MEMCHECK(device_vector<T>, alpha_d, (1));
DEVICE_MEMCHECK(device_vector<T>, zero_d, (1));
const T alpha_h(1), zero_h(0);
const T* alpha = &alpha_h;
const T* zero = &zero_h;
if(pointer_mode == rocblas_pointer_mode_device)
{
CHECK_HIP_ERROR(hipMemcpy(alpha_d, alpha, sizeof(*alpha), hipMemcpyHostToDevice));
alpha = alpha_d;
CHECK_HIP_ERROR(hipMemcpy(zero_d, zero, sizeof(*zero), hipMemcpyHostToDevice));
zero = zero_d;
}
// Allocate device memory
DEVICE_MEMCHECK(device_matrix<T>, dAp_1, (1, rocblas_packed_matrix_size(N), 1));
DEVICE_MEMCHECK(device_vector<T>, dx, (N, incx));
DEVICE_MEMCHECK(device_vector<T>, dy, (N, incy));
DAPI_EXPECT(rocblas_status_invalid_handle,
rocblas_spr2_fn,
(nullptr, uplo, N, alpha, dx, incx, dy, incy, dAp_1));
DAPI_EXPECT(rocblas_status_invalid_value,
rocblas_spr2_fn,
(handle, rocblas_fill_full, N, alpha, dx, incx, dy, incy, dAp_1));
DAPI_EXPECT(rocblas_status_invalid_pointer,
rocblas_spr2_fn,
(handle, uplo, N, nullptr, dx, incx, dy, incy, dAp_1));
if(pointer_mode == rocblas_pointer_mode_host)
{
DAPI_EXPECT(rocblas_status_invalid_pointer,
rocblas_spr2_fn,
(handle, uplo, N, alpha, nullptr, incx, dy, incy, dAp_1));
DAPI_EXPECT(rocblas_status_invalid_pointer,
rocblas_spr2_fn,
(handle, uplo, N, alpha, dx, incx, nullptr, incy, dAp_1));
DAPI_EXPECT(rocblas_status_invalid_pointer,
rocblas_spr2_fn,
(handle, uplo, N, alpha, dx, incx, dy, incy, nullptr));
}
// If N is 64 bit
if(arg.api & c_API_64)
{
int64_t n_over_int32 = 2147483649;
DAPI_EXPECT(rocblas_status_invalid_size,
rocblas_spr2_fn,
(handle, uplo, n_over_int32, alpha, dx, incx, dy, incy, dAp_1));
}
// N==0 all pointers may be null
DAPI_CHECK(rocblas_spr2_fn,
(handle, uplo, 0, nullptr, nullptr, incx, nullptr, incy, nullptr));
// alpha==0 all pointers may be null
DAPI_CHECK(rocblas_spr2_fn, (handle, uplo, N, zero, nullptr, incx, nullptr, incy, nullptr));
}
}
template <typename T>
void testing_spr2(const Arguments& arg)
{
auto rocblas_spr2_fn = arg.api & c_API_FORTRAN ? rocblas_spr2<T, true> : rocblas_spr2<T, false>;
auto rocblas_spr2_fn_64
= arg.api & c_API_FORTRAN ? rocblas_spr2_64<T, true> : rocblas_spr2_64<T, false>;
int64_t N = arg.N;
int64_t incx = arg.incx;
int64_t incy = arg.incy;
T h_alpha = arg.get_alpha<T>();
rocblas_fill uplo = char2rocblas_fill(arg.uplo);
rocblas_local_handle handle{arg};
// argument check before allocating invalid memory
if(N < 0 || !incx || !incy)
{
DAPI_EXPECT(rocblas_status_invalid_size,
rocblas_spr2_fn,
(handle, uplo, N, nullptr, nullptr, incx, nullptr, incy, nullptr));
return;
}
size_t size_A = rocblas_packed_matrix_size(N);
// Naming: `h` is in CPU (host) memory(eg hAp_1), `d` is in GPU (device) memory (eg dAp_1).
// Allocate host memory
HOST_MEMCHECK(host_matrix<T>, hA, (N, N, N));
HOST_MEMCHECK(host_matrix<T>, hAp_1, (1, size_A, 1));
HOST_MEMCHECK(host_matrix<T>, hAp_2, (1, size_A, 1));
HOST_MEMCHECK(host_matrix<T>, hAp_gold, (1, size_A, 1));
HOST_MEMCHECK(host_vector<T>, hx, (N, incx));
HOST_MEMCHECK(host_vector<T>, hy, (N, incy));
HOST_MEMCHECK(host_vector<T>, halpha, (1));
halpha[0] = h_alpha;
// Allocate device memory
DEVICE_MEMCHECK(device_matrix<T>, dAp_1, (1, size_A, 1));
DEVICE_MEMCHECK(device_matrix<T>, dAp_2, (1, size_A, 1));
DEVICE_MEMCHECK(device_vector<T>, dx, (N, incx));
DEVICE_MEMCHECK(device_vector<T>, dy, (N, incy));
DEVICE_MEMCHECK(device_vector<T>, d_alpha, (1));
// Initialize data on host memory
rocblas_init_matrix(
hA, arg, rocblas_client_never_set_nan, rocblas_client_symmetric_matrix, true);
rocblas_init_vector(hx, arg, rocblas_client_alpha_sets_nan, false, true);
rocblas_init_vector(hy, arg, rocblas_client_alpha_sets_nan);
// Helper function to convert regular matrix `hA` to packed matrix `hAp`
regular_to_packed(uplo == rocblas_fill_upper, hA, hAp_1, N);
// copy matrix is easy in STL; hAp_gold = hAp_1: save a copy in hAp_gold which will be output of
// CPU BLAS
hAp_gold = hAp_1;
hAp_2 = hAp_1;
// copy data from CPU to device
CHECK_HIP_ERROR(dAp_1.transfer_from(hAp_1));
CHECK_HIP_ERROR(dx.transfer_from(hx));
CHECK_HIP_ERROR(dy.transfer_from(hy));
double cpu_time_used;
double rocblas_error_host;
double rocblas_error_device;
if(arg.unit_check || arg.norm_check)
{
// copy data from CPU to device
CHECK_HIP_ERROR(dAp_2.transfer_from(hAp_1));
CHECK_HIP_ERROR(d_alpha.transfer_from(halpha));
CHECK_ROCBLAS_ERROR(rocblas_set_pointer_mode(handle, rocblas_pointer_mode_host));
handle.pre_test(arg);
DAPI_CHECK(rocblas_spr2_fn, (handle, uplo, N, &h_alpha, dx, incx, dy, incy, dAp_1));
handle.post_test(arg);
CHECK_ROCBLAS_ERROR(rocblas_set_pointer_mode(handle, rocblas_pointer_mode_device));
handle.pre_test(arg);
DAPI_CHECK(rocblas_spr2_fn, (handle, uplo, N, d_alpha, dx, incx, dy, incy, dAp_2));
handle.post_test(arg);
if(arg.repeatability_check)
{
HOST_MEMCHECK(host_matrix<T>, hAp_copy, (1, size_A, 1));
CHECK_HIP_ERROR(hAp_2.transfer_from(dAp_2));
// multi-GPU support
int device_id, device_count;
CHECK_HIP_ERROR(limit_device_count(device_count, (int)arg.devices));
for(int dev_id = 0; dev_id < device_count; dev_id++)
{
CHECK_HIP_ERROR(hipGetDevice(&device_id));
if(device_id != dev_id)
CHECK_HIP_ERROR(hipSetDevice(dev_id));
//New rocblas handle for new device
rocblas_local_handle handle_copy{arg};
// Allocate device memory
DEVICE_MEMCHECK(device_matrix<T>, dAp_2_copy, (1, size_A, 1));
DEVICE_MEMCHECK(device_vector<T>, dx_copy, (N, incx));
DEVICE_MEMCHECK(device_vector<T>, dy_copy, (N, incy));
DEVICE_MEMCHECK(device_vector<T>, d_alpha_copy, (1));
// copy data from CPU to device
CHECK_HIP_ERROR(dx_copy.transfer_from(hx));
CHECK_HIP_ERROR(dy_copy.transfer_from(hy));
CHECK_ROCBLAS_ERROR(
rocblas_set_pointer_mode(handle_copy, rocblas_pointer_mode_device));
for(int runs = 0; runs < arg.iters; runs++)
{
CHECK_HIP_ERROR(dAp_2_copy.transfer_from(hAp_1));
DAPI_CHECK(rocblas_spr2_fn,
(handle_copy,
uplo,
N,
d_alpha_copy,
dx_copy,
incx,
dy_copy,
incy,
dAp_2_copy));
CHECK_HIP_ERROR(hAp_copy.transfer_from(dAp_2_copy));
unit_check_general<T>(1, size_A, 1, hAp_2, hAp_copy);
}
}
return;
}
// CPU BLAS
cpu_time_used = get_time_us_no_sync();
ref_spr2<T>(uplo, N, h_alpha, hx, incx, hy, incy, hAp_gold);
cpu_time_used = get_time_us_no_sync() - cpu_time_used;
// copy output from device to CPU
CHECK_HIP_ERROR(hAp_1.transfer_from(dAp_1));
CHECK_HIP_ERROR(hAp_2.transfer_from(dAp_2));
if(arg.unit_check)
{
unit_check_general<T>(1, size_A, 1, hAp_gold, hAp_1);
unit_check_general<T>(1, size_A, 1, hAp_gold, hAp_2);
}
if(arg.norm_check)
{
rocblas_error_host = norm_check_general<T>('F', 1, size_A, 1, hAp_gold, hAp_1);
rocblas_error_device = norm_check_general<T>('F', 1, size_A, 1, hAp_gold, hAp_2);
}
}
if(arg.timing)
{
double gpu_time_used;
int number_cold_calls = arg.cold_iters;
int total_calls = number_cold_calls + arg.iters;
CHECK_ROCBLAS_ERROR(rocblas_set_pointer_mode(handle, rocblas_pointer_mode_host));
hipStream_t stream;
CHECK_ROCBLAS_ERROR(rocblas_get_stream(handle, &stream));
for(int iter = 0; iter < total_calls; iter++)
{
if(iter == number_cold_calls)
gpu_time_used = get_time_us_sync(stream);
DAPI_DISPATCH(rocblas_spr2_fn, (handle, uplo, N, &h_alpha, dx, incx, dy, incy, dAp_1));
}
gpu_time_used = get_time_us_sync(stream) - gpu_time_used; // in microseconds
ArgumentModel<e_uplo, e_N, e_alpha, e_incx, e_incy>{}.log_args<T>(rocblas_cout,
arg,
gpu_time_used,
spr2_gflop_count<T>(N),
spr2_gbyte_count<T>(N),
cpu_time_used,
rocblas_error_host,
rocblas_error_device);
}
}
|