1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
|
/* ************************************************************************
* Copyright (C) 2016-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
* ies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ************************************************************************ */
#ifndef ROCBLAS_FLOAT8_H
#define ROCBLAS_FLOAT8_H
#if __cplusplus < 201103L || (!defined(__HCC__) && !defined(__HIPCC__))
/*! \brief Struct to represent a 8 bit floating-point number. */
typedef struct
{
uint8_t data;
} rocblas_f8;
typedef struct
{
uint8_t data;
} rocblas_bf8;
#else // __cplusplus < 201103L || (!defined(__HCC__) && !defined(__HIPCC__))
#define HIP_HOST_DEVICE __host__ __device__
#define HIP_HOST __host__
#define HIP_DEVICE __device__
// We are clipping in down conversion by default
#define rocblas_F8_downcast_clipping 1
namespace rocblas_hip_f8_impl
{
template <int wm, int we, typename T, bool negative_zero_nan, bool clip>
HIP_HOST_DEVICE uint8_t cast_to_f8(T _x, bool stoch = false, uint32_t rng = 0);
template <int wm, int we, typename T, bool negative_zero_nan>
HIP_HOST_DEVICE T cast_from_f8(uint8_t x);
} // namespace rocblas_hip_f8_impl
#include "rocblas_hip_f8_impl.h"
static __device__ bool rocblas_hip_f8_bias_mode_bit_device = true;
static bool rocblas_hip_f8_bias_mode_bit_host = true;
struct ROCBLAS_EXPORT rocblas_f8
{
uint8_t data;
enum class rocblas_hip_f8_rounding_mode
{
standard,
stochastic
};
// default constructor
HIP_HOST_DEVICE rocblas_f8() = default;
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// device specific optimized F8 down-conversion code
template <bool stochastic_rounding = false>
static HIP_DEVICE uint8_t cast_to_f8_from_f32(float v, uint32_t rng = 0)
{
uint8_t i8data;
union
{
float fval;
uint32_t i32val;
uint8_t i8val[4]; // NOTE: not endian independent
} val;
uint32_t ival = 0;
val.fval = v;
#ifdef rocblas_F8_downcast_clipping
if((val.i32val & 0x7F800000) != 0x7F800000) /// propagate NAN/INF, no clipping
val.fval = __builtin_amdgcn_fmed3f(val.fval, 240.0, -240.0);
#endif
if(stochastic_rounding)
{
ival = __builtin_amdgcn_cvt_sr_fp8_f32(val.fval, rng, ival, 0); // 0 pos
val.i32val = ival;
i8data = val.i8val[0]; // little endian
}
else // RNE CVT
{
ival = __builtin_amdgcn_cvt_pk_fp8_f32(
val.fval, val.fval, ival, false); // false -> WORD0
val.i32val = ival;
i8data = val.i8val[0];
}
return i8data;
}
#endif // __gfx940__
// constructor from float
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// NOTE: ON-DEVICE... always optimal bias
explicit HIP_DEVICE rocblas_f8(float v,
rocblas_hip_f8_rounding_mode rm
= rocblas_hip_f8_rounding_mode::standard,
uint32_t rng = 0)
{
// runtime branch, use cast_to_f8_from_f32 if want to avoid it
if(rm == rocblas_hip_f8_rounding_mode::stochastic)
data = cast_to_f8_from_f32<true>(v, rng);
else
data = cast_to_f8_from_f32<false>(v);
}
// Host only implementation using s/w simulation
explicit HIP_HOST
#else
// both Host and DEVICE for non-gfx940 using s/w simulation
explicit HIP_HOST_DEVICE
#endif
rocblas_f8(float v,
rocblas_hip_f8_rounding_mode rm = rocblas_hip_f8_rounding_mode::standard,
uint32_t rng = 0)
{
#ifdef rocblas_F8_downcast_clipping
data = rocblas_hip_f8_impl::
cast_to_f8<3, 4, float, true /*negative_zero_nan*/, true /*clip*/>(
v, (rm == rocblas_hip_f8_rounding_mode::stochastic), rng);
#else // rocblas_F8_downcast_clipping
data = rocblas_hip_f8_impl::
cast_to_f8<3, 4, float, true /*negative_zero_nan*/, false /*clip*/>(
v, (rm == rocblas_hip_f8_rounding_mode::stochastic), rng);
#endif // rocblas_F8_downcast_clipping
}
// Constructor from half
explicit HIP_HOST_DEVICE rocblas_f8(_Float16 v,
rocblas_hip_f8_rounding_mode rm
= rocblas_hip_f8_rounding_mode::standard,
uint32_t rng = 0)
: rocblas_f8((float)v, rm, rng)
{
}
// constructor from bfloat16
explicit HIP_HOST_DEVICE rocblas_f8(rocblas_bfloat16 v,
rocblas_hip_f8_rounding_mode rm
= rocblas_hip_f8_rounding_mode::standard,
uint32_t rng = 0)
: rocblas_f8((float)v, rm, rng)
{
}
// constructor from int
explicit HIP_HOST_DEVICE rocblas_f8(int v,
rocblas_hip_f8_rounding_mode rm
= rocblas_hip_f8_rounding_mode::standard,
uint32_t rng = 0)
: rocblas_f8((float)v, rm, rng)
{
}
// constructor from double
explicit HIP_HOST_DEVICE rocblas_f8(double v,
rocblas_hip_f8_rounding_mode rm
= rocblas_hip_f8_rounding_mode::standard,
uint32_t rng = 0)
: rocblas_f8((float)v, rm, rng)
{
}
// convert to float
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// upcast using device specific intrinsic
explicit inline HIP_DEVICE operator float() const
{
float fval;
uint32_t i32val = static_cast<uint32_t>(data);
// upcast
asm volatile("v_cvt_f32_fp8 %0, %1 src0_sel:BYTE_0" : "=v"(fval) : "v"(i32val));
return fval;
}
explicit inline HIP_HOST operator float() const
#else // non gfx940
explicit inline HIP_HOST_DEVICE operator float() const
#endif
{
return rocblas_hip_f8_impl::cast_from_f8<3, 4, float, true /*negative_zero_nan*/>(data);
}
// convert to half
explicit inline HIP_HOST_DEVICE operator _Float16() const
{
return _Float16(float(*this)); // convert to float, then convert to f16
}
// convert to bfloat16
explicit inline HIP_HOST_DEVICE operator rocblas_bfloat16() const
{
return rocblas_bfloat16(float(*this)); // convert to float, then convert to f16
}
// check for zero
inline HIP_HOST_DEVICE bool is_zero() const
{
return data == 0x00;
}
// check for nan
inline HIP_HOST_DEVICE bool is_nan() const
{
return data == 0x80;
}
// check for inf
inline HIP_HOST_DEVICE bool is_inf() const
{
return data == 0x80;
}
// assignment overloading only from the same F8 types
inline __host__ __device__ rocblas_f8& operator=(const rocblas_f8& a)
{
data = a.data;
return *this;
}
};
struct ROCBLAS_EXPORT rocblas_bf8
{
uint8_t data;
enum class rocblas_hip_f8_rounding_mode
{
standard,
stochastic
};
// default constructor
HIP_HOST_DEVICE rocblas_bf8() = default;
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// device specific optimized F8 down-conversion code
template <bool stochastic_rounding = false>
static HIP_DEVICE uint8_t cast_to_bf8_from_f32(float v, uint32_t rng = 0)
{
uint8_t i8data;
union
{
float fval;
uint32_t i32val;
uint8_t i8val[4]; // NOTE: not endian independent
} val;
uint32_t ival = 0;
val.fval = v;
#ifdef rocblas_F8_downcast_clipping
if((val.i32val & 0x7F800000) != 0x7F800000) // propagate NAN/INF, no clipping
val.fval = __builtin_amdgcn_fmed3f(val.fval, 57344.0, -57344.0);
#endif
if(stochastic_rounding)
{
ival = __builtin_amdgcn_cvt_sr_bf8_f32(val.fval, rng, ival, 0); // 0 pos
val.i32val = ival;
i8data = val.i8val[0]; // little endian
}
else // RNE CVT
{
ival = __builtin_amdgcn_cvt_pk_bf8_f32(
val.fval, val.fval, ival, false); // false -> WORD0
val.i32val = ival;
i8data = val.i8val[0];
}
return i8data;
}
#endif // __gfx940__
// constructor from float
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// NOTE: ON-DEVICE... always optimal bias
explicit HIP_DEVICE rocblas_bf8(float v,
rocblas_hip_f8_rounding_mode rm
= rocblas_hip_f8_rounding_mode::standard,
uint32_t rng = 0)
{
// runtime branch, use cast_to_f8_from_f32 if want to avoid it
if(rm == rocblas_hip_f8_rounding_mode::stochastic)
data = cast_to_bf8_from_f32<true>(v, rng);
else
data = cast_to_bf8_from_f32<false>(v);
}
// Host only implementation using s/w simulation
explicit HIP_HOST
#else
// both Host and DEVICE for non-gfx940 using s/w simulation
explicit HIP_HOST_DEVICE
#endif
rocblas_bf8(float v,
rocblas_hip_f8_rounding_mode rm = rocblas_hip_f8_rounding_mode::standard,
uint32_t rng = 0)
{
#ifdef rocblas_F8_downcast_clipping
data = rocblas_hip_f8_impl::
cast_to_f8<2, 5, float, true /*negative_zero_nan*/, true /*clip*/>(
v, (rm == rocblas_hip_f8_rounding_mode::stochastic), rng);
#else
data = rocblas_hip_f8_impl::
cast_to_f8<2, 5, float, true /*negative_zero_nan*/, false /*clip*/>(
v, (rm == rocblas_hip_f8_rounding_mode::stochastic), rng);
#endif // rocblas_F8_downcast_clipping
}
// Constructor from half
explicit HIP_HOST_DEVICE rocblas_bf8(_Float16 v,
rocblas_hip_f8_rounding_mode rm
= rocblas_hip_f8_rounding_mode::standard,
uint32_t rng = 0)
: rocblas_bf8((float)v, rm, rng)
{
}
// constructor from bfloat16
explicit HIP_HOST_DEVICE rocblas_bf8(rocblas_bfloat16 v,
rocblas_hip_f8_rounding_mode rm
= rocblas_hip_f8_rounding_mode::standard,
uint32_t rng = 0)
: rocblas_bf8((float)v, rm, rng)
{
}
// constructor from int
explicit HIP_HOST_DEVICE rocblas_bf8(int v,
rocblas_hip_f8_rounding_mode rm
= rocblas_hip_f8_rounding_mode::standard,
uint32_t rng = 0)
: rocblas_bf8((float)v, rm, rng)
{
}
// constructor from double
explicit HIP_HOST_DEVICE rocblas_bf8(double v,
rocblas_hip_f8_rounding_mode rm
= rocblas_hip_f8_rounding_mode::standard,
uint32_t rng = 0)
: rocblas_bf8((float)v, rm, rng)
{
}
// convert to float
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// upcast using device specific intrinsic
explicit inline HIP_DEVICE operator float() const
{
float fval;
uint32_t i32val = static_cast<uint32_t>(data);
// upcast
asm volatile("v_cvt_f32_bf8 %0, %1 src0_sel:BYTE_0" : "=v"(fval) : "v"(i32val));
return fval;
}
explicit inline HIP_HOST operator float() const
#else // non gfx940
explicit inline HIP_HOST_DEVICE operator float() const
#endif
{
return rocblas_hip_f8_impl::cast_from_f8<2, 5, float, true /*negative_zero_nan*/>(data);
}
// convert to half
explicit inline HIP_HOST_DEVICE operator _Float16() const
{
return _Float16(float(*this)); // convert to float, then convert to f16
}
// convert to bfloat16
explicit inline HIP_HOST_DEVICE operator rocblas_bfloat16() const
{
return rocblas_bfloat16(float(*this)); // convert to float, then convert to f16
}
// check for zero
inline HIP_HOST_DEVICE bool is_zero() const
{
return data == 0x00;
}
// check for nan
inline HIP_HOST_DEVICE bool is_nan() const
{
return data == 0x80;
}
// check for inf
inline HIP_HOST_DEVICE bool is_inf() const
{
return data == 0x80;
}
// assignment overloading only from the same F8 types
inline __host__ __device__ rocblas_bf8& operator=(const rocblas_bf8& a)
{
data = a.data;
return *this;
}
};
namespace std
{
inline rocblas_f8 sin(rocblas_f8 a)
{
return rocblas_f8(sinf(float(a)));
}
inline rocblas_f8 cos(rocblas_f8 a)
{
return rocblas_f8(cosf(float(a)));
}
inline rocblas_bf8 sin(rocblas_bf8 a)
{
return rocblas_bf8(sinf(float(a)));
}
inline rocblas_bf8 cos(rocblas_bf8 a)
{
return rocblas_bf8(cosf(float(a)));
}
__device__ __host__ constexpr rocblas_f8 real(const rocblas_f8& a)
{
return a;
}
__device__ __host__ constexpr rocblas_bf8 real(const rocblas_bf8& a)
{
return a;
}
}
// Special operator overloading
inline std::ostream& operator<<(std::ostream& os, const rocblas_f8& f8)
{
return os << float(f8);
}
inline std::ostream& operator<<(std::ostream& os, const rocblas_bf8& bf8)
{
return os << float(bf8);
}
// all + operator overloading with mixed types
// mixed types, always converts to f32, does computation in f32, and returns float
inline __host__ __device__ float operator+(const float fa, rocblas_f8 b)
{
return (fa + float(b));
}
inline __host__ __device__ float operator+(const float fa, rocblas_bf8 b)
{
return (fa + float(b));
}
inline __host__ __device__ float operator+(rocblas_f8 a, const float fb)
{
return (float(a) + fb);
}
inline __host__ __device__ float operator+(rocblas_bf8 a, const float fb)
{
return (float(a) + fb);
}
inline __host__ __device__ float operator+(rocblas_f8 a, rocblas_bf8 b)
{
return (float(a) + float(b));
}
inline __host__ __device__ float operator+(rocblas_bf8 a, rocblas_f8 b)
{
return (float(a) + float(b));
}
inline __host__ __device__ rocblas_f8 operator+(rocblas_f8 a, rocblas_f8 b)
{
return rocblas_f8(float(a) + float(b));
}
inline __host__ __device__ rocblas_bf8 operator+(rocblas_bf8 a, rocblas_bf8 b)
{
return rocblas_bf8(float(a) + float(b));
}
inline __host__ __device__ rocblas_f8& operator+=(rocblas_f8& a, rocblas_f8 b)
{
return a = rocblas_f8(float(a) + float(b));
}
inline __host__ __device__ rocblas_bf8& operator+=(rocblas_bf8& a, rocblas_bf8 b)
{
return a = rocblas_bf8(float(a) + float(b));
}
// overloading multiplication, always returns float,
inline __host__ __device__ float operator*(rocblas_f8 a, rocblas_f8 b)
{
return float(a) * float(b);
}
inline __host__ __device__ float operator*(float a, rocblas_f8 b)
{
return (a * float(b));
}
inline __host__ __device__ float operator*(rocblas_f8 a, float b)
{
return (float(a) * b);
}
inline __host__ __device__ float operator*(int32_t a, rocblas_f8 b)
{
return ((float)a * float(b));
}
inline __host__ __device__ float operator*(double a, rocblas_f8 b)
{
return ((float)a * float(b));
}
inline __host__ __device__ float operator*(rocblas_bf8 a, rocblas_bf8 b)
{
return float(a) * float(b);
}
inline __host__ __device__ float operator*(float a, rocblas_bf8 b)
{
return (a * float(b));
}
inline __host__ __device__ float operator*(rocblas_bf8 a, float b)
{
return (float(a) * b);
}
inline __host__ __device__ float operator*(int32_t a, rocblas_bf8 b)
{
return ((float)a * float(b));
}
inline __host__ __device__ float operator*(double a, rocblas_bf8 b)
{
return ((float)a * float(b));
}
// overloading for mixed f8 and bf8 types
inline __host__ __device__ float operator*(rocblas_f8 a, rocblas_bf8 b)
{
return float(a) * float(b);
}
inline __host__ __device__ float operator*(rocblas_bf8 a, rocblas_f8 b)
{
return float(a) * float(b);
}
// all - operator overloading with mixed types
// mixed types, always converts to f32, does computation in f32, and returns float
inline __host__ __device__ float operator-(const float fa, rocblas_f8 b)
{
return (fa - float(b));
}
inline __host__ __device__ float operator-(const float fa, rocblas_bf8 b)
{
return (fa - float(b));
}
inline __host__ __device__ float operator-(rocblas_f8 a, const float fb)
{
return (float(a) - fb);
}
inline __host__ __device__ float operator-(rocblas_bf8 a, const float fb)
{
return (float(a) - fb);
}
inline __host__ __device__ float operator-(rocblas_f8 a, rocblas_bf8 b)
{
return (float(a) - float(b));
}
inline __host__ __device__ float operator-(rocblas_bf8 a, rocblas_f8 b)
{
return (float(a) - float(b));
}
inline __host__ __device__ rocblas_f8 operator-(rocblas_f8 a, rocblas_f8 b)
{
return rocblas_f8(float(a) - float(b));
}
inline __host__ __device__ rocblas_bf8 operator-(rocblas_bf8 a, rocblas_bf8 b)
{
return rocblas_bf8(float(a) - float(b));
}
inline __host__ __device__ rocblas_f8& operator-=(rocblas_f8& a, rocblas_f8 b)
{
return a = rocblas_f8(float(a) - float(b));
}
inline __host__ __device__ rocblas_bf8& operator-=(rocblas_bf8& a, rocblas_bf8 b)
{
return a = rocblas_bf8(float(a) - float(b));
}
// overloading division, always returns float,
inline __host__ __device__ float operator/(rocblas_f8 a, rocblas_f8 b)
{
return float(a) / float(b);
}
inline __host__ __device__ float operator/(float a, rocblas_f8 b)
{
return (a / float(b));
}
inline __host__ __device__ float operator/(rocblas_f8 a, float b)
{
return (float(a) / b);
}
inline __host__ __device__ float operator/(int32_t a, rocblas_f8 b)
{
return ((float)a / float(b));
}
inline __host__ __device__ float operator/(double a, rocblas_f8 b)
{
return ((float)a / float(b));
}
inline __host__ __device__ float operator/(rocblas_bf8 a, rocblas_bf8 b)
{
return float(a) / float(b);
}
inline __host__ __device__ float operator/(float a, rocblas_bf8 b)
{
return (a / float(b));
}
inline __host__ __device__ float operator/(rocblas_bf8 a, float b)
{
return (float(a) / b);
}
inline __host__ __device__ float operator/(int32_t a, rocblas_bf8 b)
{
return ((float)a / float(b));
}
inline __host__ __device__ float operator/(double a, rocblas_bf8 b)
{
return ((float)a / float(b));
}
// overloading for mixed f8 and bf8 types
inline __host__ __device__ float operator/(rocblas_f8 a, rocblas_bf8 b)
{
return float(a) / float(b);
}
inline __host__ __device__ float operator/(rocblas_bf8 a, rocblas_f8 b)
{
return float(a) / float(b);
}
// overloading for compare
inline __host__ __device__ bool operator==(rocblas_f8 a, rocblas_f8 b)
{
return (a.data == b.data);
}
inline __host__ __device__ bool operator==(rocblas_bf8 a, rocblas_bf8 b)
{
return (a.data == b.data);
}
inline __host__ __device__ bool operator!=(rocblas_f8 a, rocblas_f8 b)
{
return (a.data != b.data);
}
inline __host__ __device__ bool operator!=(rocblas_bf8 a, rocblas_bf8 b)
{
return (a.data != b.data);
}
// ================ Explicit downcasting to support different rounding (RNE, SR) ===============
// NOTE: we going to remove all assignment operator overloading from other types and enforce
// this explicit_downcast function to make any roudning behavior default
// We have to explicitly call this function with SR flag
template <typename T,
typename Ta,
bool stochastic_rounding,
typename std::enable_if<std::is_same<T, Ta>{}, int>::type = 0>
inline __host__ __device__ T explicit_downcast(Ta a, uint32_t rng = 0)
{
// same type, no conversion
return a;
}
// Use h/w intrinsic and optimized version when __gfx940__
template <
typename T,
typename Ta,
bool stochastic_rounding,
typename std::enable_if<(!(std::is_same<T, Ta>{})
&& (std::is_same<T, rocblas_f8>{} || std::is_same<T, rocblas_bf8>{})),
int>::type
= 0>
inline __host__ __device__ T explicit_downcast(Ta a, uint32_t rng)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// NOTE: we are directly calling cast_to_f8_from_f32 instead of constructor to optimize away one runtime branch
T val;
if(std::is_same<T, rocblas_f8>::value)
val.data = rocblas_f8::cast_to_f8_from_f32<stochastic_rounding>(float(a), rng);
else
val.data = rocblas_bf8::cast_to_bf8_from_f32<stochastic_rounding>(float(a), rng);
return val;
#else // non gfx940
return T(float(a),
stochastic_rounding ? T::rocblas_hip_f8_rounding_mode::stochastic
: T::rocblas_hip_f8_rounding_mode::standard,
rng);
#endif // __gfx940__
}
// NOTE NOTE: The above code is good if we don't consider HIP-GEMM code and only consider the quantization
// However, if we need HIP-GEMM for fall-back, we would need explicit_cast handles Tacc=f32 to To=f16/bf16 conversion
template <
typename T,
typename Ta,
bool stochastic_rounding,
typename std::enable_if<(!(std::is_same<T, Ta>{})
&& !(std::is_same<T, rocblas_f8>{} || std::is_same<T, rocblas_bf8>{})),
int>::type
= 0>
inline __host__ __device__ T explicit_downcast(Ta a, uint32_t rng)
{
// the return type is not a F8 types, no SR for those types
// not sure if we have direct conversion, so converting to float first
// no effect if the input type is float
return T(float(a));
}
// =================================================================================================
#endif // __cplusplus < 201103L || (!defined(__HCC__) && !defined(__HIPCC__))
#endif // ROCBLAS_FLOAT8_H
|