File: rocblas_float8.h

package info (click to toggle)
rocblas 6.4.4-4
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,082,776 kB
  • sloc: cpp: 244,923; f90: 50,012; python: 50,003; sh: 24,630; asm: 8,917; makefile: 150; ansic: 107; xml: 36; awk: 14
file content (777 lines) | stat: -rw-r--r-- 23,741 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
/* ************************************************************************
 * Copyright (C) 2016-2023 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
 * ies of the Software, and to permit persons to whom the Software is furnished
 * to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
 * PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
 * CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * ************************************************************************ */

#ifndef ROCBLAS_FLOAT8_H
#define ROCBLAS_FLOAT8_H

#if __cplusplus < 201103L || (!defined(__HCC__) && !defined(__HIPCC__))
/*! \brief Struct to represent a 8 bit floating-point number. */
typedef struct
{
    uint8_t data;
} rocblas_f8;

typedef struct
{
    uint8_t data;
} rocblas_bf8;

#else // __cplusplus < 201103L || (!defined(__HCC__) && !defined(__HIPCC__))

#define HIP_HOST_DEVICE __host__ __device__
#define HIP_HOST __host__
#define HIP_DEVICE __device__

// We are clipping in down conversion by default
#define rocblas_F8_downcast_clipping 1

namespace rocblas_hip_f8_impl
{

    template <int wm, int we, typename T, bool negative_zero_nan, bool clip>
    HIP_HOST_DEVICE uint8_t cast_to_f8(T _x, bool stoch = false, uint32_t rng = 0);

    template <int wm, int we, typename T, bool negative_zero_nan>
    HIP_HOST_DEVICE T cast_from_f8(uint8_t x);

} // namespace rocblas_hip_f8_impl

#include "rocblas_hip_f8_impl.h"

static __device__ bool rocblas_hip_f8_bias_mode_bit_device = true;
static bool            rocblas_hip_f8_bias_mode_bit_host   = true;

struct ROCBLAS_EXPORT rocblas_f8
{
    uint8_t data;
    enum class rocblas_hip_f8_rounding_mode
    {
        standard,
        stochastic
    };

    // default constructor
    HIP_HOST_DEVICE rocblas_f8() = default;

#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
    // device specific optimized F8 down-conversion code

    template <bool stochastic_rounding = false>
    static HIP_DEVICE uint8_t cast_to_f8_from_f32(float v, uint32_t rng = 0)
    {
        uint8_t i8data;
        union
        {
            float    fval;
            uint32_t i32val;
            uint8_t  i8val[4]; // NOTE: not endian independent
        } val;

        uint32_t ival = 0;
        val.fval      = v;

#ifdef rocblas_F8_downcast_clipping
        if((val.i32val & 0x7F800000) != 0x7F800000) /// propagate NAN/INF, no clipping
            val.fval = __builtin_amdgcn_fmed3f(val.fval, 240.0, -240.0);
#endif
        if(stochastic_rounding)
        {
            ival       = __builtin_amdgcn_cvt_sr_fp8_f32(val.fval, rng, ival, 0); // 0 pos
            val.i32val = ival;
            i8data     = val.i8val[0]; // little endian
        }
        else // RNE CVT
        {
            ival = __builtin_amdgcn_cvt_pk_fp8_f32(
                val.fval, val.fval, ival, false); // false -> WORD0
            val.i32val = ival;
            i8data     = val.i8val[0];
        }
        return i8data;
    }

#endif // __gfx940__

    // constructor from float
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)

    // NOTE: ON-DEVICE... always optimal bias
    explicit HIP_DEVICE rocblas_f8(float                        v,
                                   rocblas_hip_f8_rounding_mode rm
                                   = rocblas_hip_f8_rounding_mode::standard,
                                   uint32_t rng = 0)
    {
        // runtime branch, use cast_to_f8_from_f32 if want to avoid it
        if(rm == rocblas_hip_f8_rounding_mode::stochastic)
            data = cast_to_f8_from_f32<true>(v, rng);
        else
            data = cast_to_f8_from_f32<false>(v);
    }

    // Host only implementation using s/w simulation
    explicit HIP_HOST
#else
    // both Host and DEVICE for non-gfx940 using s/w simulation
    explicit HIP_HOST_DEVICE
#endif
        rocblas_f8(float                        v,
                   rocblas_hip_f8_rounding_mode rm  = rocblas_hip_f8_rounding_mode::standard,
                   uint32_t                     rng = 0)
    {
#ifdef rocblas_F8_downcast_clipping
        data = rocblas_hip_f8_impl::
            cast_to_f8<3, 4, float, true /*negative_zero_nan*/, true /*clip*/>(
                v, (rm == rocblas_hip_f8_rounding_mode::stochastic), rng);
#else // rocblas_F8_downcast_clipping
        data = rocblas_hip_f8_impl::
            cast_to_f8<3, 4, float, true /*negative_zero_nan*/, false /*clip*/>(
                v, (rm == rocblas_hip_f8_rounding_mode::stochastic), rng);
#endif // rocblas_F8_downcast_clipping
    }

    // Constructor from half
    explicit HIP_HOST_DEVICE rocblas_f8(_Float16                     v,
                                        rocblas_hip_f8_rounding_mode rm
                                        = rocblas_hip_f8_rounding_mode::standard,
                                        uint32_t rng = 0)
        : rocblas_f8((float)v, rm, rng)
    {
    }
    // constructor from bfloat16
    explicit HIP_HOST_DEVICE rocblas_f8(rocblas_bfloat16             v,
                                        rocblas_hip_f8_rounding_mode rm
                                        = rocblas_hip_f8_rounding_mode::standard,
                                        uint32_t rng = 0)
        : rocblas_f8((float)v, rm, rng)
    {
    }
    // constructor from int
    explicit HIP_HOST_DEVICE rocblas_f8(int                          v,
                                        rocblas_hip_f8_rounding_mode rm
                                        = rocblas_hip_f8_rounding_mode::standard,
                                        uint32_t rng = 0)
        : rocblas_f8((float)v, rm, rng)
    {
    }
    // constructor from double
    explicit HIP_HOST_DEVICE rocblas_f8(double                       v,
                                        rocblas_hip_f8_rounding_mode rm
                                        = rocblas_hip_f8_rounding_mode::standard,
                                        uint32_t rng = 0)
        : rocblas_f8((float)v, rm, rng)
    {
    }

    // convert to float
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
    // upcast using device specific intrinsic
    explicit inline HIP_DEVICE operator float() const
    {
        float    fval;
        uint32_t i32val = static_cast<uint32_t>(data);

        // upcast
        asm volatile("v_cvt_f32_fp8 %0, %1 src0_sel:BYTE_0" : "=v"(fval) : "v"(i32val));

        return fval;
    }

    explicit inline HIP_HOST operator float() const
#else // non gfx940
    explicit inline HIP_HOST_DEVICE operator float() const
#endif
    {
        return rocblas_hip_f8_impl::cast_from_f8<3, 4, float, true /*negative_zero_nan*/>(data);
    }

    // convert to half
    explicit inline HIP_HOST_DEVICE operator _Float16() const
    {
        return _Float16(float(*this)); // convert to float, then convert to f16
    }

    // convert to bfloat16
    explicit inline HIP_HOST_DEVICE operator rocblas_bfloat16() const
    {
        return rocblas_bfloat16(float(*this)); // convert to float, then convert to f16
    }

    // check for zero
    inline HIP_HOST_DEVICE bool is_zero() const
    {
        return data == 0x00;
    }

    // check for nan
    inline HIP_HOST_DEVICE bool is_nan() const
    {
        return data == 0x80;
    }

    // check for inf
    inline HIP_HOST_DEVICE bool is_inf() const
    {
        return data == 0x80;
    }

    // assignment overloading only from the same F8 types
    inline __host__ __device__ rocblas_f8& operator=(const rocblas_f8& a)
    {
        data = a.data;
        return *this;
    }
};

struct ROCBLAS_EXPORT rocblas_bf8
{
    uint8_t data;
    enum class rocblas_hip_f8_rounding_mode
    {
        standard,
        stochastic
    };

    // default constructor
    HIP_HOST_DEVICE rocblas_bf8() = default;

#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
    // device specific optimized F8 down-conversion code

    template <bool stochastic_rounding = false>
    static HIP_DEVICE uint8_t cast_to_bf8_from_f32(float v, uint32_t rng = 0)
    {
        uint8_t i8data;
        union
        {
            float    fval;
            uint32_t i32val;
            uint8_t  i8val[4]; // NOTE: not endian independent
        } val;

        uint32_t ival = 0;
        val.fval      = v;

#ifdef rocblas_F8_downcast_clipping
        if((val.i32val & 0x7F800000) != 0x7F800000) // propagate NAN/INF, no clipping
            val.fval = __builtin_amdgcn_fmed3f(val.fval, 57344.0, -57344.0);
#endif
        if(stochastic_rounding)
        {
            ival       = __builtin_amdgcn_cvt_sr_bf8_f32(val.fval, rng, ival, 0); // 0 pos
            val.i32val = ival;
            i8data     = val.i8val[0]; // little endian
        }
        else // RNE CVT
        {
            ival = __builtin_amdgcn_cvt_pk_bf8_f32(
                val.fval, val.fval, ival, false); // false -> WORD0
            val.i32val = ival;
            i8data     = val.i8val[0];
        }
        return i8data;
    }

#endif // __gfx940__

    // constructor from float
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)

    // NOTE: ON-DEVICE... always optimal bias
    explicit HIP_DEVICE rocblas_bf8(float                        v,
                                    rocblas_hip_f8_rounding_mode rm
                                    = rocblas_hip_f8_rounding_mode::standard,
                                    uint32_t rng = 0)
    {
        // runtime branch, use cast_to_f8_from_f32 if want to avoid it
        if(rm == rocblas_hip_f8_rounding_mode::stochastic)
            data = cast_to_bf8_from_f32<true>(v, rng);
        else
            data = cast_to_bf8_from_f32<false>(v);
    }

    // Host only implementation using s/w simulation
    explicit HIP_HOST
#else
    // both Host and DEVICE for non-gfx940 using s/w simulation
    explicit HIP_HOST_DEVICE
#endif
        rocblas_bf8(float                        v,
                    rocblas_hip_f8_rounding_mode rm  = rocblas_hip_f8_rounding_mode::standard,
                    uint32_t                     rng = 0)
    {
#ifdef rocblas_F8_downcast_clipping
        data = rocblas_hip_f8_impl::
            cast_to_f8<2, 5, float, true /*negative_zero_nan*/, true /*clip*/>(
                v, (rm == rocblas_hip_f8_rounding_mode::stochastic), rng);
#else
        data = rocblas_hip_f8_impl::
            cast_to_f8<2, 5, float, true /*negative_zero_nan*/, false /*clip*/>(
                v, (rm == rocblas_hip_f8_rounding_mode::stochastic), rng);
#endif // rocblas_F8_downcast_clipping
    }

    // Constructor from half
    explicit HIP_HOST_DEVICE rocblas_bf8(_Float16                     v,
                                         rocblas_hip_f8_rounding_mode rm
                                         = rocblas_hip_f8_rounding_mode::standard,
                                         uint32_t rng = 0)
        : rocblas_bf8((float)v, rm, rng)
    {
    }
    // constructor from bfloat16
    explicit HIP_HOST_DEVICE rocblas_bf8(rocblas_bfloat16             v,
                                         rocblas_hip_f8_rounding_mode rm
                                         = rocblas_hip_f8_rounding_mode::standard,
                                         uint32_t rng = 0)
        : rocblas_bf8((float)v, rm, rng)
    {
    }
    // constructor from int
    explicit HIP_HOST_DEVICE rocblas_bf8(int                          v,
                                         rocblas_hip_f8_rounding_mode rm
                                         = rocblas_hip_f8_rounding_mode::standard,
                                         uint32_t rng = 0)
        : rocblas_bf8((float)v, rm, rng)
    {
    }
    // constructor from double
    explicit HIP_HOST_DEVICE rocblas_bf8(double                       v,
                                         rocblas_hip_f8_rounding_mode rm
                                         = rocblas_hip_f8_rounding_mode::standard,
                                         uint32_t rng = 0)
        : rocblas_bf8((float)v, rm, rng)
    {
    }

    // convert to float
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
    // upcast using device specific intrinsic
    explicit inline HIP_DEVICE operator float() const
    {
        float    fval;
        uint32_t i32val = static_cast<uint32_t>(data);

        // upcast
        asm volatile("v_cvt_f32_bf8 %0, %1 src0_sel:BYTE_0" : "=v"(fval) : "v"(i32val));

        return fval;
    }

    explicit inline HIP_HOST operator float() const
#else // non gfx940
    explicit inline HIP_HOST_DEVICE operator float() const
#endif
    {
        return rocblas_hip_f8_impl::cast_from_f8<2, 5, float, true /*negative_zero_nan*/>(data);
    }

    // convert to half
    explicit inline HIP_HOST_DEVICE operator _Float16() const
    {
        return _Float16(float(*this)); // convert to float, then convert to f16
    }

    // convert to bfloat16
    explicit inline HIP_HOST_DEVICE operator rocblas_bfloat16() const
    {
        return rocblas_bfloat16(float(*this)); // convert to float, then convert to f16
    }

    // check for zero
    inline HIP_HOST_DEVICE bool is_zero() const
    {
        return data == 0x00;
    }

    // check for nan
    inline HIP_HOST_DEVICE bool is_nan() const
    {
        return data == 0x80;
    }

    // check for inf
    inline HIP_HOST_DEVICE bool is_inf() const
    {
        return data == 0x80;
    }

    // assignment overloading only from the same F8 types
    inline __host__ __device__ rocblas_bf8& operator=(const rocblas_bf8& a)
    {
        data = a.data;
        return *this;
    }
};

namespace std
{
    inline rocblas_f8 sin(rocblas_f8 a)
    {
        return rocblas_f8(sinf(float(a)));
    }
    inline rocblas_f8 cos(rocblas_f8 a)
    {
        return rocblas_f8(cosf(float(a)));
    }
    inline rocblas_bf8 sin(rocblas_bf8 a)
    {
        return rocblas_bf8(sinf(float(a)));
    }
    inline rocblas_bf8 cos(rocblas_bf8 a)
    {
        return rocblas_bf8(cosf(float(a)));
    }
    __device__ __host__ constexpr rocblas_f8 real(const rocblas_f8& a)
    {
        return a;
    }
    __device__ __host__ constexpr rocblas_bf8 real(const rocblas_bf8& a)
    {
        return a;
    }
}

// Special operator overloading
inline std::ostream& operator<<(std::ostream& os, const rocblas_f8& f8)
{
    return os << float(f8);
}

inline std::ostream& operator<<(std::ostream& os, const rocblas_bf8& bf8)
{
    return os << float(bf8);
}

// all + operator overloading with mixed types
// mixed types, always converts to f32, does computation in f32, and returns float
inline __host__ __device__ float operator+(const float fa, rocblas_f8 b)
{
    return (fa + float(b));
}

inline __host__ __device__ float operator+(const float fa, rocblas_bf8 b)
{
    return (fa + float(b));
}

inline __host__ __device__ float operator+(rocblas_f8 a, const float fb)
{
    return (float(a) + fb);
}

inline __host__ __device__ float operator+(rocblas_bf8 a, const float fb)
{
    return (float(a) + fb);
}

inline __host__ __device__ float operator+(rocblas_f8 a, rocblas_bf8 b)
{
    return (float(a) + float(b));
}

inline __host__ __device__ float operator+(rocblas_bf8 a, rocblas_f8 b)
{
    return (float(a) + float(b));
}

inline __host__ __device__ rocblas_f8 operator+(rocblas_f8 a, rocblas_f8 b)
{
    return rocblas_f8(float(a) + float(b));
}

inline __host__ __device__ rocblas_bf8 operator+(rocblas_bf8 a, rocblas_bf8 b)
{
    return rocblas_bf8(float(a) + float(b));
}

inline __host__ __device__ rocblas_f8& operator+=(rocblas_f8& a, rocblas_f8 b)
{
    return a = rocblas_f8(float(a) + float(b));
}

inline __host__ __device__ rocblas_bf8& operator+=(rocblas_bf8& a, rocblas_bf8 b)
{
    return a = rocblas_bf8(float(a) + float(b));
}

// overloading multiplication, always returns float,
inline __host__ __device__ float operator*(rocblas_f8 a, rocblas_f8 b)
{
    return float(a) * float(b);
}

inline __host__ __device__ float operator*(float a, rocblas_f8 b)
{
    return (a * float(b));
}

inline __host__ __device__ float operator*(rocblas_f8 a, float b)
{
    return (float(a) * b);
}

inline __host__ __device__ float operator*(int32_t a, rocblas_f8 b)
{
    return ((float)a * float(b));
}

inline __host__ __device__ float operator*(double a, rocblas_f8 b)
{
    return ((float)a * float(b));
}

inline __host__ __device__ float operator*(rocblas_bf8 a, rocblas_bf8 b)
{
    return float(a) * float(b);
}

inline __host__ __device__ float operator*(float a, rocblas_bf8 b)
{
    return (a * float(b));
}

inline __host__ __device__ float operator*(rocblas_bf8 a, float b)
{
    return (float(a) * b);
}

inline __host__ __device__ float operator*(int32_t a, rocblas_bf8 b)
{
    return ((float)a * float(b));
}

inline __host__ __device__ float operator*(double a, rocblas_bf8 b)
{
    return ((float)a * float(b));
}

// overloading for mixed f8 and bf8 types
inline __host__ __device__ float operator*(rocblas_f8 a, rocblas_bf8 b)
{
    return float(a) * float(b);
}

inline __host__ __device__ float operator*(rocblas_bf8 a, rocblas_f8 b)
{
    return float(a) * float(b);
}

// all - operator overloading with mixed types
// mixed types, always converts to f32, does computation in f32, and returns float
inline __host__ __device__ float operator-(const float fa, rocblas_f8 b)
{
    return (fa - float(b));
}

inline __host__ __device__ float operator-(const float fa, rocblas_bf8 b)
{
    return (fa - float(b));
}

inline __host__ __device__ float operator-(rocblas_f8 a, const float fb)
{
    return (float(a) - fb);
}

inline __host__ __device__ float operator-(rocblas_bf8 a, const float fb)
{
    return (float(a) - fb);
}

inline __host__ __device__ float operator-(rocblas_f8 a, rocblas_bf8 b)
{
    return (float(a) - float(b));
}

inline __host__ __device__ float operator-(rocblas_bf8 a, rocblas_f8 b)
{
    return (float(a) - float(b));
}

inline __host__ __device__ rocblas_f8 operator-(rocblas_f8 a, rocblas_f8 b)
{
    return rocblas_f8(float(a) - float(b));
}

inline __host__ __device__ rocblas_bf8 operator-(rocblas_bf8 a, rocblas_bf8 b)
{
    return rocblas_bf8(float(a) - float(b));
}

inline __host__ __device__ rocblas_f8& operator-=(rocblas_f8& a, rocblas_f8 b)
{
    return a = rocblas_f8(float(a) - float(b));
}

inline __host__ __device__ rocblas_bf8& operator-=(rocblas_bf8& a, rocblas_bf8 b)
{
    return a = rocblas_bf8(float(a) - float(b));
}

// overloading division, always returns float,
inline __host__ __device__ float operator/(rocblas_f8 a, rocblas_f8 b)
{
    return float(a) / float(b);
}

inline __host__ __device__ float operator/(float a, rocblas_f8 b)
{
    return (a / float(b));
}

inline __host__ __device__ float operator/(rocblas_f8 a, float b)
{
    return (float(a) / b);
}

inline __host__ __device__ float operator/(int32_t a, rocblas_f8 b)
{
    return ((float)a / float(b));
}

inline __host__ __device__ float operator/(double a, rocblas_f8 b)
{
    return ((float)a / float(b));
}

inline __host__ __device__ float operator/(rocblas_bf8 a, rocblas_bf8 b)
{
    return float(a) / float(b);
}

inline __host__ __device__ float operator/(float a, rocblas_bf8 b)
{
    return (a / float(b));
}

inline __host__ __device__ float operator/(rocblas_bf8 a, float b)
{
    return (float(a) / b);
}

inline __host__ __device__ float operator/(int32_t a, rocblas_bf8 b)
{
    return ((float)a / float(b));
}

inline __host__ __device__ float operator/(double a, rocblas_bf8 b)
{
    return ((float)a / float(b));
}

// overloading for mixed f8 and bf8 types
inline __host__ __device__ float operator/(rocblas_f8 a, rocblas_bf8 b)
{
    return float(a) / float(b);
}

inline __host__ __device__ float operator/(rocblas_bf8 a, rocblas_f8 b)
{
    return float(a) / float(b);
}

// overloading for compare
inline __host__ __device__ bool operator==(rocblas_f8 a, rocblas_f8 b)
{
    return (a.data == b.data);
}

inline __host__ __device__ bool operator==(rocblas_bf8 a, rocblas_bf8 b)
{
    return (a.data == b.data);
}

inline __host__ __device__ bool operator!=(rocblas_f8 a, rocblas_f8 b)
{
    return (a.data != b.data);
}

inline __host__ __device__ bool operator!=(rocblas_bf8 a, rocblas_bf8 b)
{
    return (a.data != b.data);
}

// ================ Explicit downcasting to support different rounding (RNE, SR) ===============
// NOTE: we going to remove all assignment operator overloading from other types and enforce
// this explicit_downcast function to make any roudning behavior default
// We have to explicitly call this function with SR flag

template <typename T,
          typename Ta,
          bool stochastic_rounding,
          typename std::enable_if<std::is_same<T, Ta>{}, int>::type = 0>
inline __host__ __device__ T explicit_downcast(Ta a, uint32_t rng = 0)
{
    // same type, no conversion
    return a;
}

// Use h/w intrinsic and optimized version when __gfx940__
template <
    typename T,
    typename Ta,
    bool stochastic_rounding,
    typename std::enable_if<(!(std::is_same<T, Ta>{})
                             && (std::is_same<T, rocblas_f8>{} || std::is_same<T, rocblas_bf8>{})),
                            int>::type
    = 0>
inline __host__ __device__ T explicit_downcast(Ta a, uint32_t rng)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
    // NOTE: we are directly calling cast_to_f8_from_f32 instead of constructor to optimize away one runtime branch
    T val;
    if(std::is_same<T, rocblas_f8>::value)
        val.data = rocblas_f8::cast_to_f8_from_f32<stochastic_rounding>(float(a), rng);
    else
        val.data = rocblas_bf8::cast_to_bf8_from_f32<stochastic_rounding>(float(a), rng);
    return val;
#else // non gfx940
    return T(float(a),
             stochastic_rounding ? T::rocblas_hip_f8_rounding_mode::stochastic
                                 : T::rocblas_hip_f8_rounding_mode::standard,
             rng);
#endif // __gfx940__
}

// NOTE NOTE: The above code is good if we don't consider HIP-GEMM code and only consider the quantization
// However, if we need HIP-GEMM for fall-back, we would need explicit_cast handles Tacc=f32 to To=f16/bf16 conversion
template <
    typename T,
    typename Ta,
    bool stochastic_rounding,
    typename std::enable_if<(!(std::is_same<T, Ta>{})
                             && !(std::is_same<T, rocblas_f8>{} || std::is_same<T, rocblas_bf8>{})),
                            int>::type
    = 0>
inline __host__ __device__ T explicit_downcast(Ta a, uint32_t rng)
{
    // the return type is not a F8 types, no SR for those types
    // not sure if we have direct conversion, so converting to float first
    // no effect if the input type is float
    return T(float(a));
}

// =================================================================================================

#endif // __cplusplus < 201103L || (!defined(__HCC__) && !defined(__HIPCC__))

#endif // ROCBLAS_FLOAT8_H