File: DecisionTree_test.cpp

package info (click to toggle)
rocblas 6.4.4-4
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,082,776 kB
  • sloc: cpp: 244,923; f90: 50,012; python: 50,003; sh: 24,630; asm: 8,917; makefile: 150; ansic: 107; xml: 36; awk: 14
file content (487 lines) | stat: -rw-r--r-- 18,857 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
/*******************************************************************************
 *
 * MIT License
 *
 * Copyright (C) 2022-2024 Advanced Micro Devices, Inc. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 *******************************************************************************/

#include <gtest/gtest.h>

#include <Tensile/AMDGPU.hpp>
#include <Tensile/ContractionLibrary.hpp>
#include <Tensile/ContractionProblemPredicates.hpp>
#include <Tensile/ContractionProblemProperties.hpp>
#include <Tensile/DecisionTree.hpp>
#include <Tensile/DecisionTreeLibrary.hpp>
#include <Tensile/ExactLogicLibrary.hpp>

using namespace Tensile;
using namespace DecisionTree;

using Key   = std::array<float, 3>;
using DTree = Tree<Key, std::shared_ptr<ContractionLibrary>, std::shared_ptr<ContractionSolution>>;

/*
 * Tests for invalid tree structures
 * e.g. trees that try go out of bounds, trees with circular paths
 */
TEST(DecisionTree, ValidTree)
{
    DTree test_tree{{
        /* start */ {0, 700.f, 1, IDX_RETURN_FALSE},
        /* - 1 - */ {1, 300.f, IDX_RETURN_FALSE, IDX_RETURN_TRUE},
    }};

    /*
    Makes the following tree:
        start:(Key[0] <= 700?)
            |
            |
            |------------------------
            |                       |
           YES                      NO
            |                       |
            |                       |
        1:(Key[1] <= 300?)     2:(RETURN false)
            |
            |
            |------------------------
            |                       |
           YES                      NO
            |                       |
            |                       |
        3:(RETURN false)        4:(RETURN true)
    */

    EXPECT_TRUE(test_tree.valid());
}

TEST(DecisionTree, InvalidTreeEmpty)
{
    DTree test_tree{{}};

    EXPECT_FALSE(test_tree.valid());
}

TEST(DecisionTree, InvalidTreeIdxOOB)
{
    DTree test_tree{{
        /* start */ {0, 700.f, IDX_RETURN_TRUE, 7}, // right idx OOB
    }};

    EXPECT_FALSE(test_tree.valid());
}

TEST(DecisionTree, InvalidTreeIdxOOBNeg)
{
    DTree test_tree{{
        /* start */ {0, 700.f, -3, IDX_RETURN_TRUE}, // left idx OOB
    }};

    EXPECT_FALSE(test_tree.valid());
}

TEST(DecisionTree, InvalidTreeCircularShort)
{
    DTree test_tree{{
        /* start */ {0, 700.f, IDX_RETURN_TRUE, 0}, // right idx circular
    }};

    EXPECT_FALSE(test_tree.valid());
}

TEST(DecisionTree, InvalidTreeCircularLong)
{
    DTree test_tree{{
        /* start */ {0, 700.f, 1, IDX_RETURN_TRUE},
        /* - 1 - */ {0, 700.f, 0, IDX_RETURN_TRUE}, // left idx circular
    }};

    EXPECT_FALSE(test_tree.valid());
}

TEST(DecisionTree, InvalidNoTrueNodes)
{
    DTree test_tree{{
        /* start */ {0, 700.f, 1, IDX_RETURN_FALSE},
        /* - 1 - */ {0, 700.f, IDX_RETURN_FALSE, IDX_RETURN_FALSE},
    }};

    EXPECT_FALSE(test_tree.valid());
}

/*
 * Tests for correct predictions.
 */
TEST(DecisionTree, SimplePrediction)
{
    DTree test_tree{{
        /* start */ {0, 700.f, IDX_RETURN_FALSE, IDX_RETURN_TRUE},
    }};

    Key test_input0{{800.f, 200.f, 200.f}};
    Key test_input1{{600.f, 200.f, 200.f}};

    EXPECT_EQ(test_tree.predict(test_input0), true); // Expected: start->true
    EXPECT_EQ(test_tree.predict(test_input1), false); // Expected: start->false
}

TEST(DecisionTree, MultiStepPrediction)
{
    DTree test_tree{{
        /* start */ {0, 700.f, 1, IDX_RETURN_FALSE},
        /* - 1 - */ {1, 300.f, IDX_RETURN_FALSE, IDX_RETURN_TRUE},
    }};

    Key test_input0{{800.f, 400.f, 200.f}};
    Key test_input1{{600.f, 400.f, 200.f}};
    Key test_input2{{600.f, 200.f, 200.f}};

    EXPECT_EQ(test_tree.predict(test_input0), false); // Expected: start->false
    EXPECT_EQ(test_tree.predict(test_input1), true); // Expected: start->1->true
    EXPECT_EQ(test_tree.predict(test_input2), false); // Expected: start->1->false
}

/*
 * Tests for libraries.
 */
TEST(DecisionTree, DecisionTreeLibrary)
{
    // Solutions
    auto Solution0 = std::make_shared<ContractionSolution>();
    auto Solution1 = std::make_shared<ContractionSolution>();
    auto Solution2 = std::make_shared<ContractionSolution>();
    auto Solution3 = std::make_shared<ContractionSolution>();

    Solution0->index = 0;
    Solution1->index = 1;
    Solution2->index = 2;
    Solution3->index = 3;

    auto Library0        = std::make_shared<SingleContractionLibrary>(Solution0);
    auto Library1        = std::make_shared<SingleContractionLibrary>(Solution1);
    auto Library2        = std::make_shared<SingleContractionLibrary>(Solution2);
    auto LibraryFallback = std::make_shared<SingleContractionLibrary>(Solution3);

    std::vector<std::shared_ptr<MLFeatures::MLFeature<ContractionProblem>>> features;
    auto freeSizeA   = std::make_shared<MLFeatures::FreeSizeA>();
    freeSizeA->index = 0;
    features.push_back(freeSizeA);
    auto freeSizeB   = std::make_shared<MLFeatures::FreeSizeB>();
    freeSizeB->index = 0;
    features.push_back(freeSizeB);
    auto boundSize   = std::make_shared<MLFeatures::BoundSize>();
    boundSize->index = 0;
    features.push_back(boundSize);

    // Make trees library
    std::vector<DTree> trees;

    DTree tree0{{
        {0, 700.f, IDX_RETURN_FALSE, IDX_RETURN_TRUE}, // YES for freeSizeA>7000
    }};
    tree0.value = Library0;
    trees.push_back(tree0);

    DTree tree1{{
        {1, 700.f, IDX_RETURN_FALSE, IDX_RETURN_TRUE}, // YES for freeSizeB>700
    }};
    tree1.value = Library1;
    trees.push_back(tree1);

    DTree tree2{{
        {0, 300.f, IDX_RETURN_TRUE, IDX_RETURN_FALSE}, // YES for freeSizeA<300
    }};
    tree2.value = Library2;
    trees.push_back(tree2);

    // Forest and full library - Note: Solution 3 as fallback
    using BForest = BasicForest<Key,
                                ContractionProblem,
                                std::shared_ptr<ContractionLibrary>,
                                std::shared_ptr<ContractionSolution>>;

    // this change in the constructor enables the template magic to
    // handle null values as a default when serializing the fallback
    // solutions if it is optionally not present.
    auto forest       = std::make_shared<BForest>(features);
    forest->nullValue = LibraryFallback;
    forest->trees     = trees;

    auto dtreelib    = std::make_shared<DecisionTreeLibrary<ContractionProblem>>();
    dtreelib->forest = forest;

    // Problems
    auto Problem0
        = ContractionProblem::GEMM(false, false, 800, 800, 800, 800, 800, 800, 1.0, false, 1);
    auto Problem1
        = ContractionProblem::GEMM(false, false, 500, 800, 800, 500, 800, 500, 1.0, false, 1);
    auto Problem2
        = ContractionProblem::GEMM(false, false, 500, 500, 500, 500, 500, 500, 1.0, false, 1);

    // Tests
    AMDGPU gpu;
    EXPECT_EQ(dtreelib->findBestSolution(Problem0, gpu), Solution0);
    EXPECT_EQ(dtreelib->findBestSolution(Problem1, gpu), Solution1);
    EXPECT_EQ(dtreelib->findBestSolution(Problem2, gpu), Solution3); // No match, goes to fallback
}

TEST(DecisionTree, DecisionTreeMultiLibrary)
{

    using Predicate   = Predicates::Predicate<ContractionProblem>;
    using SizeInRange = Predicates::Contraction::SizeInRange;
    using SizeEqual   = Predicates::Contraction::SizeEqual;
    using Range       = Predicates::Contraction::Range;
    using And         = Predicates::And<ContractionProblem>;
    using BForest     = BasicForest<Key,
                                ContractionProblem,
                                std::shared_ptr<ContractionLibrary>,
                                std::shared_ptr<ContractionSolution>>;

    // This will test the behavior of the dtree logic can handle multiple regions correctly.
    // The two regions that are constructed have the opposite branching logic.
    auto region1Solution0 = std::make_shared<ContractionSolution>();
    auto region1Solution1 = std::make_shared<ContractionSolution>();

    region1Solution0->index = 0;
    region1Solution1->index = 1;

    auto region1Library0        = std::make_shared<SingleContractionLibrary>(region1Solution0);
    auto region1LibraryFallback = std::make_shared<SingleContractionLibrary>(region1Solution1);

    auto region2Solution0 = std::make_shared<ContractionSolution>();
    auto region2Solution1 = std::make_shared<ContractionSolution>();

    region2Solution0->index = 0;
    region2Solution1->index = 1;

    auto region2Library0        = std::make_shared<SingleContractionLibrary>(region2Solution0);
    auto region2LibraryFallback = std::make_shared<SingleContractionLibrary>(region2Solution1);

    // Features (generic)
    std::vector<std::shared_ptr<MLFeatures::MLFeature<ContractionProblem>>> features;
    auto freeSizeA   = std::make_shared<MLFeatures::FreeSizeA>();
    freeSizeA->index = 0;
    features.push_back(freeSizeA);
    auto freeSizeB   = std::make_shared<MLFeatures::FreeSizeB>();
    freeSizeB->index = 0;
    features.push_back(freeSizeB);
    auto boundSize   = std::make_shared<MLFeatures::BoundSize>();
    boundSize->index = 0;
    features.push_back(boundSize);

    // Make trees library
    std::vector<DTree> region1trees;

    DTree region1tree0{{
        {0, 5000.f, IDX_RETURN_FALSE, IDX_RETURN_TRUE}, // YES for freeSizeA > 5000
    }};

    region1tree0.value = region1Library0;
    region1trees.push_back(region1tree0);

    auto region1forest       = std::make_shared<BForest>(features);
    region1forest->nullValue = region1LibraryFallback;
    region1forest->trees     = region1trees;

    auto region1dtreelib    = std::make_shared<DecisionTreeLibrary<ContractionProblem>>();
    region1dtreelib->forest = region1forest;

    // Make trees library
    std::vector<DTree> region2trees;

    DTree region2tree0{{
        {0, 5000.f, IDX_RETURN_TRUE, IDX_RETURN_FALSE}, // YES for freeSizeA <= 5000
    }};
    region2tree0.value = region2Library0;
    region2trees.push_back(region2tree0);

    auto region2forest       = std::make_shared<BForest>(features);
    region2forest->nullValue = region2LibraryFallback;
    region2forest->trees     = region2trees;

    auto region2dtreelib    = std::make_shared<DecisionTreeLibrary<ContractionProblem>>();
    region2dtreelib->forest = region2forest;

    /// region library
    size_t max_size = std::numeric_limits<size_t>::max();

    std::shared_ptr<Predicate> regionM  = std::make_shared<SizeInRange>(0, Range{0, 40000});
    std::shared_ptr<Predicate> regionB  = std::make_shared<SizeEqual>(2, 1);
    std::shared_ptr<Predicate> regionN1 = std::make_shared<SizeInRange>(1, Range{0, 8000});
    std::shared_ptr<Predicate> regionN2 = std::make_shared<SizeInRange>(1, Range{8000, max_size});

    // Create region predicate for (0 <= M < 40000), (0 <= N < 8000)
    auto preds1    = {regionM, regionB, regionN1};
    auto isRegion1 = std::make_shared<And>(preds1);

    ContractionProblemSelectionLibrary::Row Region1Row_dtreelib(isRegion1, region1dtreelib);

    // Create region predicate for (0 <= M < 40000), (8000 <= N < max)
    auto preds2    = {regionM, regionB, regionN2};
    auto isRegion2 = std::make_shared<And>(preds2);

    ContractionProblemSelectionLibrary::Row Region2Row_dtreelib(isRegion2, region2dtreelib);

    ContractionProblemSelectionLibrary lib({Region1Row_dtreelib, Region2Row_dtreelib});

    // Problems
    auto Region1Problem1
        = ContractionProblem::GEMM(false, false, 7000, 6500, 1000, 7000, 1000, 7000, 1.0, false, 1);
    auto Region1Problem2
        = ContractionProblem::GEMM(false, false, 4000, 6500, 1000, 4000, 1000, 4000, 1.0, false, 1);
    auto Region2Problem1 = ContractionProblem::GEMM(
        false, false, 7000, 16500, 1000, 7000, 1000, 7000, 1.0, false, 1);
    auto Region2Problem2 = ContractionProblem::GEMM(
        false, false, 4000, 16500, 1000, 4000, 1000, 4000, 1.0, false, 1);

    AMDGPU gpu;
    EXPECT_EQ(lib.findBestSolution(Region1Problem1, gpu), region1Solution0);
    EXPECT_EQ(lib.findBestSolution(Region1Problem2, gpu), region1Solution1);
    EXPECT_EQ(lib.findBestSolution(Region2Problem1, gpu), region2Solution1);
    EXPECT_EQ(lib.findBestSolution(Region2Problem2, gpu), region2Solution0);
}

TEST(DecisionTree, DecisionTreeBatch)
{

    using Predicate   = Predicates::Predicate<ContractionProblem>;
    using SizeInRange = Predicates::Contraction::SizeInRange;
    using Range       = Predicates::Contraction::Range;
    using And         = Predicates::And<ContractionProblem>;
    // Create a Key4 aliase specific to this test because this test uses four features which
    // requires a size four Key type; whereas previous tests only use three features.
    using Key4 = std::array<float, 4>;
    using DTree4
        = Tree<Key4, std::shared_ptr<ContractionLibrary>, std::shared_ptr<ContractionSolution>>;
    using BForest = BasicForest<Key4,
                                ContractionProblem,
                                std::shared_ptr<ContractionLibrary>,
                                std::shared_ptr<ContractionSolution>>;

    // This will test the behavior of the dtree logic can handle multiple regions correctly.
    // The two regions that are constructed have the opposite branching logic.
    auto region1Solution0 = std::make_shared<ContractionSolution>();
    auto region1Solution1 = std::make_shared<ContractionSolution>();

    region1Solution0->index = 0;
    region1Solution1->index = 1;

    auto region1Library0        = std::make_shared<SingleContractionLibrary>(region1Solution0);
    auto region1LibraryFallback = std::make_shared<SingleContractionLibrary>(region1Solution1);

    auto region2Solution0 = std::make_shared<ContractionSolution>();
    auto region2Solution1 = std::make_shared<ContractionSolution>();

    region2Solution0->index = 0;
    region2Solution1->index = 1;

    auto region2Library0        = std::make_shared<SingleContractionLibrary>(region2Solution0);
    auto region2LibraryFallback = std::make_shared<SingleContractionLibrary>(region2Solution1);

    // Features (generic)
    std::vector<std::shared_ptr<MLFeatures::MLFeature<ContractionProblem>>> features;
    auto freeSizeA   = std::make_shared<MLFeatures::FreeSizeA>();
    freeSizeA->index = 0;
    features.push_back(freeSizeA);
    auto freeSizeB   = std::make_shared<MLFeatures::FreeSizeB>();
    freeSizeB->index = 0;
    features.push_back(freeSizeB);
    auto batchSize   = std::make_shared<MLFeatures::BatchSize>();
    batchSize->index = 0;
    features.push_back(batchSize);
    auto boundSize   = std::make_shared<MLFeatures::BoundSize>();
    boundSize->index = 0;
    features.push_back(boundSize);

    // Make trees library
    std::vector<DTree4> region1trees;

    DTree4 region1tree0{{
        {0, 5000.f, IDX_RETURN_FALSE, IDX_RETURN_TRUE}, // YES for freeSizeA > 5000
    }};
    region1tree0.value = region1Library0;
    region1trees.push_back(region1tree0);

    auto region1forest       = std::make_shared<BForest>(features);
    region1forest->nullValue = region1LibraryFallback;
    region1forest->trees     = region1trees;

    auto region1dtreelib    = std::make_shared<DecisionTreeLibrary<ContractionProblem>>();
    region1dtreelib->forest = region1forest;

    // Make trees library
    std::vector<DTree4> region2trees;

    DTree4 region2tree0{{
        {0, 5000.f, IDX_RETURN_TRUE, IDX_RETURN_FALSE}, // YES for freeSizeA <= 5000
    }};
    region2tree0.value = region2Library0;
    region2trees.push_back(region2tree0);

    auto region2forest       = std::make_shared<BForest>(features);
    region2forest->nullValue = region2LibraryFallback;
    region2forest->trees     = region2trees;

    auto region2dtreelib    = std::make_shared<DecisionTreeLibrary<ContractionProblem>>();
    region2dtreelib->forest = region2forest;

    /// region library
    size_t max_size = std::numeric_limits<size_t>::max();

    std::shared_ptr<Predicate> regionM = std::make_shared<SizeInRange>(0, Range{0, max_size});
    std::shared_ptr<Predicate> regionN = std::make_shared<SizeInRange>(1, Range{0, max_size});
    std::shared_ptr<Predicate> regionK = std::make_shared<SizeInRange>(3, Range{0, max_size});

    std::shared_ptr<Predicate> regionBa = std::make_shared<SizeInRange>(2, Range{0, 64});
    std::shared_ptr<Predicate> regionBb = std::make_shared<SizeInRange>(2, Range{64, max_size});

    // Create region predicate for (0 <= M,N,K < in_max), (0 <= B < 64)
    auto preds1    = {regionM, regionN, regionBa, regionK};
    auto isRegion1 = std::make_shared<And>(preds1);

    ContractionProblemSelectionLibrary::Row Region1Row_dtreelib(isRegion1, region1dtreelib);

    // Create region predicate for (0 <= M,N,K < intmax), (64 <= B < intmax)
    auto preds2    = {regionM, regionN, regionBb, regionK};
    auto isRegion2 = std::make_shared<And>(preds2);

    ContractionProblemSelectionLibrary::Row Region2Row_dtreelib(isRegion2, region2dtreelib);
    ContractionProblemSelectionLibrary      lib({Region1Row_dtreelib, Region2Row_dtreelib});

    // Problems
    auto Region1Problem1 = ContractionProblem::GEMM(
        false, false, 7000, 6500, 1000, 7000, 1000, 7000, 1.0, false, 10);
    auto Region1Problem2 = ContractionProblem::GEMM(
        false, false, 4000, 6500, 1000, 4000, 1000, 4000, 1.0, false, 10);
    auto Region2Problem1 = ContractionProblem::GEMM(
        false, false, 7000, 16500, 1000, 7000, 1000, 7000, 1.0, false, 100);
    auto Region2Problem2 = ContractionProblem::GEMM(
        false, false, 4000, 16500, 1000, 4000, 1000, 4000, 1.0, false, 100);

    AMDGPU gpu;
    EXPECT_EQ(lib.findBestSolution(Region1Problem1, gpu), region1Solution0);
    EXPECT_EQ(lib.findBestSolution(Region1Problem2, gpu), region1Solution1);
    EXPECT_EQ(lib.findBestSolution(Region2Problem1, gpu), region2Solution1);
    EXPECT_EQ(lib.findBestSolution(Region2Problem2, gpu), region2Solution0);
}