File: bench.cpp

package info (click to toggle)
rocfft 6.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,672 kB
  • sloc: cpp: 55,735; python: 5,774; sh: 428; xml: 204; makefile: 56
file content (418 lines) | stat: -rw-r--r-- 14,803 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
// Copyright (C) 2016 - 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

#include <cmath>
#include <cstddef>
#include <iostream>
#include <sstream>

#include "../../shared/gpubuf.h"
#include "../../shared/hip_object_wrapper.h"
#include "../../shared/rocfft_params.h"
#include "bench.h"
#include "rocfft/rocfft.h"
#include <boost/program_options.hpp>
namespace po = boost::program_options;

int main(int argc, char* argv[])
{
    // This helps with mixing output of both wide and narrow characters to the screen
    std::ios::sync_with_stdio(false);

    // Control output verbosity:
    int verbose{};

    // hip Device number for running tests:
    int deviceId{};

    // Number of performance trial samples
    int ntrial{};

    // FFT parameters:
    rocfft_params params;

    // Token string to fully specify fft params.
    std::string token;

    // Declare the supported options.

    // clang-format doesn't handle boost program options very well:
    // clang-format off
    po::options_description opdesc("rocfft-bench command line options");
    opdesc.add_options()("help,h", "produces this help message")
        ("version,v", "Print queryable version information from the rocfft library")
        ("device", po::value<int>(&deviceId)->default_value(0), "Select a specific device id")
        ("verbose", po::value<int>(&verbose)->default_value(0), "Control output verbosity")
        ("ntrial,N", po::value<int>(&ntrial)->default_value(1), "Trial size for the problem")
        ("notInPlace,o", "Not in-place FFT transform (default: in-place)")
        ("double", "Double precision transform (deprecated: use --precision double)")
        ("precision", po::value<fft_precision>(&params.precision), "Transform precision: single (default), double, half")
        ("inputGen,g", po::value<fft_input_generator>(&params.igen)
        ->default_value(fft_input_random_generator_device),
        "Input data generation:\n0) PRNG sequence (device)\n"
        "1) PRNG sequence (host)\n"
        "2) linearly-spaced sequence (device)\n"
        "3) linearly-spaced sequence (host)")
        ("transformType,t", po::value<fft_transform_type>(&params.transform_type)
         ->default_value(fft_transform_type_complex_forward),
         "Type of transform:\n0) complex forward\n1) complex inverse\n2) real "
         "forward\n3) real inverse")
        ( "batchSize,b", po::value<size_t>(&params.nbatch)->default_value(1),
          "If this value is greater than one, arrays will be used ")
        ( "itype", po::value<fft_array_type>(&params.itype)
          ->default_value(fft_array_type_unset),
          "Array type of input data:\n0) interleaved\n1) planar\n2) real\n3) "
          "hermitian interleaved\n4) hermitian planar")
        ( "otype", po::value<fft_array_type>(&params.otype)
          ->default_value(fft_array_type_unset),
          "Array type of output data:\n0) interleaved\n1) planar\n2) real\n3) "
          "hermitian interleaved\n4) hermitian planar")
        ("length",  po::value<std::vector<size_t>>(&params.length)->multitoken(), "Lengths.")
        ("istride", po::value<std::vector<size_t>>(&params.istride)->multitoken(), "Input strides.")
        ("ostride", po::value<std::vector<size_t>>(&params.ostride)->multitoken(), "Output strides.")
        ("idist", po::value<size_t>(&params.idist)->default_value(0),
         "Logical distance between input batches.")
        ("odist", po::value<size_t>(&params.odist)->default_value(0),
         "Logical distance between output batches.")
        ("isize", po::value<std::vector<size_t>>(&params.isize)->multitoken(),
         "Logical size of input buffer.")
        ("osize", po::value<std::vector<size_t>>(&params.osize)->multitoken(),
         "Logical size of output buffer.")
        ("ioffset", po::value<std::vector<size_t>>(&params.ioffset)->multitoken(), "Input offsets.")
        ("ooffset", po::value<std::vector<size_t>>(&params.ooffset)->multitoken(), "Output offsets.")
        ("scalefactor", po::value<double>(&params.scale_factor), "Scale factor to apply to output.")
        ("token", po::value<std::string>(&token));
    // clang-format on

    po::variables_map vm;
    po::store(po::parse_command_line(argc, argv, opdesc), vm);
    po::notify(vm);

    if(vm.count("help"))
    {
        std::cout << opdesc << std::endl;
        return EXIT_SUCCESS;
    }

    if(vm.count("version"))
    {
        char v[256];
        rocfft_get_version_string(v, 256);
        std::cout << "version " << v << std::endl;
        return EXIT_SUCCESS;
    }

    if(vm.count("ntrial"))
    {
        std::cout << "Running profile with " << ntrial << " samples\n";
    }

    if(token != "")
    {
        std::cout << "Reading fft params from token:\n" << token << std::endl;

        try
        {
            params.from_token(token);
        }
        catch(...)
        {
            std::cout << "Unable to parse token." << std::endl;
            return 1;
        }
    }
    else
    {
        if(!vm.count("length"))
        {
            std::cout << "Please specify transform length!" << std::endl;
            std::cout << opdesc << std::endl;
            return EXIT_SUCCESS;
        }

        params.placement
            = vm.count("notInPlace") ? fft_placement_notinplace : fft_placement_inplace;
        if(vm.count("double"))
            params.precision = fft_precision_double;

        if(vm.count("notInPlace"))
        {
            std::cout << "out-of-place\n";
        }
        else
        {
            std::cout << "in-place\n";
        }

        if(vm.count("length"))
        {
            std::cout << "length:";
            for(auto& i : params.length)
                std::cout << " " << i;
            std::cout << "\n";
        }

        if(vm.count("istride"))
        {
            std::cout << "istride:";
            for(auto& i : params.istride)
                std::cout << " " << i;
            std::cout << "\n";
        }
        if(vm.count("ostride"))
        {
            std::cout << "ostride:";
            for(auto& i : params.ostride)
                std::cout << " " << i;
            std::cout << "\n";
        }

        if(params.idist > 0)
        {
            std::cout << "idist: " << params.idist << "\n";
        }
        if(params.odist > 0)
        {
            std::cout << "odist: " << params.odist << "\n";
        }

        if(vm.count("ioffset"))
        {
            std::cout << "ioffset:";
            for(auto& i : params.ioffset)
                std::cout << " " << i;
            std::cout << "\n";
        }
        if(vm.count("ooffset"))
        {
            std::cout << "ooffset:";
            for(auto& i : params.ooffset)
                std::cout << " " << i;
            std::cout << "\n";
        }
    }

    std::cout << std::flush;

    rocfft_setup();

    // Fixme: set the device id properly after the IDs are synced
    // bewteen hip runtime and rocm-smi.
    // HIP_V_THROW(hipSetDevice(deviceId), "set device failed!");

    params.validate();

    if(!params.valid(verbose))
    {
        throw std::runtime_error("Invalid parameters, add --verbose=1 for detail");
    }

    std::cout << "Token: " << params.token() << std::endl;
    if(verbose)
    {
        std::cout << params.str(" ") << std::endl;
    }

    // Check free and total available memory:
    size_t free  = 0;
    size_t total = 0;
    HIP_V_THROW(hipMemGetInfo(&free, &total), "hipMemGetInfo failed");
    const auto raw_vram_footprint
        = params.fft_params_vram_footprint() + twiddle_table_vram_footprint(params);
    if(!vram_fits_problem(raw_vram_footprint, free))
    {
        std::cout << "SKIPPED: Problem size (" << raw_vram_footprint
                  << ") raw data too large for device.\n";
        return EXIT_SUCCESS;
    }

    const auto vram_footprint = params.vram_footprint();
    if(!vram_fits_problem(vram_footprint, free))
    {
        std::cout << "SKIPPED: Problem size (" << vram_footprint
                  << ") raw data too large for device.\n";
        return EXIT_SUCCESS;
    }

    auto ret = params.create_plan();
    if(ret != fft_status_success)
        LIB_V_THROW(rocfft_status_failure, "Plan creation failed");

    // GPU input buffer:
    auto                ibuffer_sizes = params.ibuffer_sizes();
    std::vector<gpubuf> ibuffer(ibuffer_sizes.size());
    std::vector<void*>  pibuffer(ibuffer_sizes.size());
    for(unsigned int i = 0; i < ibuffer.size(); ++i)
    {
        HIP_V_THROW(ibuffer[i].alloc(ibuffer_sizes[i]), "Creating input Buffer failed");
        pibuffer[i] = ibuffer[i].data();
    }

    // CPU input buffer
    std::vector<hostbuf> ibuffer_cpu;

    auto is_device_gen = (params.igen == fft_input_generator_device
                          || params.igen == fft_input_random_generator_device);
    auto is_host_gen   = (params.igen == fft_input_generator_host
                        || params.igen == fft_input_random_generator_host);

    if(is_device_gen)
    {
        // Input data:
        params.compute_input(ibuffer);

        if(verbose > 1)
        {
            // Copy input to CPU
            ibuffer_cpu = allocate_host_buffer(params.precision, params.itype, params.isize);
            for(unsigned int idx = 0; idx < ibuffer.size(); ++idx)
            {
                HIP_V_THROW(hipMemcpy(ibuffer_cpu.at(idx).data(),
                                      ibuffer[idx].data(),
                                      ibuffer_sizes[idx],
                                      hipMemcpyDeviceToHost),
                            "hipMemcpy failed");
            }

            std::cout << "GPU input:\n";
            params.print_ibuffer(ibuffer_cpu);
        }
    }

    if(is_host_gen)
    {
        // Input data:
        ibuffer_cpu = allocate_host_buffer(params.precision, params.itype, params.isize);
        params.compute_input(ibuffer_cpu);

        if(verbose > 1)
        {
            std::cout << "GPU input:\n";
            params.print_ibuffer(ibuffer_cpu);
        }

        for(unsigned int idx = 0; idx < ibuffer_cpu.size(); ++idx)
        {
            HIP_V_THROW(hipMemcpy(pibuffer[idx],
                                  ibuffer_cpu[idx].data(),
                                  ibuffer_cpu[idx].size(),
                                  hipMemcpyHostToDevice),
                        "hipMemcpy failed");
        }
    }

    // GPU output buffer:
    std::vector<gpubuf>  obuffer_data;
    std::vector<gpubuf>* obuffer = &obuffer_data;
    if(params.placement == fft_placement_inplace)
    {
        obuffer = &ibuffer;
    }
    else
    {
        auto obuffer_sizes = params.obuffer_sizes();
        obuffer_data.resize(obuffer_sizes.size());
        for(unsigned int i = 0; i < obuffer_data.size(); ++i)
        {
            HIP_V_THROW(obuffer_data[i].alloc(obuffer_sizes[i]), "Creating output Buffer failed");
        }
    }
    std::vector<void*> pobuffer(obuffer->size());
    for(unsigned int i = 0; i < obuffer->size(); ++i)
    {
        pobuffer[i] = obuffer->at(i).data();
    }

    params.execute(pibuffer.data(), pobuffer.data());

    // Run the transform several times and record the execution time:
    std::vector<double> gpu_time(ntrial);

    hipEvent_wrapper_t start, stop;
    start.alloc();
    stop.alloc();
    for(unsigned int itrial = 0; itrial < gpu_time.size(); ++itrial)
    {
        if(is_device_gen)
        {
            params.compute_input(ibuffer);
        }

        if(is_host_gen)
        {
            for(unsigned int idx = 0; idx < ibuffer_cpu.size(); ++idx)
            {
                HIP_V_THROW(hipMemcpy(pibuffer[idx],
                                      ibuffer_cpu[idx].data(),
                                      ibuffer_cpu[idx].size(),
                                      hipMemcpyHostToDevice),
                            "hipMemcpy failed");
            }
        }

        HIP_V_THROW(hipEventRecord(start), "hipEventRecord failed");

        params.execute(pibuffer.data(), pobuffer.data());

        HIP_V_THROW(hipEventRecord(stop), "hipEventRecord failed");
        HIP_V_THROW(hipEventSynchronize(stop), "hipEventSynchronize failed");

        float time;
        HIP_V_THROW(hipEventElapsedTime(&time, start, stop), "hipEventElapsedTime failed");
        gpu_time[itrial] = time;

        if(verbose > 2)
        {
            auto output = allocate_host_buffer(params.precision, params.otype, params.osize);
            for(unsigned int idx = 0; idx < output.size(); ++idx)
            {
                HIP_V_THROW(hipMemcpy(output[idx].data(),
                                      pobuffer[idx],
                                      output[idx].size(),
                                      hipMemcpyDeviceToHost),
                            "hipMemcpy failed");
            }
            std::cout << "GPU output:\n";
            params.print_obuffer(output);
        }
    }

    std::cout << "\nExecution gpu time:";
    for(const auto& i : gpu_time)
    {
        std::cout << " " << i;
    }
    std::cout << " ms" << std::endl;

    std::cout << "Execution gflops:  ";
    const double totsize
        = std::accumulate(params.length.begin(), params.length.end(), 1, std::multiplies<size_t>());
    const double k
        = ((params.itype == fft_array_type_real) || (params.otype == fft_array_type_real)) ? 2.5
                                                                                           : 5.0;
    const double opscount = (double)params.nbatch * k * totsize * log(totsize) / log(2.0);
    for(const auto& i : gpu_time)
    {
        std::cout << " " << opscount / (1e6 * i);
    }
    std::cout << std::endl;

    rocfft_cleanup();
}