1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
|
// Copyright (C) 2020 - 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// This file allows one to run tests multiple different rocFFT libraries at the same time.
// This allows one to randomize the execution order for better a better experimental setup
// which produces fewer type 1 errors where one incorrectly rejects the null hypothesis.
#include <algorithm>
#include <hip/hip_runtime_api.h>
#include <iostream>
#include <math.h>
#include <vector>
#ifdef WIN32
#include <windows.h>
#include <psapi.h>
#else
#include <dlfcn.h>
#include <link.h>
#endif
#include "../../shared/gpubuf.h"
#include "../../shared/hip_object_wrapper.h"
#include "../../shared/rocfft_params.h"
#include "bench.h"
#include "rocfft/rocfft.h"
#include <boost/program_options.hpp>
namespace po = boost::program_options;
#ifdef WIN32
typedef HMODULE ROCFFT_LIB;
#else
typedef void* ROCFFT_LIB;
#endif
// Load the rocfft library
ROCFFT_LIB rocfft_lib_load(const std::string& path)
{
#ifdef WIN32
return LoadLibraryA(path.c_str());
#else
return dlopen(path.c_str(), RTLD_LAZY);
#endif
}
// Return a string describing the error loading rocfft
const char* rocfft_lib_load_error()
{
#ifdef WIN32
// just return the error number
static std::string error_str;
error_str = std::to_string(GetLastError());
return error_str.c_str();
#else
return dlerror();
#endif
}
// Return true if rocfft_device is loaded, which indicates that the
// library was not built with -DSINGLELIB=ON.
bool rocfft_lib_device_loaded(ROCFFT_LIB libhandle)
{
#ifdef WIN32
DWORD arraySize = 0;
EnumProcessModules(GetCurrentProcess(), NULL, 0, &arraySize);
std::vector<HMODULE> modules(arraySize);
if(EnumProcessModules(GetCurrentProcess(), modules.data(), modules.size(), &arraySize))
{
for(auto& mod : modules)
{
char name[MAX_PATH] = {0};
GetModuleFileNameA(mod, name, MAX_PATH);
// poor man's stristr on windows
std::transform(name, name + strlen(name), name, [](char c) { return std::tolower(c); });
if(strstr(name, "rocfft-device.dll"))
return true;
}
}
return false;
#else
struct link_map* link = nullptr;
dlinfo(libhandle, RTLD_DI_LINKMAP, &link);
for(; link != nullptr; link = link->l_next)
{
if(strstr(link->l_name, "librocfft-device") != nullptr)
{
return true;
}
}
return false;
#endif
}
// Get symbol from rocfft lib
void* rocfft_lib_symbol(ROCFFT_LIB libhandle, const char* sym)
{
#ifdef WIN32
return reinterpret_cast<void*>(GetProcAddress(libhandle, sym));
#else
return dlsym(libhandle, sym);
#endif
}
void rocfft_lib_close(ROCFFT_LIB libhandle)
{
#ifdef WIN32
FreeLibrary(libhandle);
#else
dlclose(libhandle);
#endif
}
// Given a libhandle from dload, return a plan to a rocFFT plan with the given parameters.
rocfft_plan make_plan(ROCFFT_LIB libhandle,
const rocfft_result_placement place,
const fft_transform_type transform_type,
const std::vector<size_t>& length,
const std::vector<size_t>& istride,
const std::vector<size_t>& ostride,
const size_t idist,
const size_t odist,
const std::vector<size_t>& ioffset,
const std::vector<size_t>& ooffset,
const size_t nbatch,
const rocfft_precision precision,
const rocfft_array_type itype,
const rocfft_array_type otype)
{
auto procfft_setup = (decltype(&rocfft_setup))rocfft_lib_symbol(libhandle, "rocfft_setup");
if(procfft_setup == NULL)
exit(1);
auto procfft_plan_description_create
= (decltype(&rocfft_plan_description_create))rocfft_lib_symbol(
libhandle, "rocfft_plan_description_create");
auto procfft_plan_description_destroy
= (decltype(&rocfft_plan_description_destroy))rocfft_lib_symbol(
libhandle, "rocfft_plan_description_destroy");
auto procfft_plan_description_set_data_layout
= (decltype(&rocfft_plan_description_set_data_layout))rocfft_lib_symbol(
libhandle, "rocfft_plan_description_set_data_layout");
auto procfft_plan_create
= (decltype(&rocfft_plan_create))rocfft_lib_symbol(libhandle, "rocfft_plan_create");
procfft_setup();
rocfft_plan_description desc = NULL;
LIB_V_THROW(procfft_plan_description_create(&desc), "rocfft_plan_description_create failed");
LIB_V_THROW(procfft_plan_description_set_data_layout(desc,
itype,
otype,
ioffset.data(),
ooffset.data(),
istride.size(),
istride.data(),
idist,
ostride.size(),
ostride.data(),
odist),
"rocfft_plan_description_data_layout failed");
rocfft_plan plan = NULL;
LIB_V_THROW(procfft_plan_create(&plan,
place,
rocfft_transform_type_from_fftparams(transform_type),
precision,
length.size(),
length.data(),
nbatch,
desc),
"rocfft_plan_create failed");
LIB_V_THROW(procfft_plan_description_destroy(desc), "rocfft_plan_description_destroy failed");
return plan;
}
// Given a libhandle from dload and a rocFFT plan, destroy the plan.
void destroy_plan(ROCFFT_LIB libhandle, rocfft_plan& plan)
{
auto procfft_plan_destroy
= (decltype(&rocfft_plan_destroy))rocfft_lib_symbol(libhandle, "rocfft_plan_destroy");
LIB_V_THROW(procfft_plan_destroy(plan), "rocfft_plan_destroy failed");
auto procfft_cleanup
= (decltype(&rocfft_cleanup))rocfft_lib_symbol(libhandle, "rocfft_cleanup");
if(procfft_cleanup)
LIB_V_THROW(procfft_cleanup(), "rocfft_cleanup failed");
}
// Given a libhandle from dload and a rocFFT execution info structure, destroy the info.
void destroy_info(ROCFFT_LIB libhandle, rocfft_execution_info& info)
{
auto procfft_execution_info_destroy
= (decltype(&rocfft_execution_info_destroy))rocfft_lib_symbol(
libhandle, "rocfft_execution_info_destroy");
LIB_V_THROW(procfft_execution_info_destroy(info), "rocfft_execution_info_destroy failed");
}
// Given a libhandle from dload, and a corresponding rocFFT plan, return how much work
// buffer is required.
size_t get_wbuffersize(ROCFFT_LIB libhandle, const rocfft_plan& plan)
{
auto procfft_plan_get_work_buffer_size
= (decltype(&rocfft_plan_get_work_buffer_size))rocfft_lib_symbol(
libhandle, "rocfft_plan_get_work_buffer_size");
// Get the buffersize
size_t workBufferSize = 0;
LIB_V_THROW(procfft_plan_get_work_buffer_size(plan, &workBufferSize),
"rocfft_plan_get_work_buffer_size failed");
return workBufferSize;
}
// Given a libhandle from dload and a corresponding rocFFT plan, print the plan information.
void show_plan(ROCFFT_LIB libhandle, const rocfft_plan& plan)
{
auto procfft_plan_get_print
= (decltype(&rocfft_plan_get_print))rocfft_lib_symbol(libhandle, "rocfft_plan_get_print");
LIB_V_THROW(procfft_plan_get_print(plan), "rocfft_plan_get_print failed");
}
// Given a libhandle from dload and a corresponding rocFFT plan, a work buffer size and an
// allocated work buffer, return a rocFFT execution info for the plan.
rocfft_execution_info make_execinfo(ROCFFT_LIB libhandle, const size_t wbuffersize, void* wbuffer)
{
auto procfft_execution_info_create = (decltype(&rocfft_execution_info_create))rocfft_lib_symbol(
libhandle, "rocfft_execution_info_create");
auto procfft_execution_info_set_work_buffer
= (decltype(&rocfft_execution_info_set_work_buffer))rocfft_lib_symbol(
libhandle, "rocfft_execution_info_set_work_buffer");
rocfft_execution_info info = NULL;
LIB_V_THROW(procfft_execution_info_create(&info), "rocfft_execution_info_create failed");
if(wbuffer != NULL)
{
LIB_V_THROW(procfft_execution_info_set_work_buffer(info, wbuffer, wbuffersize),
"rocfft_execution_info_set_work_buffer failed");
}
return info;
}
// Given a libhandle from dload and a corresponding rocFFT plan and execution info,
// execute a transform on the given input and output buffers and return the kernel
// execution time.
float run_plan(
ROCFFT_LIB libhandle, rocfft_plan plan, rocfft_execution_info info, void** in, void** out)
{
auto procfft_execute
= (decltype(&rocfft_execute))rocfft_lib_symbol(libhandle, "rocfft_execute");
hipEvent_wrapper_t start, stop;
start.alloc();
stop.alloc();
HIP_V_THROW(hipEventRecord(start), "hipEventRecord failed");
procfft_execute(plan, in, out, info);
HIP_V_THROW(hipEventRecord(stop), "hipEventRecord failed");
HIP_V_THROW(hipEventSynchronize(stop), "hipEventSynchronize failed");
float time;
HIP_V_THROW(hipEventElapsedTime(&time, start, stop), "hipEventElapsedTime failed");
return time;
}
// Load python library with RTLD_GLOBAL so that rocfft is free to
// import python modules that need all of the symbols in libpython.
// Normally, dyna-bench will want to dlopen rocfft's with RTLD_LOCAL.
// If libpython is brought in this way, python modules might not be
// able to find the symbols they need and import will fail.
#ifndef WIN32
static void* python_dl = nullptr;
void load_python(const std::vector<std::string>& libs)
{
// dlopen each lib, taking note of the python library that it needs
std::string pythonlib;
for(const auto& lib : libs)
{
void* handle = dlopen(lib.c_str(), RTLD_LAZY);
if(handle)
{
// look through the link map to see what libpython it needs (if any)
struct link_map* map;
if(dlinfo(handle, RTLD_DI_LINKMAP, &map) == 0)
{
for(struct link_map* ptr = map; ptr != nullptr; ptr = ptr->l_next)
{
std::string libname = ptr->l_name;
if(libname.find("/libpython3.") != std::string::npos)
{
if(!pythonlib.empty() && pythonlib != libname)
throw std::runtime_error("multiple distinct libpythons required");
pythonlib = libname;
}
}
}
}
dlclose(handle);
}
if(!pythonlib.empty())
{
// explicitly dlopen python with RTLD_GLOBAL
python_dl = dlopen(pythonlib.c_str(), RTLD_LAZY | RTLD_GLOBAL);
}
}
#endif
int main(int argc, char* argv[])
{
// Control output verbosity:
int verbose{};
// hip Device number for running tests:
int deviceId{};
// Number of performance trial samples:
int ntrial{};
// Test sequence choice:
int test_sequence{};
// Vector of test target libraries
std::vector<std::string> libs;
// FFT parameters:
fft_params params;
// Token string to fully specify fft params.
std::string token;
// Declare the supported options.
// clang-format doesn't handle boost program options very well:
// clang-format off
po::options_description opdesc("dyna-rocfft-bench command line options");
opdesc.add_options()("help,h", "Produces this help message")
("version,v", "Print queryable version information from the rocfft library")
("device", po::value<int>(&deviceId)->default_value(0), "Select a specific device id")
("verbose", po::value<int>(&verbose)->default_value(0), "Control output verbosity")
("ntrial,N", po::value<int>(&ntrial)->default_value(1), "Trial size for the problem")
("sequence", po::value<int>(&test_sequence)->default_value(0),
"Test sequence: random(0), alternating(1) sequential(2)")
("notInPlace,o", "Not in-place FFT transform (default: in-place)")
("double", "Double precision transform (deprecated: use --precision double)")
("precision", po::value<fft_precision>(¶ms.precision), "Transform precision: single (default), double, half")
("inputGen,g", po::value<fft_input_generator>(¶ms.igen)
->default_value(fft_input_random_generator_device),
"Input data generation:\n0) PRNG sequence (device)\n"
"1) PRNG sequence (host)\n"
"2) linearly-spaced sequence (device)\n"
"3) linearly-spaced sequence (host)")
("transformType,t", po::value<fft_transform_type>(¶ms.transform_type)
->default_value(fft_transform_type_complex_forward),
"Type of transform:\n0) complex forward\n1) complex inverse\n2) real "
"forward\n3) real inverse")
( "batchSize,b", po::value<size_t>(¶ms.nbatch)->default_value(1),
"If this value is greater than one, arrays will be used ")
( "itype", po::value<fft_array_type>(¶ms.itype)
->default_value(fft_array_type_unset),
"Array type of input data:\n0) interleaved\n1) planar\n2) real\n3) "
"hermitian interleaved\n4) hermitian planar")
( "otype", po::value<fft_array_type>(¶ms.otype)
->default_value(fft_array_type_unset),
"Array type of output data:\n0) interleaved\n1) planar\n2) real\n3) "
"hermitian interleaved\n4) hermitian planar")
("lib", po::value<std::vector<std::string>>(&libs)->multitoken(),
"Set test target library full path(appendable).")
("length", po::value<std::vector<size_t>>(¶ms.length)->multitoken(), "Lengths.")
("istride", po::value<std::vector<size_t>>(¶ms.istride)->multitoken(), "Input strides.")
("ostride", po::value<std::vector<size_t>>(¶ms.ostride)->multitoken(), "Output strides.")
("idist", po::value<size_t>(¶ms.idist)->default_value(0),
"Logical distance between input batches.")
("odist", po::value<size_t>(¶ms.odist)->default_value(0),
"Logical distance between output batches.")
("isize", po::value<std::vector<size_t>>(¶ms.isize)->multitoken(),
"Logical size of input buffer.")
("osize", po::value<std::vector<size_t>>(¶ms.osize)->multitoken(),
"Logical size of output.")
("ioffset", po::value<std::vector<size_t>>(¶ms.ioffset)->multitoken(), "Input offsets.")
("ooffset", po::value<std::vector<size_t>>(¶ms.ooffset)->multitoken(), "Output offsets.")
("scalefactor", po::value<double>(¶ms.scale_factor), "Scale factor to apply to output.")
("token", po::value<std::string>(&token));
// clang-format on
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, opdesc), vm);
po::notify(vm);
if(vm.count("help"))
{
std::cout << opdesc << std::endl;
return EXIT_SUCCESS;
}
if(vm.count("notInPlace"))
{
std::cout << "out-of-place\n";
}
else
{
std::cout << "in-place\n";
}
if(vm.count("ntrial"))
{
std::cout << "Running profile with " << ntrial << " samples\n";
}
if(token != "")
{
std::cout << "Reading fft params from token:\n" << token << std::endl;
try
{
params.from_token(token);
}
catch(...)
{
std::cout << "Unable to parse token." << std::endl;
return 1;
}
}
else
{
if(!vm.count("length"))
{
std::cout << "Please specify transform length!" << std::endl;
std::cout << opdesc << std::endl;
return EXIT_SUCCESS;
}
params.placement
= vm.count("notInPlace") ? fft_placement_notinplace : fft_placement_inplace;
if(vm.count("double"))
params.precision = fft_precision_double;
if(vm.count("notInPlace"))
{
std::cout << "out-of-place\n";
}
else
{
std::cout << "in-place\n";
}
if(vm.count("length"))
{
std::cout << "length:";
for(auto& i : params.length)
std::cout << " " << i;
std::cout << "\n";
}
if(vm.count("istride"))
{
std::cout << "istride:";
for(auto& i : params.istride)
std::cout << " " << i;
std::cout << "\n";
}
if(vm.count("ostride"))
{
std::cout << "ostride:";
for(auto& i : params.ostride)
std::cout << " " << i;
std::cout << "\n";
}
if(params.idist > 0)
{
std::cout << "idist: " << params.idist << "\n";
}
if(params.odist > 0)
{
std::cout << "odist: " << params.odist << "\n";
}
if(vm.count("ioffset"))
{
std::cout << "ioffset:";
for(auto& i : params.ioffset)
std::cout << " " << i;
std::cout << "\n";
}
if(vm.count("ooffset"))
{
std::cout << "ooffset:";
for(auto& i : params.ooffset)
std::cout << " " << i;
std::cout << "\n";
}
}
std::cout << std::flush;
// Fixme: set the device id properly after the IDs are synced
// bewteen hip runtime and rocm-smi.
// HIP_V_THROW(hipSetDevice(deviceId), "set device failed!");
params.validate();
if(!params.valid(verbose))
{
throw std::runtime_error("Invalid parameters, add --verbose=1 for detail");
}
std::cout << "Token: " << params.token() << std::endl;
if(verbose)
{
std::cout << params.str() << std::endl;
}
// Check free and total available memory:
size_t free = 0;
size_t total = 0;
HIP_V_THROW(hipMemGetInfo(&free, &total), "hipMemGetInfo failed");
const auto raw_vram_footprint
= params.fft_params_vram_footprint() + twiddle_table_vram_footprint(params);
if(!vram_fits_problem(raw_vram_footprint, free))
{
std::cout << "SKIPPED: Problem size (" << raw_vram_footprint
<< ") raw data too large for device.\n";
return EXIT_SUCCESS;
}
const auto vram_footprint = params.vram_footprint();
if(!vram_fits_problem(vram_footprint, free))
{
std::cout << "SKIPPED: Problem size (" << vram_footprint
<< ") raw data too large for device.\n";
return EXIT_SUCCESS;
}
std::vector<rocfft_plan> plan;
size_t wbuffer_size = 0;
#ifndef WIN32
load_python(libs);
#endif
// Set up shared object handles
std::vector<ROCFFT_LIB> handles;
for(unsigned int idx = 0; idx < libs.size(); ++idx)
{
auto libhandle = rocfft_lib_load(libs[idx]);
if(libhandle == NULL)
{
std::cout << "Failed to open " << libs[idx] << ", error: " << rocfft_lib_load_error()
<< std::endl;
return 1;
}
if(rocfft_lib_device_loaded(libhandle))
{
std::cerr << "Error: Library " << libs[idx] << " depends on librocfft-device.\n";
std::cerr << "All libraries need to be built with -DSINGLELIB=on.\n";
return 1;
}
handles.push_back(libhandle);
}
// Set up plans:
for(unsigned int idx = 0; idx < libs.size(); ++idx)
{
std::cout << idx << ": " << libs[idx] << std::endl;
plan.push_back(make_plan(handles[idx],
rocfft_result_placement_from_fftparams(params.placement),
params.transform_type,
params.length_cm(),
params.istride_cm(),
params.ostride_cm(),
params.idist,
params.odist,
params.ioffset,
params.ooffset,
params.nbatch,
rocfft_precision_from_fftparams(params.precision),
rocfft_array_type_from_fftparams(params.itype),
rocfft_array_type_from_fftparams(params.otype)));
show_plan(handles[idx], plan[idx]);
wbuffer_size = std::max(wbuffer_size, get_wbuffersize(handles[idx], plan[idx]));
}
std::cout << "Work buffer size: " << wbuffer_size << std::endl;
// Allocate the work buffer: just one, big enough for any dloaded library.
gpubuf wbuffer;
if(wbuffer_size)
{
HIP_V_THROW(wbuffer.alloc(wbuffer_size), "Creating intermediate Buffer failed");
}
// Associate the work buffer to the invidual libraries:
std::vector<rocfft_execution_info> info;
for(unsigned int idx = 0; idx < libs.size(); ++idx)
{
info.push_back(make_execinfo(handles[idx], wbuffer_size, wbuffer.data()));
}
// GPU input buffer:
auto ibuffer_sizes = params.ibuffer_sizes();
std::vector<gpubuf> ibuffer(ibuffer_sizes.size());
std::vector<void*> pibuffer(ibuffer_sizes.size());
for(unsigned int i = 0; i < ibuffer.size(); ++i)
{
HIP_V_THROW(ibuffer[i].alloc(ibuffer_sizes[i]), "Creating input Buffer failed");
pibuffer[i] = ibuffer[i].data();
}
// CPU input buffer
std::vector<hostbuf> ibuffer_cpu;
auto is_device_gen = (params.igen == fft_input_generator_device
|| params.igen == fft_input_random_generator_device);
auto is_host_gen = (params.igen == fft_input_generator_host
|| params.igen == fft_input_random_generator_host);
if(is_device_gen)
{
// Input data:
params.compute_input(ibuffer);
if(verbose > 1)
{
// Copy input to CPU
ibuffer_cpu = allocate_host_buffer(params.precision, params.itype, params.isize);
for(unsigned int idx = 0; idx < ibuffer.size(); ++idx)
{
HIP_V_THROW(hipMemcpy(ibuffer_cpu.at(idx).data(),
ibuffer[idx].data(),
ibuffer_sizes[idx],
hipMemcpyDeviceToHost),
"hipMemcpy failed");
}
std::cout << "GPU input:\n";
params.print_ibuffer(ibuffer_cpu);
}
}
if(is_host_gen)
{
// Input data:
ibuffer_cpu = allocate_host_buffer(params.precision, params.itype, params.isize);
params.compute_input(ibuffer_cpu);
if(verbose > 1)
{
std::cout << "GPU input:\n";
params.print_ibuffer(ibuffer_cpu);
}
for(unsigned int idx = 0; idx < ibuffer_cpu.size(); ++idx)
{
HIP_V_THROW(hipMemcpy(pibuffer[idx],
ibuffer_cpu[idx].data(),
ibuffer_cpu[idx].size(),
hipMemcpyHostToDevice),
"hipMemcpy failed");
}
}
// GPU output buffer:
std::vector<gpubuf> obuffer_data;
std::vector<gpubuf>* obuffer = &obuffer_data;
if(params.placement == fft_placement_inplace)
{
obuffer = &ibuffer;
}
else
{
auto obuffer_sizes = params.obuffer_sizes();
obuffer_data.resize(obuffer_sizes.size());
for(unsigned int i = 0; i < obuffer_data.size(); ++i)
{
HIP_V_THROW(obuffer_data[i].alloc(obuffer_sizes[i]), "Creating output Buffer failed");
}
}
std::vector<void*> pobuffer(obuffer->size());
for(unsigned int i = 0; i < obuffer->size(); ++i)
{
pobuffer[i] = obuffer->at(i).data();
}
if(handles.size())
{
// Run the plan using its associated rocFFT library:
for(unsigned int idx = 0; idx < handles.size(); ++idx)
{
run_plan(handles[idx], plan[idx], info[idx], pibuffer.data(), pobuffer.data());
}
}
// Execution times for loaded libraries:
std::vector<std::vector<double>> time(libs.size());
std::vector<int> testcase(ntrial * libs.size());
switch(test_sequence)
{
case 0:
{
// Random order:
for(int itrial = 0; itrial < ntrial; ++itrial)
{
for(size_t ilib = 0; ilib < libs.size(); ++ilib)
{
testcase[libs.size() * itrial + ilib] = ilib;
}
}
std::random_device rd;
std::mt19937 g(rd());
std::shuffle(testcase.begin(), testcase.end(), g);
break;
}
case 1:
// Alternating order:
for(int itrial = 0; itrial < ntrial; ++itrial)
{
for(size_t ilib = 0; ilib < libs.size(); ++ilib)
{
testcase[libs.size() * itrial + ilib] = ilib;
}
}
break;
case 2:
// Sequential order:
for(int itrial = 0; itrial < ntrial; ++itrial)
{
for(size_t ilib = 0; ilib < libs.size(); ++ilib)
{
testcase[ilib * ntrial + itrial] = ilib;
}
}
break;
default:
throw std::runtime_error("Invalid test sequence choice.");
}
std::cout << "test case:";
for(const auto i : testcase)
std::cout << " " << i;
std::cout << "\n";
// Run the FFTs from the different libraries in random order until they all have at
// least ntrial times.
std::vector<int> ndone(libs.size());
std::fill(ndone.begin(), ndone.end(), 0);
for(size_t itest = 0; itest < testcase.size(); ++itest)
{
const int idx = testcase[itest];
if(is_device_gen)
{
params.compute_input(ibuffer);
}
if(is_host_gen)
{
for(unsigned int idx = 0; idx < ibuffer_cpu.size(); ++idx)
{
HIP_V_THROW(hipMemcpy(pibuffer[idx],
ibuffer_cpu[idx].data(),
ibuffer_cpu[idx].size(),
hipMemcpyHostToDevice),
"hipMemcpy failed");
}
}
// Run the plan using its associated rocFFT library:
time[idx].push_back(
run_plan(handles[idx], plan[idx], info[idx], pibuffer.data(), pobuffer.data()));
if(verbose > 2)
{
auto output = allocate_host_buffer(params.precision, params.otype, params.osize);
for(unsigned int iout = 0; iout < output.size(); ++iout)
{
HIP_V_THROW(hipMemcpy(output[iout].data(),
pobuffer[iout],
output[iout].size(),
hipMemcpyDeviceToHost),
"hipMemcpy failed");
}
std::cout << "GPU output:\n";
params.print_obuffer(output);
}
}
std::cout << "Execution times in ms:\n";
for(unsigned int idx = 0; idx < time.size(); ++idx)
{
std::cout << "\nExecution gpu time:";
for(auto& i : time[idx])
{
std::cout << " " << i;
}
std::cout << " ms" << std::endl;
}
// Clean up:
for(unsigned int idx = 0; idx < handles.size(); ++idx)
{
destroy_info(handles[idx], info[idx]);
destroy_plan(handles[idx], plan[idx]);
rocfft_lib_close(handles[idx]);
}
#ifndef WIN32
if(python_dl)
dlclose(python_dl);
#endif
return EXIT_SUCCESS;
}
|