File: dyna-bench.cpp

package info (click to toggle)
rocfft 6.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,672 kB
  • sloc: cpp: 55,735; python: 5,774; sh: 428; xml: 204; makefile: 56
file content (842 lines) | stat: -rw-r--r-- 29,678 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
// Copyright (C) 2020 - 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

// This file allows one to run tests multiple different rocFFT libraries at the same time.
// This allows one to randomize the execution order for better a better experimental setup
// which produces fewer type 1 errors where one incorrectly rejects the null hypothesis.

#include <algorithm>
#include <hip/hip_runtime_api.h>
#include <iostream>
#include <math.h>
#include <vector>

#ifdef WIN32
#include <windows.h>

#include <psapi.h>
#else
#include <dlfcn.h>
#include <link.h>
#endif

#include "../../shared/gpubuf.h"
#include "../../shared/hip_object_wrapper.h"
#include "../../shared/rocfft_params.h"
#include "bench.h"
#include "rocfft/rocfft.h"

#include <boost/program_options.hpp>
namespace po = boost::program_options;

#ifdef WIN32
typedef HMODULE ROCFFT_LIB;
#else
typedef void* ROCFFT_LIB;
#endif

// Load the rocfft library
ROCFFT_LIB rocfft_lib_load(const std::string& path)
{
#ifdef WIN32
    return LoadLibraryA(path.c_str());
#else
    return dlopen(path.c_str(), RTLD_LAZY);
#endif
}

// Return a string describing the error loading rocfft
const char* rocfft_lib_load_error()
{
#ifdef WIN32
    // just return the error number
    static std::string error_str;
    error_str = std::to_string(GetLastError());
    return error_str.c_str();
#else
    return dlerror();
#endif
}

// Return true if rocfft_device is loaded, which indicates that the
// library was not built with -DSINGLELIB=ON.
bool rocfft_lib_device_loaded(ROCFFT_LIB libhandle)
{
#ifdef WIN32
    DWORD arraySize = 0;
    EnumProcessModules(GetCurrentProcess(), NULL, 0, &arraySize);
    std::vector<HMODULE> modules(arraySize);
    if(EnumProcessModules(GetCurrentProcess(), modules.data(), modules.size(), &arraySize))
    {
        for(auto& mod : modules)
        {
            char name[MAX_PATH] = {0};
            GetModuleFileNameA(mod, name, MAX_PATH);
            // poor man's stristr on windows
            std::transform(name, name + strlen(name), name, [](char c) { return std::tolower(c); });
            if(strstr(name, "rocfft-device.dll"))
                return true;
        }
    }
    return false;
#else
    struct link_map* link = nullptr;
    dlinfo(libhandle, RTLD_DI_LINKMAP, &link);
    for(; link != nullptr; link = link->l_next)
    {
        if(strstr(link->l_name, "librocfft-device") != nullptr)
        {
            return true;
        }
    }
    return false;
#endif
}

// Get symbol from rocfft lib
void* rocfft_lib_symbol(ROCFFT_LIB libhandle, const char* sym)
{
#ifdef WIN32
    return reinterpret_cast<void*>(GetProcAddress(libhandle, sym));
#else
    return dlsym(libhandle, sym);
#endif
}

void rocfft_lib_close(ROCFFT_LIB libhandle)
{
#ifdef WIN32
    FreeLibrary(libhandle);
#else
    dlclose(libhandle);
#endif
}

// Given a libhandle from dload, return a plan to a rocFFT plan with the given parameters.
rocfft_plan make_plan(ROCFFT_LIB                    libhandle,
                      const rocfft_result_placement place,
                      const fft_transform_type      transform_type,
                      const std::vector<size_t>&    length,
                      const std::vector<size_t>&    istride,
                      const std::vector<size_t>&    ostride,
                      const size_t                  idist,
                      const size_t                  odist,
                      const std::vector<size_t>&    ioffset,
                      const std::vector<size_t>&    ooffset,
                      const size_t                  nbatch,
                      const rocfft_precision        precision,
                      const rocfft_array_type       itype,
                      const rocfft_array_type       otype)
{
    auto procfft_setup = (decltype(&rocfft_setup))rocfft_lib_symbol(libhandle, "rocfft_setup");
    if(procfft_setup == NULL)
        exit(1);
    auto procfft_plan_description_create
        = (decltype(&rocfft_plan_description_create))rocfft_lib_symbol(
            libhandle, "rocfft_plan_description_create");
    auto procfft_plan_description_destroy
        = (decltype(&rocfft_plan_description_destroy))rocfft_lib_symbol(
            libhandle, "rocfft_plan_description_destroy");
    auto procfft_plan_description_set_data_layout
        = (decltype(&rocfft_plan_description_set_data_layout))rocfft_lib_symbol(
            libhandle, "rocfft_plan_description_set_data_layout");
    auto procfft_plan_create
        = (decltype(&rocfft_plan_create))rocfft_lib_symbol(libhandle, "rocfft_plan_create");

    procfft_setup();

    rocfft_plan_description desc = NULL;
    LIB_V_THROW(procfft_plan_description_create(&desc), "rocfft_plan_description_create failed");
    LIB_V_THROW(procfft_plan_description_set_data_layout(desc,
                                                         itype,
                                                         otype,
                                                         ioffset.data(),
                                                         ooffset.data(),
                                                         istride.size(),
                                                         istride.data(),
                                                         idist,
                                                         ostride.size(),
                                                         ostride.data(),
                                                         odist),
                "rocfft_plan_description_data_layout failed");
    rocfft_plan plan = NULL;

    LIB_V_THROW(procfft_plan_create(&plan,
                                    place,
                                    rocfft_transform_type_from_fftparams(transform_type),
                                    precision,
                                    length.size(),
                                    length.data(),
                                    nbatch,
                                    desc),
                "rocfft_plan_create failed");

    LIB_V_THROW(procfft_plan_description_destroy(desc), "rocfft_plan_description_destroy failed");

    return plan;
}

// Given a libhandle from dload and a rocFFT plan, destroy the plan.
void destroy_plan(ROCFFT_LIB libhandle, rocfft_plan& plan)
{
    auto procfft_plan_destroy
        = (decltype(&rocfft_plan_destroy))rocfft_lib_symbol(libhandle, "rocfft_plan_destroy");

    LIB_V_THROW(procfft_plan_destroy(plan), "rocfft_plan_destroy failed");

    auto procfft_cleanup
        = (decltype(&rocfft_cleanup))rocfft_lib_symbol(libhandle, "rocfft_cleanup");
    if(procfft_cleanup)
        LIB_V_THROW(procfft_cleanup(), "rocfft_cleanup failed");
}

// Given a libhandle from dload and a rocFFT execution info structure, destroy the info.
void destroy_info(ROCFFT_LIB libhandle, rocfft_execution_info& info)
{
    auto procfft_execution_info_destroy
        = (decltype(&rocfft_execution_info_destroy))rocfft_lib_symbol(
            libhandle, "rocfft_execution_info_destroy");
    LIB_V_THROW(procfft_execution_info_destroy(info), "rocfft_execution_info_destroy failed");
}

// Given a libhandle from dload, and a corresponding rocFFT plan, return how much work
// buffer is required.
size_t get_wbuffersize(ROCFFT_LIB libhandle, const rocfft_plan& plan)
{
    auto procfft_plan_get_work_buffer_size
        = (decltype(&rocfft_plan_get_work_buffer_size))rocfft_lib_symbol(
            libhandle, "rocfft_plan_get_work_buffer_size");

    // Get the buffersize
    size_t workBufferSize = 0;
    LIB_V_THROW(procfft_plan_get_work_buffer_size(plan, &workBufferSize),
                "rocfft_plan_get_work_buffer_size failed");

    return workBufferSize;
}

// Given a libhandle from dload and a corresponding rocFFT plan, print the plan information.
void show_plan(ROCFFT_LIB libhandle, const rocfft_plan& plan)
{
    auto procfft_plan_get_print
        = (decltype(&rocfft_plan_get_print))rocfft_lib_symbol(libhandle, "rocfft_plan_get_print");

    LIB_V_THROW(procfft_plan_get_print(plan), "rocfft_plan_get_print failed");
}

// Given a libhandle from dload and a corresponding rocFFT plan, a work buffer size and an
// allocated work buffer, return a rocFFT execution info for the plan.
rocfft_execution_info make_execinfo(ROCFFT_LIB libhandle, const size_t wbuffersize, void* wbuffer)
{
    auto procfft_execution_info_create = (decltype(&rocfft_execution_info_create))rocfft_lib_symbol(
        libhandle, "rocfft_execution_info_create");
    auto procfft_execution_info_set_work_buffer
        = (decltype(&rocfft_execution_info_set_work_buffer))rocfft_lib_symbol(
            libhandle, "rocfft_execution_info_set_work_buffer");

    rocfft_execution_info info = NULL;
    LIB_V_THROW(procfft_execution_info_create(&info), "rocfft_execution_info_create failed");
    if(wbuffer != NULL)
    {
        LIB_V_THROW(procfft_execution_info_set_work_buffer(info, wbuffer, wbuffersize),
                    "rocfft_execution_info_set_work_buffer failed");
    }

    return info;
}

// Given a libhandle from dload and a corresponding rocFFT plan and execution info,
// execute a transform on the given input and output buffers and return the kernel
// execution time.
float run_plan(
    ROCFFT_LIB libhandle, rocfft_plan plan, rocfft_execution_info info, void** in, void** out)
{
    auto procfft_execute
        = (decltype(&rocfft_execute))rocfft_lib_symbol(libhandle, "rocfft_execute");

    hipEvent_wrapper_t start, stop;
    start.alloc();
    stop.alloc();

    HIP_V_THROW(hipEventRecord(start), "hipEventRecord failed");

    procfft_execute(plan, in, out, info);

    HIP_V_THROW(hipEventRecord(stop), "hipEventRecord failed");
    HIP_V_THROW(hipEventSynchronize(stop), "hipEventSynchronize failed");

    float time;
    HIP_V_THROW(hipEventElapsedTime(&time, start, stop), "hipEventElapsedTime failed");
    return time;
}

// Load python library with RTLD_GLOBAL so that rocfft is free to
// import python modules that need all of the symbols in libpython.
// Normally, dyna-bench will want to dlopen rocfft's with RTLD_LOCAL.
// If libpython is brought in this way, python modules might not be
// able to find the symbols they need and import will fail.
#ifndef WIN32
static void* python_dl = nullptr;
void         load_python(const std::vector<std::string>& libs)
{
    // dlopen each lib, taking note of the python library that it needs
    std::string pythonlib;
    for(const auto& lib : libs)
    {
        void* handle = dlopen(lib.c_str(), RTLD_LAZY);
        if(handle)
        {
            // look through the link map to see what libpython it needs (if any)
            struct link_map* map;
            if(dlinfo(handle, RTLD_DI_LINKMAP, &map) == 0)
            {
                for(struct link_map* ptr = map; ptr != nullptr; ptr = ptr->l_next)
                {
                    std::string libname = ptr->l_name;
                    if(libname.find("/libpython3.") != std::string::npos)
                    {
                        if(!pythonlib.empty() && pythonlib != libname)
                            throw std::runtime_error("multiple distinct libpythons required");
                        pythonlib = libname;
                    }
                }
            }
        }
        dlclose(handle);
    }

    if(!pythonlib.empty())
    {
        // explicitly dlopen python with RTLD_GLOBAL
        python_dl = dlopen(pythonlib.c_str(), RTLD_LAZY | RTLD_GLOBAL);
    }
}
#endif

int main(int argc, char* argv[])
{
    // Control output verbosity:
    int verbose{};

    // hip Device number for running tests:
    int deviceId{};

    // Number of performance trial samples:
    int ntrial{};

    // Test sequence choice:
    int test_sequence{};

    // Vector of test target libraries
    std::vector<std::string> libs;

    // FFT parameters:
    fft_params params;

    // Token string to fully specify fft params.
    std::string token;

    // Declare the supported options.

    // clang-format doesn't handle boost program options very well:
    // clang-format off
    po::options_description opdesc("dyna-rocfft-bench command line options");
    opdesc.add_options()("help,h", "Produces this help message")
        ("version,v", "Print queryable version information from the rocfft library")
        ("device", po::value<int>(&deviceId)->default_value(0), "Select a specific device id")
        ("verbose", po::value<int>(&verbose)->default_value(0), "Control output verbosity")
        ("ntrial,N", po::value<int>(&ntrial)->default_value(1), "Trial size for the problem")
        ("sequence", po::value<int>(&test_sequence)->default_value(0),
         "Test sequence: random(0), alternating(1) sequential(2)")
        ("notInPlace,o", "Not in-place FFT transform (default: in-place)")
        ("double", "Double precision transform (deprecated: use --precision double)")
        ("precision", po::value<fft_precision>(&params.precision), "Transform precision: single (default), double, half")
        ("inputGen,g", po::value<fft_input_generator>(&params.igen)
        ->default_value(fft_input_random_generator_device),
        "Input data generation:\n0) PRNG sequence (device)\n"
        "1) PRNG sequence (host)\n"
        "2) linearly-spaced sequence (device)\n"
        "3) linearly-spaced sequence (host)")
        ("transformType,t", po::value<fft_transform_type>(&params.transform_type)
         ->default_value(fft_transform_type_complex_forward),
         "Type of transform:\n0) complex forward\n1) complex inverse\n2) real "
         "forward\n3) real inverse")
        ( "batchSize,b", po::value<size_t>(&params.nbatch)->default_value(1),
          "If this value is greater than one, arrays will be used ")
        ( "itype", po::value<fft_array_type>(&params.itype)
          ->default_value(fft_array_type_unset),
          "Array type of input data:\n0) interleaved\n1) planar\n2) real\n3) "
          "hermitian interleaved\n4) hermitian planar")
        ( "otype", po::value<fft_array_type>(&params.otype)
          ->default_value(fft_array_type_unset),
          "Array type of output data:\n0) interleaved\n1) planar\n2) real\n3) "
          "hermitian interleaved\n4) hermitian planar")
        ("lib",  po::value<std::vector<std::string>>(&libs)->multitoken(),
         "Set test target library full path(appendable).")
        ("length",  po::value<std::vector<size_t>>(&params.length)->multitoken(), "Lengths.")
        ("istride", po::value<std::vector<size_t>>(&params.istride)->multitoken(), "Input strides.")
        ("ostride", po::value<std::vector<size_t>>(&params.ostride)->multitoken(), "Output strides.")
        ("idist", po::value<size_t>(&params.idist)->default_value(0),
         "Logical distance between input batches.")
        ("odist", po::value<size_t>(&params.odist)->default_value(0),
         "Logical distance between output batches.")
        ("isize", po::value<std::vector<size_t>>(&params.isize)->multitoken(),
         "Logical size of input buffer.")
        ("osize", po::value<std::vector<size_t>>(&params.osize)->multitoken(),
         "Logical size of output.")
        ("ioffset", po::value<std::vector<size_t>>(&params.ioffset)->multitoken(), "Input offsets.")
        ("ooffset", po::value<std::vector<size_t>>(&params.ooffset)->multitoken(), "Output offsets.")
        ("scalefactor", po::value<double>(&params.scale_factor), "Scale factor to apply to output.")
        ("token", po::value<std::string>(&token));
    // clang-format on

    po::variables_map vm;
    po::store(po::parse_command_line(argc, argv, opdesc), vm);
    po::notify(vm);

    if(vm.count("help"))
    {
        std::cout << opdesc << std::endl;
        return EXIT_SUCCESS;
    }

    if(vm.count("notInPlace"))
    {
        std::cout << "out-of-place\n";
    }
    else
    {
        std::cout << "in-place\n";
    }

    if(vm.count("ntrial"))
    {
        std::cout << "Running profile with " << ntrial << " samples\n";
    }

    if(token != "")
    {
        std::cout << "Reading fft params from token:\n" << token << std::endl;

        try
        {
            params.from_token(token);
        }
        catch(...)
        {
            std::cout << "Unable to parse token." << std::endl;
            return 1;
        }
    }
    else
    {
        if(!vm.count("length"))
        {
            std::cout << "Please specify transform length!" << std::endl;
            std::cout << opdesc << std::endl;
            return EXIT_SUCCESS;
        }

        params.placement
            = vm.count("notInPlace") ? fft_placement_notinplace : fft_placement_inplace;
        if(vm.count("double"))
            params.precision = fft_precision_double;

        if(vm.count("notInPlace"))
        {
            std::cout << "out-of-place\n";
        }
        else
        {
            std::cout << "in-place\n";
        }

        if(vm.count("length"))
        {
            std::cout << "length:";
            for(auto& i : params.length)
                std::cout << " " << i;
            std::cout << "\n";
        }

        if(vm.count("istride"))
        {
            std::cout << "istride:";
            for(auto& i : params.istride)
                std::cout << " " << i;
            std::cout << "\n";
        }
        if(vm.count("ostride"))
        {
            std::cout << "ostride:";
            for(auto& i : params.ostride)
                std::cout << " " << i;
            std::cout << "\n";
        }

        if(params.idist > 0)
        {
            std::cout << "idist: " << params.idist << "\n";
        }
        if(params.odist > 0)
        {
            std::cout << "odist: " << params.odist << "\n";
        }

        if(vm.count("ioffset"))
        {
            std::cout << "ioffset:";
            for(auto& i : params.ioffset)
                std::cout << " " << i;
            std::cout << "\n";
        }
        if(vm.count("ooffset"))
        {
            std::cout << "ooffset:";
            for(auto& i : params.ooffset)
                std::cout << " " << i;
            std::cout << "\n";
        }
    }

    std::cout << std::flush;

    // Fixme: set the device id properly after the IDs are synced
    // bewteen hip runtime and rocm-smi.
    // HIP_V_THROW(hipSetDevice(deviceId), "set device failed!");

    params.validate();

    if(!params.valid(verbose))
    {
        throw std::runtime_error("Invalid parameters, add --verbose=1 for detail");
    }

    std::cout << "Token: " << params.token() << std::endl;
    if(verbose)
    {
        std::cout << params.str() << std::endl;
    }

    // Check free and total available memory:
    size_t free  = 0;
    size_t total = 0;
    HIP_V_THROW(hipMemGetInfo(&free, &total), "hipMemGetInfo failed");

    const auto raw_vram_footprint
        = params.fft_params_vram_footprint() + twiddle_table_vram_footprint(params);
    if(!vram_fits_problem(raw_vram_footprint, free))
    {
        std::cout << "SKIPPED: Problem size (" << raw_vram_footprint
                  << ") raw data too large for device.\n";
        return EXIT_SUCCESS;
    }

    const auto vram_footprint = params.vram_footprint();
    if(!vram_fits_problem(vram_footprint, free))
    {
        std::cout << "SKIPPED: Problem size (" << vram_footprint
                  << ") raw data too large for device.\n";
        return EXIT_SUCCESS;
    }

    std::vector<rocfft_plan> plan;

    size_t wbuffer_size = 0;

#ifndef WIN32
    load_python(libs);
#endif

    // Set up shared object handles
    std::vector<ROCFFT_LIB> handles;
    for(unsigned int idx = 0; idx < libs.size(); ++idx)
    {
        auto libhandle = rocfft_lib_load(libs[idx]);
        if(libhandle == NULL)
        {
            std::cout << "Failed to open " << libs[idx] << ", error: " << rocfft_lib_load_error()
                      << std::endl;
            return 1;
        }
        if(rocfft_lib_device_loaded(libhandle))
        {
            std::cerr << "Error: Library " << libs[idx] << " depends on librocfft-device.\n";
            std::cerr << "All libraries need to be built with -DSINGLELIB=on.\n";
            return 1;
        }
        handles.push_back(libhandle);
    }

    // Set up plans:
    for(unsigned int idx = 0; idx < libs.size(); ++idx)
    {
        std::cout << idx << ": " << libs[idx] << std::endl;
        plan.push_back(make_plan(handles[idx],
                                 rocfft_result_placement_from_fftparams(params.placement),
                                 params.transform_type,
                                 params.length_cm(),
                                 params.istride_cm(),
                                 params.ostride_cm(),
                                 params.idist,
                                 params.odist,
                                 params.ioffset,
                                 params.ooffset,
                                 params.nbatch,
                                 rocfft_precision_from_fftparams(params.precision),
                                 rocfft_array_type_from_fftparams(params.itype),
                                 rocfft_array_type_from_fftparams(params.otype)));
        show_plan(handles[idx], plan[idx]);
        wbuffer_size = std::max(wbuffer_size, get_wbuffersize(handles[idx], plan[idx]));
    }

    std::cout << "Work buffer size: " << wbuffer_size << std::endl;

    // Allocate the work buffer: just one, big enough for any dloaded library.
    gpubuf wbuffer;
    if(wbuffer_size)
    {
        HIP_V_THROW(wbuffer.alloc(wbuffer_size), "Creating intermediate Buffer failed");
    }

    // Associate the work buffer to the invidual libraries:
    std::vector<rocfft_execution_info> info;
    for(unsigned int idx = 0; idx < libs.size(); ++idx)
    {
        info.push_back(make_execinfo(handles[idx], wbuffer_size, wbuffer.data()));
    }

    // GPU input buffer:
    auto                ibuffer_sizes = params.ibuffer_sizes();
    std::vector<gpubuf> ibuffer(ibuffer_sizes.size());
    std::vector<void*>  pibuffer(ibuffer_sizes.size());
    for(unsigned int i = 0; i < ibuffer.size(); ++i)
    {
        HIP_V_THROW(ibuffer[i].alloc(ibuffer_sizes[i]), "Creating input Buffer failed");
        pibuffer[i] = ibuffer[i].data();
    }

    // CPU input buffer
    std::vector<hostbuf> ibuffer_cpu;

    auto is_device_gen = (params.igen == fft_input_generator_device
                          || params.igen == fft_input_random_generator_device);
    auto is_host_gen   = (params.igen == fft_input_generator_host
                        || params.igen == fft_input_random_generator_host);

    if(is_device_gen)
    {
        // Input data:
        params.compute_input(ibuffer);

        if(verbose > 1)
        {
            // Copy input to CPU
            ibuffer_cpu = allocate_host_buffer(params.precision, params.itype, params.isize);
            for(unsigned int idx = 0; idx < ibuffer.size(); ++idx)
            {
                HIP_V_THROW(hipMemcpy(ibuffer_cpu.at(idx).data(),
                                      ibuffer[idx].data(),
                                      ibuffer_sizes[idx],
                                      hipMemcpyDeviceToHost),
                            "hipMemcpy failed");
            }

            std::cout << "GPU input:\n";
            params.print_ibuffer(ibuffer_cpu);
        }
    }

    if(is_host_gen)
    {
        // Input data:
        ibuffer_cpu = allocate_host_buffer(params.precision, params.itype, params.isize);
        params.compute_input(ibuffer_cpu);

        if(verbose > 1)
        {
            std::cout << "GPU input:\n";
            params.print_ibuffer(ibuffer_cpu);
        }

        for(unsigned int idx = 0; idx < ibuffer_cpu.size(); ++idx)
        {
            HIP_V_THROW(hipMemcpy(pibuffer[idx],
                                  ibuffer_cpu[idx].data(),
                                  ibuffer_cpu[idx].size(),
                                  hipMemcpyHostToDevice),
                        "hipMemcpy failed");
        }
    }

    // GPU output buffer:
    std::vector<gpubuf>  obuffer_data;
    std::vector<gpubuf>* obuffer = &obuffer_data;
    if(params.placement == fft_placement_inplace)
    {
        obuffer = &ibuffer;
    }
    else
    {
        auto obuffer_sizes = params.obuffer_sizes();
        obuffer_data.resize(obuffer_sizes.size());
        for(unsigned int i = 0; i < obuffer_data.size(); ++i)
        {
            HIP_V_THROW(obuffer_data[i].alloc(obuffer_sizes[i]), "Creating output Buffer failed");
        }
    }
    std::vector<void*> pobuffer(obuffer->size());
    for(unsigned int i = 0; i < obuffer->size(); ++i)
    {
        pobuffer[i] = obuffer->at(i).data();
    }

    if(handles.size())
    {
        // Run the plan using its associated rocFFT library:
        for(unsigned int idx = 0; idx < handles.size(); ++idx)
        {
            run_plan(handles[idx], plan[idx], info[idx], pibuffer.data(), pobuffer.data());
        }
    }

    // Execution times for loaded libraries:
    std::vector<std::vector<double>> time(libs.size());

    std::vector<int> testcase(ntrial * libs.size());
    switch(test_sequence)
    {
    case 0:
    {
        // Random order:
        for(int itrial = 0; itrial < ntrial; ++itrial)
        {
            for(size_t ilib = 0; ilib < libs.size(); ++ilib)
            {
                testcase[libs.size() * itrial + ilib] = ilib;
            }
        }

        std::random_device rd;
        std::mt19937       g(rd());
        std::shuffle(testcase.begin(), testcase.end(), g);
        break;
    }
    case 1:
        // Alternating order:
        for(int itrial = 0; itrial < ntrial; ++itrial)
        {
            for(size_t ilib = 0; ilib < libs.size(); ++ilib)
            {
                testcase[libs.size() * itrial + ilib] = ilib;
            }
        }
        break;
    case 2:
        // Sequential order:
        for(int itrial = 0; itrial < ntrial; ++itrial)
        {
            for(size_t ilib = 0; ilib < libs.size(); ++ilib)
            {
                testcase[ilib * ntrial + itrial] = ilib;
            }
        }

        break;
    default:
        throw std::runtime_error("Invalid test sequence choice.");
    }

    std::cout << "test case:";
    for(const auto i : testcase)
        std::cout << " " << i;
    std::cout << "\n";

    // Run the FFTs from the different libraries in random order until they all have at
    // least ntrial times.
    std::vector<int> ndone(libs.size());
    std::fill(ndone.begin(), ndone.end(), 0);
    for(size_t itest = 0; itest < testcase.size(); ++itest)
    {
        const int idx = testcase[itest];

        if(is_device_gen)
        {
            params.compute_input(ibuffer);
        }

        if(is_host_gen)
        {
            for(unsigned int idx = 0; idx < ibuffer_cpu.size(); ++idx)
            {
                HIP_V_THROW(hipMemcpy(pibuffer[idx],
                                      ibuffer_cpu[idx].data(),
                                      ibuffer_cpu[idx].size(),
                                      hipMemcpyHostToDevice),
                            "hipMemcpy failed");
            }
        }

        // Run the plan using its associated rocFFT library:
        time[idx].push_back(
            run_plan(handles[idx], plan[idx], info[idx], pibuffer.data(), pobuffer.data()));

        if(verbose > 2)
        {
            auto output = allocate_host_buffer(params.precision, params.otype, params.osize);
            for(unsigned int iout = 0; iout < output.size(); ++iout)
            {
                HIP_V_THROW(hipMemcpy(output[iout].data(),
                                      pobuffer[iout],
                                      output[iout].size(),
                                      hipMemcpyDeviceToHost),
                            "hipMemcpy failed");
            }
            std::cout << "GPU output:\n";
            params.print_obuffer(output);
        }
    }

    std::cout << "Execution times in ms:\n";
    for(unsigned int idx = 0; idx < time.size(); ++idx)
    {
        std::cout << "\nExecution gpu time:";
        for(auto& i : time[idx])
        {
            std::cout << " " << i;
        }
        std::cout << " ms" << std::endl;
    }

    // Clean up:
    for(unsigned int idx = 0; idx < handles.size(); ++idx)
    {
        destroy_info(handles[idx], info[idx]);
        destroy_plan(handles[idx], plan[idx]);
        rocfft_lib_close(handles[idx]);
    }

#ifndef WIN32
    if(python_dl)
        dlclose(python_dl);
#endif

    return EXIT_SUCCESS;
}