1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
// Copyright (C) 2021 - 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include "accuracy_test.h"
std::vector<std::vector<size_t>> adhoc_sizes = {
// sizes that exercise L1D_TRTRT subplan of 2D_RTRT or 3D_TRTRTR
{1, 220},
{1, 330},
{81, 220, 36},
// L1D_CC subplan of 3D_TRTRTR
{4, 4, 8192},
// SBRC 192 with special param
{192, 192, 192},
{192, 84, 84},
// Failure with build_CS_3D_BLOCK_RC
{680, 128, 128},
// Large 1D primes that fall above the block threshold (length 262144).
// Bluestein requires two forwards and one inverse FFTs, and the plan
// for these sizes breakdown these FFTs either as:
// L1D_TRTRT (T + STOCKHAM + T + STOCKHAM + T) for lengthBlue <= 4096^2
// or
// L1D_TRTRT (T + L1D_CC + STOCKHAM_BL_CC + STOCHMAM_BL_RC + T + STOCKHAM + T)
// for lengthBlue > 4096^2.
{196597},
{25165813},
// 2D single-kernel bluestein size combined with multi-kernel bluestein
{19, 2053},
// TILE_UNALIGNED type of SBRC 3D ERC
{98, 98, 98},
// 3D_BLOCK_CR
{336, 336, 56},
};
const static std::vector<std::vector<size_t>> stride_range = {{1}};
static std::vector<std::vector<size_t>> ioffset_range_zero = {{0, 0}};
static std::vector<std::vector<size_t>> ooffset_range_zero = {{0, 0}};
static std::vector<std::vector<size_t>> ioffset_range = {{0, 0}, {1, 1}};
static std::vector<std::vector<size_t>> ooffset_range = {{0, 0}, {1, 1}};
INSTANTIATE_TEST_SUITE_P(adhoc,
accuracy_test,
::testing::ValuesIn(param_generator(adhoc_sizes,
precision_range_sp_dp,
batch_range,
stride_range,
stride_range,
ioffset_range_zero,
ooffset_range_zero,
place_range,
true)),
accuracy_test::TestName);
INSTANTIATE_TEST_SUITE_P(DISABLED_offset_adhoc,
accuracy_test,
::testing::ValuesIn(param_generator(adhoc_sizes,
precision_range_full,
batch_range,
stride_range,
stride_range,
ioffset_range,
ooffset_range,
place_range,
true)),
accuracy_test::TestName);
// Test that dist is ignored for batch-1 transforms. Normally,
// in-place transforms require same dist, but for batch-1 dist isn't
// used for anything and differing dist should be allowed.
inline auto param_permissive_iodist()
{
std::vector<std::vector<size_t>> lengths = adhoc_sizes;
lengths.push_back({4});
std::vector<fft_params> params;
for(const auto precision : precision_range_sp_dp)
{
for(const auto trans_type : trans_type_range)
{
for(const auto& types : generate_types(trans_type, place_range, true))
{
if(std::get<1>(types) != fft_placement_inplace)
continue;
for(const auto& len : lengths)
{
fft_params param;
param.length = len;
param.precision = precision;
param.idist = 2;
param.odist = 3;
param.transform_type = std::get<0>(types);
param.placement = std::get<1>(types);
param.itype = std::get<2>(types);
param.otype = std::get<3>(types);
params.push_back(param);
}
}
}
}
return params;
}
INSTANTIATE_TEST_SUITE_P(adhoc_dist,
accuracy_test,
::testing::ValuesIn(param_permissive_iodist()),
accuracy_test::TestName);
inline auto param_adhoc_colmajor()
{
// generate basic FFTs of adhoc sizes
auto params = param_generator(adhoc_sizes,
{fft_precision_single},
{2},
stride_range,
stride_range,
ioffset_range_zero,
ooffset_range_zero,
{fft_placement_notinplace},
false);
// remove any params that are:
// - 1D (not enough dims to swap)
// - real-complex 2D (we only get to play with higher dims, so
// again not enough dims to swap)
params.erase(std::remove_if(params.begin(),
params.end(),
[](const fft_params& param) {
if(param.length.size() == 1)
return true;
if(param.length.size() == 2)
{
if(param.transform_type == fft_transform_type_real_forward
|| param.transform_type
== fft_transform_type_real_inverse)
return true;
}
return false;
}),
params.end());
// reverse length/stride order on remaining params to make them
// col-major
std::for_each(params.begin(), params.end(), [](fft_params& param) {
size_t start_dim = 0;
// for real-complex we can't touch the fastest dim
if(param.transform_type == fft_transform_type_real_forward
|| param.transform_type == fft_transform_type_real_inverse)
++start_dim;
std::reverse(param.length.rbegin() + start_dim, param.length.rend());
std::reverse(param.istride.rbegin() + start_dim, param.istride.rend());
std::reverse(param.ostride.rbegin() + start_dim, param.ostride.rend());
});
return params;
}
INSTANTIATE_TEST_SUITE_P(adhoc_colmajor,
accuracy_test,
::testing::ValuesIn(param_adhoc_colmajor()),
accuracy_test::TestName);
inline auto param_adhoc_stride()
{
std::vector<fft_params> params;
for(const auto precision : precision_range_full)
{
for(const auto& types : generate_types(fft_transform_type_complex_forward,
{fft_placement_inplace, fft_placement_notinplace},
true))
{
// 2D with non-contiguous strides and dist
fft_params param;
param.length = {2, 35};
param.precision = precision;
param.idist = 200;
param.odist = 200;
param.transform_type = fft_transform_type_complex_forward;
param.nbatch = 2;
param.placement = std::get<1>(types);
param.itype = std::get<2>(types);
param.otype = std::get<3>(types);
param.istride = {90, 2};
param.ostride = {90, 2};
params.push_back(param);
}
// test C2R/R2C with non-contiguous higher strides and dist - we
// want unit stride for length0 so we do the even-length optimization
for(const auto& types :
generate_types(fft_transform_type_real_forward, {fft_placement_notinplace}, true))
{
fft_params param;
param.length = {4, 4, 4};
param.precision = precision;
param.idist = 0;
param.odist = 0;
param.transform_type = fft_transform_type_real_forward;
param.nbatch = 2;
param.placement = std::get<1>(types);
param.itype = std::get<2>(types);
param.otype = std::get<3>(types);
param.istride = {16, 4, 1};
param.ostride = {16, 4, 1};
params.push_back(param);
param.length = {2, 2, 2};
param.precision = precision;
param.idist = 0;
param.odist = 0;
param.transform_type = fft_transform_type_real_forward;
param.nbatch = 2;
param.placement = std::get<1>(types);
param.itype = std::get<2>(types);
param.otype = std::get<3>(types);
param.istride = {20, 6, 1};
param.ostride = {20, 6, 1};
params.push_back(param);
}
}
return params;
}
INSTANTIATE_TEST_SUITE_P(adhoc_stride,
accuracy_test,
::testing::ValuesIn(param_adhoc_stride()),
accuracy_test::TestName);
auto adhoc_tokens = {
"complex_forward_len_512_64_single_ip_batch_3_istride_192_3_CI_ostride_192_3_CI_idist_1_odist_"
"1_ioffset_0_0_ooffset_0_0",
"real_forward_len_1024_1024_1024_single_op_batch_1_istride_1048576_1024_1_R_ostride_525312_513_"
"1_HI_idist_1073741824_odist_537919488_ioffset_0_0_ooffset_0_0",
"complex_forward_len_6144_single_ip_batch_34_istride_35_CI_ostride_35_CI_idist_1_odist_1_"
"ioffset_0_0_ooffset_0_0",
};
INSTANTIATE_TEST_SUITE_P(adhoc_token,
accuracy_test,
::testing::ValuesIn(param_generator_token(adhoc_tokens)),
accuracy_test::TestName);
|