1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
// Copyright (C) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include "../../shared/hostbuf.h"
#include "../../shared/rocfft_complex.h"
#include "../../shared/rocfft_params.h"
#include "accuracy_test.h"
#include "fftw_transform.h"
#include "rocfft_against_fftw.h"
#include <gtest/gtest.h>
// callback functions to cast data from short to float
__host__ __device__ float
load_callback_short(short* input, size_t offset, void* cbdata, void* sharedMem)
{
return static_cast<float>(input[offset]);
}
__host__ __device__ float2 load_callback_short2(short2* input,
size_t offset,
void* cbdata,
void* sharedMem)
{
return float2{static_cast<float>(input[offset].x), static_cast<float>(input[offset].y)};
}
__device__ auto load_callback_short_dev = load_callback_short;
__device__ auto load_callback_short2_dev = load_callback_short2;
class change_type : public ::testing::TestWithParam<fft_params>
{
protected:
void SetUp() override {}
void TearDown() override {}
public:
static std::string TestName(const testing::TestParamInfo<change_type::ParamType>& info)
{
return info.param.token();
}
};
// aim for 1D lengths that might need ordinary Stockham, transpose,
// Bluestein kernels to treat real data as complex
std::vector<std::vector<size_t>> callback_type_sizes = {{4}, {60}, {122}, {220}, {8192}, {4500000}};
// test complex + real forward transforms. real inverse is not a valid
// test case here, because we're allowed to overwrite input on those.
// the input can't be any smaller than what rocFFT thinks it is,
// because the overwrite will fail.
const static std::vector<std::vector<size_t>> stride_range = {{1}};
INSTANTIATE_TEST_SUITE_P(callback,
change_type,
::testing::ValuesIn(param_generator_base(
{fft_transform_type_complex_forward, fft_transform_type_real_forward},
callback_type_sizes,
{fft_precision_single},
{1},
generate_types,
stride_range,
stride_range,
{{0, 0}},
{{0, 0}},
{fft_placement_notinplace},
false,
false)),
accuracy_test::TestName);
// run an out-of-place transform that casts input from short to float
TEST_P(change_type, short_to_float)
{
rocfft_params params(GetParam());
params.run_callbacks = true;
ASSERT_EQ(params.create_plan(), fft_status_success);
// input has 2 shorts/floats for complex data, 1 otherwise.
// output is always complex for these tests.
const size_t input_complex = params.transform_type != fft_transform_type_real_forward ? 2 : 1;
// allocate
gpubuf gpu_input;
gpubuf gpu_output;
std::vector<hostbuf> cpu_input(1);
std::vector<hostbuf> cpu_output(1);
// gpu input is actually shorts, everything else is float
ASSERT_EQ(gpu_input.alloc(params.isize[0] * sizeof(short) * input_complex), hipSuccess);
ASSERT_EQ(gpu_output.alloc(params.osize[0] * sizeof(float) * 2), hipSuccess);
cpu_input[0].alloc(params.isize[0] * sizeof(float) * input_complex);
cpu_output[0].alloc(params.osize[0] * sizeof(float) * 2);
// generate short (16-bit) and float (32-bit) input
std::mt19937 gen;
std::uniform_int_distribution<short> dis(-3, 3);
std::vector<short> cpu_input_short(params.isize[0] * input_complex);
for(auto& i : cpu_input_short)
i = dis(gen);
// copy short input to gpubuf
ASSERT_EQ(hipMemcpy(gpu_input.data(),
cpu_input_short.data(),
sizeof(short) * cpu_input_short.size(),
hipMemcpyHostToDevice),
hipSuccess);
// convert shorts to floats for FFTW input
std::copy(
cpu_input_short.begin(), cpu_input_short.end(), static_cast<float*>(cpu_input[0].data()));
// get callback function so we can pass it to rocfft
void* callback_host;
if(input_complex == 1)
{
ASSERT_EQ(
hipMemcpyFromSymbol(&callback_host, HIP_SYMBOL(load_callback_short_dev), sizeof(void*)),
hipSuccess);
}
else
{
ASSERT_EQ(hipMemcpyFromSymbol(
&callback_host, HIP_SYMBOL(load_callback_short2_dev), sizeof(void*)),
hipSuccess);
}
ASSERT_EQ(params.set_callbacks(callback_host, nullptr, nullptr, nullptr), fft_status_success);
// run rocFFT
void* gpu_input_ptr = gpu_input.data();
void* gpu_output_ptr = gpu_output.data();
ASSERT_EQ(params.execute(&gpu_input_ptr, &gpu_output_ptr), fft_status_success);
// construct + run FFTW plan
auto cpu_plan = fftw_plan_via_rocfft<float>(params.length,
params.istride,
params.ostride,
params.nbatch,
params.idist,
params.odist,
params.transform_type,
cpu_input,
cpu_output);
fftw_run<float>(params.transform_type, cpu_plan, cpu_input, cpu_output);
// copy rocFFT output back to CPU
std::vector<hostbuf> gpu_output_copy(1);
gpu_output_copy[0].alloc(gpu_output.size());
ASSERT_EQ(
hipMemcpy(
gpu_output_copy[0].data(), gpu_output.data(), gpu_output.size(), hipMemcpyDeviceToHost),
hipSuccess);
auto cpu_output_norm = norm(cpu_output,
params.olength(),
params.nbatch,
params.precision,
params.otype,
params.ostride,
params.odist,
params.ooffset);
ASSERT_TRUE(std::isfinite(cpu_output_norm.l_2));
ASSERT_TRUE(std::isfinite(cpu_output_norm.l_inf));
auto gpu_output_norm = norm(gpu_output_copy,
params.olength(),
params.nbatch,
params.precision,
params.otype,
params.ostride,
params.odist,
params.ooffset);
ASSERT_TRUE(std::isfinite(gpu_output_norm.l_2));
ASSERT_TRUE(std::isfinite(gpu_output_norm.l_inf));
double linf_cutoff
= type_epsilon(params.precision) * cpu_output_norm.l_inf * log(params.length.front());
auto diff = distance(cpu_output,
gpu_output_copy,
params.olength(),
params.nbatch,
params.precision,
params.otype,
params.ostride,
params.odist,
params.otype,
params.ostride,
params.odist,
nullptr,
linf_cutoff,
params.ioffset,
params.ooffset);
ASSERT_TRUE(diff.l_inf <= linf_cutoff);
}
|