1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
// Copyright (C) 2016 - 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma once
#ifndef FFTWTRANSFORM_H
#define FFTWTRANSFORM_H
#include "test_params.h"
#include <fftw3.h>
#include <vector>
// Function to return maximum error for float and double types.
//
// Following Schatzman (1996; Accuracy of the Discrete Fourier
// Transform and the Fast Fourier Transform), the shape of relative
// l_2 error vs length should look like
//
// epsilon * sqrt(log2(length)).
//
// The magic epsilon constants below were chosen so that we get a
// reasonable upper bound for (all of) our tests.
//
// For rocFFT, prime lengths result in the highest error. As such,
// the epsilons below are perhaps too loose for pow2 lengths; but they
// are appropriate for prime lengths.
template <typename Tfloat>
inline double type_epsilon();
template <>
inline double type_epsilon<_Float16>()
{
return half_epsilon;
}
template <>
inline double type_epsilon<float>()
{
return single_epsilon;
}
template <>
inline double type_epsilon<double>()
{
return double_epsilon;
}
// C++ traits to translate float->fftwf_complex and
// double->fftw_complex.
// The correct FFTW complex type can be accessed via, for example,
// using complex_t = typename fftw_complex_trait<Tfloat>::complex_t;
template <typename Tfloat>
struct fftw_trait;
template <>
struct fftw_trait<_Float16>
{
// fftw does not support half precision, so use single precision and convert
using fftw_complex_type = fftwf_complex;
using fftw_plan_type = fftwf_plan;
};
template <>
struct fftw_trait<float>
{
using fftw_complex_type = fftwf_complex;
using fftw_plan_type = fftwf_plan;
};
template <>
struct fftw_trait<double>
{
using fftw_complex_type = fftw_complex;
using fftw_plan_type = fftw_plan;
};
// Copies the half-precision input buffer to a single-precision
// buffer. Note that the input buffer is already sized like it's a
// single-precision buffer (but only half of it is filled), because
// we allocate a single-precision buffer for FFTW to plan with.
static hostbuf half_to_single_copy(const hostbuf& in)
{
auto out = in.copy();
auto in_begin = reinterpret_cast<const _Float16*>(in.data());
std::copy_n(in_begin, in.size() / sizeof(_Float16) / 2, reinterpret_cast<float*>(out.data()));
return out;
}
// converts a wider precision buffer to a narrower precision, in-place
template <typename TfloatIn, typename TfloatOut>
void narrow_precision_inplace(hostbuf& in)
{
// ensure we're actually shrinking the data
static_assert(sizeof(TfloatIn) > sizeof(TfloatOut));
auto readPtr = reinterpret_cast<const TfloatIn*>(in.data());
auto writePtr = reinterpret_cast<TfloatOut*>(in.data());
std::copy_n(readPtr, in.size() / sizeof(TfloatIn), writePtr);
in.shrink(in.size() / (sizeof(TfloatIn) / sizeof(TfloatOut)));
}
static void single_to_half_inplace(hostbuf& in)
{
narrow_precision_inplace<float, _Float16>(in);
}
// Template wrappers for real-valued FFTW allocators:
template <typename Tfloat>
inline Tfloat* fftw_alloc_real_type(size_t n);
template <>
inline float* fftw_alloc_real_type<float>(size_t n)
{
return fftwf_alloc_real(n);
}
template <>
inline double* fftw_alloc_real_type<double>(size_t n)
{
return fftw_alloc_real(n);
}
// Template wrappers for complex-valued FFTW allocators:
template <typename Tfloat>
inline typename fftw_trait<Tfloat>::fftw_complex_type* fftw_alloc_complex_type(size_t n);
template <>
inline typename fftw_trait<float>::fftw_complex_type* fftw_alloc_complex_type<float>(size_t n)
{
return fftwf_alloc_complex(n);
}
template <>
inline typename fftw_trait<double>::fftw_complex_type* fftw_alloc_complex_type<double>(size_t n)
{
return fftw_alloc_complex(n);
}
template <typename fftw_type>
inline fftw_type* fftw_alloc_type(size_t n);
template <>
inline float* fftw_alloc_type<float>(size_t n)
{
return fftw_alloc_real_type<float>(n);
}
template <>
inline double* fftw_alloc_type<double>(size_t n)
{
return fftw_alloc_real_type<double>(n);
}
template <>
inline fftwf_complex* fftw_alloc_type<fftwf_complex>(size_t n)
{
return fftw_alloc_complex_type<float>(n);
}
template <>
inline fftw_complex* fftw_alloc_type<fftw_complex>(size_t n)
{
return fftw_alloc_complex_type<double>(n);
}
template <>
inline rocfft_complex<float>* fftw_alloc_type<rocfft_complex<float>>(size_t n)
{
return (rocfft_complex<float>*)fftw_alloc_complex_type<float>(n);
}
template <>
inline rocfft_complex<double>* fftw_alloc_type<rocfft_complex<double>>(size_t n)
{
return (rocfft_complex<double>*)fftw_alloc_complex_type<double>(n);
}
// Template wrappers for FFTW plan executors:
template <typename Tfloat>
inline void fftw_execute_type(typename fftw_trait<Tfloat>::fftw_plan_type plan);
template <>
inline void fftw_execute_type<float>(typename fftw_trait<float>::fftw_plan_type plan)
{
return fftwf_execute(plan);
}
template <>
inline void fftw_execute_type<double>(typename fftw_trait<double>::fftw_plan_type plan)
{
return fftw_execute(plan);
}
// Template wrappers for FFTW plan destroyers:
template <typename Tfftw_plan>
inline void fftw_destroy_plan_type(Tfftw_plan plan);
template <>
inline void fftw_destroy_plan_type<fftwf_plan>(fftwf_plan plan)
{
return fftwf_destroy_plan(plan);
}
template <>
inline void fftw_destroy_plan_type<fftw_plan>(fftw_plan plan)
{
return fftw_destroy_plan(plan);
}
// Template wrappers for FFTW c2c planners:
template <typename Tfloat>
inline typename fftw_trait<Tfloat>::fftw_plan_type
fftw_plan_guru64_dft(int rank,
const fftw_iodim64* dims,
int howmany_rank,
const fftw_iodim64* howmany_dims,
typename fftw_trait<Tfloat>::fftw_complex_type* in,
typename fftw_trait<Tfloat>::fftw_complex_type* out,
int sign,
unsigned flags);
template <>
inline typename fftw_trait<_Float16>::fftw_plan_type
fftw_plan_guru64_dft<_Float16>(int rank,
const fftw_iodim64* dims,
int howmany_rank,
const fftw_iodim64* howmany_dims,
typename fftw_trait<_Float16>::fftw_complex_type* in,
typename fftw_trait<_Float16>::fftw_complex_type* out,
int sign,
unsigned flags)
{
return fftwf_plan_guru64_dft(rank, dims, howmany_rank, howmany_dims, in, out, sign, flags);
}
template <>
inline typename fftw_trait<float>::fftw_plan_type
fftw_plan_guru64_dft<float>(int rank,
const fftw_iodim64* dims,
int howmany_rank,
const fftw_iodim64* howmany_dims,
typename fftw_trait<float>::fftw_complex_type* in,
typename fftw_trait<float>::fftw_complex_type* out,
int sign,
unsigned flags)
{
return fftwf_plan_guru64_dft(rank, dims, howmany_rank, howmany_dims, in, out, sign, flags);
}
template <>
inline typename fftw_trait<double>::fftw_plan_type
fftw_plan_guru64_dft<double>(int rank,
const fftw_iodim64* dims,
int howmany_rank,
const fftw_iodim64* howmany_dims,
typename fftw_trait<double>::fftw_complex_type* in,
typename fftw_trait<double>::fftw_complex_type* out,
int sign,
unsigned flags)
{
return fftw_plan_guru64_dft(rank, dims, howmany_rank, howmany_dims, in, out, sign, flags);
}
// Template wrappers for FFTW c2c executors:
template <typename Tfloat>
inline void fftw_plan_execute_c2c(typename fftw_trait<Tfloat>::fftw_plan_type plan,
std::vector<hostbuf>& in,
std::vector<hostbuf>& out);
template <>
inline void fftw_plan_execute_c2c<_Float16>(typename fftw_trait<_Float16>::fftw_plan_type plan,
std::vector<hostbuf>& in,
std::vector<hostbuf>& out)
{
// since FFTW does not natively support half precision, convert
// input to single, execute, then convert output back to half
auto in_single = half_to_single_copy(in.front());
fftwf_execute_dft(plan,
reinterpret_cast<fftwf_complex*>(in_single.data()),
reinterpret_cast<fftwf_complex*>(out.front().data()));
single_to_half_inplace(out.front());
}
template <>
inline void fftw_plan_execute_c2c<float>(typename fftw_trait<float>::fftw_plan_type plan,
std::vector<hostbuf>& in,
std::vector<hostbuf>& out)
{
fftwf_execute_dft(plan,
reinterpret_cast<fftwf_complex*>(in.front().data()),
reinterpret_cast<fftwf_complex*>(out.front().data()));
}
template <>
inline void fftw_plan_execute_c2c<double>(typename fftw_trait<double>::fftw_plan_type plan,
std::vector<hostbuf>& in,
std::vector<hostbuf>& out)
{
fftw_execute_dft(plan,
reinterpret_cast<fftw_complex*>(in.front().data()),
reinterpret_cast<fftw_complex*>(out.front().data()));
}
// Template wrappers for FFTW r2c planners:
template <typename Tfloat>
inline typename fftw_trait<Tfloat>::fftw_plan_type
fftw_plan_guru64_r2c(int rank,
const fftw_iodim64* dims,
int howmany_rank,
const fftw_iodim64* howmany_dims,
Tfloat* in,
typename fftw_trait<Tfloat>::fftw_complex_type* out,
unsigned flags);
template <>
inline typename fftw_trait<_Float16>::fftw_plan_type
fftw_plan_guru64_r2c<_Float16>(int rank,
const fftw_iodim64* dims,
int howmany_rank,
const fftw_iodim64* howmany_dims,
_Float16* in,
typename fftw_trait<_Float16>::fftw_complex_type* out,
unsigned flags)
{
return fftwf_plan_guru64_dft_r2c(
rank, dims, howmany_rank, howmany_dims, reinterpret_cast<float*>(in), out, flags);
}
template <>
inline typename fftw_trait<float>::fftw_plan_type
fftw_plan_guru64_r2c<float>(int rank,
const fftw_iodim64* dims,
int howmany_rank,
const fftw_iodim64* howmany_dims,
float* in,
typename fftw_trait<float>::fftw_complex_type* out,
unsigned flags)
{
return fftwf_plan_guru64_dft_r2c(rank, dims, howmany_rank, howmany_dims, in, out, flags);
}
template <>
inline typename fftw_trait<double>::fftw_plan_type
fftw_plan_guru64_r2c<double>(int rank,
const fftw_iodim64* dims,
int howmany_rank,
const fftw_iodim64* howmany_dims,
double* in,
typename fftw_trait<double>::fftw_complex_type* out,
unsigned flags)
{
return fftw_plan_guru64_dft_r2c(rank, dims, howmany_rank, howmany_dims, in, out, flags);
}
// Template wrappers for FFTW r2c executors:
template <typename Tfloat>
inline void fftw_plan_execute_r2c(typename fftw_trait<Tfloat>::fftw_plan_type plan,
std::vector<hostbuf>& in,
std::vector<hostbuf>& out);
template <>
inline void fftw_plan_execute_r2c<_Float16>(typename fftw_trait<float>::fftw_plan_type plan,
std::vector<hostbuf>& in,
std::vector<hostbuf>& out)
{
// since FFTW does not natively support half precision, convert
// input to single, execute, then convert output back to half
auto in_single = half_to_single_copy(in.front());
fftwf_execute_dft_r2c(plan,
reinterpret_cast<float*>(in_single.data()),
reinterpret_cast<fftwf_complex*>(out.front().data()));
single_to_half_inplace(out.front());
}
template <>
inline void fftw_plan_execute_r2c<float>(typename fftw_trait<float>::fftw_plan_type plan,
std::vector<hostbuf>& in,
std::vector<hostbuf>& out)
{
fftwf_execute_dft_r2c(plan,
reinterpret_cast<float*>(in.front().data()),
reinterpret_cast<fftwf_complex*>(out.front().data()));
}
template <>
inline void fftw_plan_execute_r2c<double>(typename fftw_trait<double>::fftw_plan_type plan,
std::vector<hostbuf>& in,
std::vector<hostbuf>& out)
{
fftw_execute_dft_r2c(plan,
reinterpret_cast<double*>(in.front().data()),
reinterpret_cast<fftw_complex*>(out.front().data()));
}
// Template wrappers for FFTW c2r planners:
template <typename Tfloat>
inline typename fftw_trait<Tfloat>::fftw_plan_type
fftw_plan_guru64_c2r(int rank,
const fftw_iodim64* dims,
int howmany_rank,
const fftw_iodim64* howmany_dims,
typename fftw_trait<Tfloat>::fftw_complex_type* in,
Tfloat* out,
unsigned flags);
template <>
inline typename fftw_trait<_Float16>::fftw_plan_type
fftw_plan_guru64_c2r<_Float16>(int rank,
const fftw_iodim64* dims,
int howmany_rank,
const fftw_iodim64* howmany_dims,
typename fftw_trait<_Float16>::fftw_complex_type* in,
_Float16* out,
unsigned flags)
{
return fftwf_plan_guru64_dft_c2r(
rank, dims, howmany_rank, howmany_dims, in, reinterpret_cast<float*>(out), flags);
}
template <>
inline typename fftw_trait<float>::fftw_plan_type
fftw_plan_guru64_c2r<float>(int rank,
const fftw_iodim64* dims,
int howmany_rank,
const fftw_iodim64* howmany_dims,
typename fftw_trait<float>::fftw_complex_type* in,
float* out,
unsigned flags)
{
return fftwf_plan_guru64_dft_c2r(rank, dims, howmany_rank, howmany_dims, in, out, flags);
}
template <>
inline typename fftw_trait<double>::fftw_plan_type
fftw_plan_guru64_c2r<double>(int rank,
const fftw_iodim64* dims,
int howmany_rank,
const fftw_iodim64* howmany_dims,
typename fftw_trait<double>::fftw_complex_type* in,
double* out,
unsigned flags)
{
return fftw_plan_guru64_dft_c2r(rank, dims, howmany_rank, howmany_dims, in, out, flags);
}
// Template wrappers for FFTW c2r executors:
template <typename Tfloat>
inline void fftw_plan_execute_c2r(typename fftw_trait<Tfloat>::fftw_plan_type plan,
std::vector<hostbuf>& in,
std::vector<hostbuf>& out);
template <>
inline void fftw_plan_execute_c2r<_Float16>(typename fftw_trait<float>::fftw_plan_type plan,
std::vector<hostbuf>& in,
std::vector<hostbuf>& out)
{
// since FFTW does not natively support half precision, convert
// input to single, execute, then convert output back to half
auto in_single = half_to_single_copy(in.front());
fftwf_execute_dft_c2r(plan,
reinterpret_cast<fftwf_complex*>(in_single.data()),
reinterpret_cast<float*>(out.front().data()));
single_to_half_inplace(out.front());
}
template <>
inline void fftw_plan_execute_c2r<float>(typename fftw_trait<float>::fftw_plan_type plan,
std::vector<hostbuf>& in,
std::vector<hostbuf>& out)
{
fftwf_execute_dft_c2r(plan,
reinterpret_cast<fftwf_complex*>(in.front().data()),
reinterpret_cast<float*>(out.front().data()));
}
template <>
inline void fftw_plan_execute_c2r<double>(typename fftw_trait<double>::fftw_plan_type plan,
std::vector<hostbuf>& in,
std::vector<hostbuf>& out)
{
fftw_execute_dft_c2r(plan,
reinterpret_cast<fftw_complex*>(in.front().data()),
reinterpret_cast<double*>(out.front().data()));
}
#ifdef FFTW_HAVE_SPRINT_PLAN
// Template wrappers for FFTW print plan:
template <typename Tfloat>
inline char* fftw_sprint_plan(const typename fftw_trait<Tfloat>::fftw_plan_type plan);
template <>
inline char* fftw_sprint_plan<_Float16>(const typename fftw_trait<_Float16>::fftw_plan_type plan)
{
return fftwf_sprint_plan(plan);
}
template <>
inline char* fftw_sprint_plan<float>(const typename fftw_trait<float>::fftw_plan_type plan)
{
return fftwf_sprint_plan(plan);
}
template <>
inline char* fftw_sprint_plan<double>(const typename fftw_trait<double>::fftw_plan_type plan)
{
return fftw_sprint_plan(plan);
}
#endif
#endif
|