File: hermitian_test.cpp

package info (click to toggle)
rocfft 6.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,672 kB
  • sloc: cpp: 55,735; python: 5,774; sh: 428; xml: 204; makefile: 56
file content (338 lines) | stat: -rw-r--r-- 11,493 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// Copyright (C) 2021 - 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

#include "../../shared/gpubuf.h"
#include "../../shared/rocfft_params.h"
#include "../samples/rocfft/examplekernels.h"
#include "../samples/rocfft/exampleutils.h"
#include "accuracy_test.h"
#include "rocfft/rocfft.h"
#include <functional>
#include <gtest/gtest.h>
#include <hip/hip_runtime_api.h>
#include <memory>
#include <random>
#include <thread>
#include <vector>

void run_1D_hermitian_test(size_t length)
{
    // Run two 1D C2R transforms, on:
    // * random input
    // * identical random input, but modified to be Hermitian-symmetric
    // We should tolerate the input being having non-zero imaginary part in the DC mode
    // and the Nyquist frequency (of the length is even).

    rocfft_params p;
    p.length         = {length};
    p.precision      = fft_precision_double;
    p.transform_type = fft_transform_type_real_inverse;
    p.placement      = fft_placement_notinplace;
    p.validate();

    if(verbose)
    {
        std::cout << p.str("\n\t") << std::endl;
    }

    ASSERT_TRUE(p.valid(verbose));

    std::vector<hipDoubleComplex> h_input(p.isize[0]);

    std::random_device                     rd;
    std::mt19937                           gen(rd());
    std::uniform_real_distribution<double> dis(0.0, 1.0);
    for(auto& val : h_input)
    {
        val.x = dis(gen);
        val.y = dis(gen);
    }

    if(verbose > 2)
    {
        std::cout << "non-Hermitian input:";
        for(const auto& val : h_input)
        {
            std::cout << " "
                      << "(" << val.x << ", " << val.y << ")";
        }
        std::cout << std::endl;
    }

    gpubuf ibuf;
    ASSERT_TRUE(ibuf.alloc(p.ibuffer_sizes()[0]) == hipSuccess);
    ASSERT_TRUE(hipMemcpy(ibuf.data(), h_input.data(), ibuf.size(), hipMemcpyHostToDevice)
                == hipSuccess);

    gpubuf obuf;
    ASSERT_TRUE(obuf.alloc(p.obuffer_sizes()[0]) == hipSuccess);

    ASSERT_TRUE(p.create_plan() == fft_status_success);

    std::vector<void*> pibuf = {ibuf.data()};
    std::vector<void*> pobuf = {obuf.data()};
    ASSERT_TRUE(p.execute(pibuf.data(), pobuf.data()) == fft_status_success);

    std::vector<double> h_output(p.osize[0]);
    ASSERT_TRUE(hipMemcpy(h_output.data(), obuf.data(), obuf.size(), hipMemcpyDeviceToHost)
                == hipSuccess);

    ASSERT_TRUE(hipDeviceSynchronize() == hipSuccess);

    if(verbose > 2)
    {
        std::cout << "output:";
        for(const auto& val : h_output)
        {
            std::cout << " " << val;
        }
        std::cout << std::endl;
    }

    std::vector<hipDoubleComplex> h_input1(p.isize[0]);
    std::copy(h_input.begin(), h_input.end(), h_input1.begin());

    // Impose Hermitian symmetry on the input:
    h_input1[0].y = 0.0;

    if(p.length[0] % 2 == 0)
    {
        h_input1.back().y = 0.0;
    }
    if(verbose > 2)
    {
        std::cout << "Hermitian input:";
        for(const auto& val : h_input1)
        {
            std::cout << " "
                      << "(" << val.x << ", " << val.y << ")";
        }
        std::cout << std::endl;
    }

    double maxdiff = 0.0;
    for(unsigned int i = 0; i < h_input.size(); ++i)
    {
        auto val = std::abs(
            rocfft_complex<double>(h_input[i].x - h_input1[i].x, h_input[i].y - h_input1[i].y));
        if(val > maxdiff)
            maxdiff = val;
    }
    ASSERT_TRUE(maxdiff > 0.0);

    ASSERT_TRUE(hipMemcpy(ibuf.data(), h_input1.data(), ibuf.size(), hipMemcpyHostToDevice)
                == hipSuccess);
    ASSERT_TRUE(p.execute(pibuf.data(), pobuf.data()) == fft_status_success);
    std::vector<double> h_output1(p.osize[0]);
    ASSERT_TRUE(hipMemcpy(h_output1.data(), obuf.data(), obuf.size(), hipMemcpyDeviceToHost)
                == hipSuccess);

    if(verbose > 2)
    {
        std::cout << "output:";
        for(const auto& val : h_output1)
        {
            std::cout << " " << val;
        }
        std::cout << std::endl;
    }

    double maxerr = 0;
    for(unsigned int i = 0; i < h_output.size(); ++i)
    {
        auto val = std::abs(h_output[i] - h_output1[i]);
        if(val > maxerr)
            maxerr = val;
    }

    if(verbose)
        std::cout << maxerr << std::endl;

    EXPECT_TRUE(maxerr == 0.0);
}

// test a case that's small enough that it only needs one kernel
TEST(rocfft_UnitTest, 1D_hermitian_single_small)
{
    run_1D_hermitian_test(8);
}

// test a case that's big enough that it needs multiple kernels
TEST(rocfft_UnitTest, 1D_hermitian_single_large)
{
    run_1D_hermitian_test(8192);
}

template <typename T>
std::string str(T begin, T end)
{
    std::stringstream ss;
    bool              first = true;
    for(; begin != end; begin++)
    {
        if(!first)
            ss << ", ";
        ss << *begin;
        first = false;
    }
    return ss.str();
}

// Test that the GPU Hermitian symmetrizer code produces the correct results.
TEST(rocfft_UnitTest, gpu_symmetrizer)
{
    std::vector<std::vector<size_t>> lengths = {{4, 4, 3},
                                                {5},
                                                {8},
                                                {5, 5},
                                                {5, 8},
                                                {8, 5},
                                                {8, 8},
                                                {5, 5, 5},
                                                {8, 5, 5},
                                                {5, 8, 5},
                                                {5, 5, 8},
                                                {5, 8, 8},
                                                {8, 5, 8},
                                                {8, 8, 5},
                                                {8, 8, 8}};

    for(const auto& length : lengths)
    {
        // Symmetrize complex data and ensure that the checker sees that it's symmetric.

        // Use the params class to set up strides and lengths:
        rocfft_params p;
        p.length         = length;
        p.precision      = fft_precision_double;
        p.transform_type = fft_transform_type_real_inverse;
        p.placement      = fft_placement_notinplace;
        p.validate();
        if(verbose)
        {
            std::cout << "\t" << p.str("\n\t") << std::endl;
        }
        ASSERT_TRUE(p.valid(verbose));

        // Data buffers:
        gpubuf buf;
        ASSERT_TRUE(buf.alloc(sizeof(hipDoubleComplex) * p.isize[0]) == hipSuccess);
        std::vector<hipDoubleComplex> hbuf(p.isize[0]);

        // Initialize a Hermitian-symmetric array; it should be symmetric.
        init_hermitiancomplex_cm(p.length_cm(), p.ilength_cm(), p.istride_cm(), buf.data());
        ASSERT_TRUE(hipMemcpy(hbuf.data(), buf.data(), buf.size(), hipMemcpyDeviceToHost)
                    == hipSuccess);
        if(verbose > 1)
        {
            printbuffer_cm(hbuf, p.ilength_cm(), p.istride_cm(), p.nbatch, p.idist);
        }
        EXPECT_TRUE(
            check_symmetry_cm(hbuf, p.length_cm(), p.istride_cm(), p.nbatch, p.idist, verbose > 0))
            << "length: " << str(length.begin(), length.end());

        // This should not be symmetric:
        std::mt19937_64 rng;
        std::seed_seq   ss{uint32_t(10)};
        rng.seed(ss);
        std::uniform_real_distribution<double> unif(0, 1);
        for(auto& v : hbuf)
        {
            v.x = unif(rng);
            v.y = unif(rng);
        }
        if(verbose > 2)
        {
            printbuffer_cm(hbuf, p.ilength_cm(), p.istride_cm(), p.nbatch, p.idist);
        }
        EXPECT_TRUE(
            !check_symmetry_cm(hbuf, p.length_cm(), p.istride_cm(), p.nbatch, p.idist, false))
            << "length: " << str(length.begin(), length.end());
    }

    for(const auto& length : lengths)
    {
        // Generate Hermitian-symmetric data and ensure that applying the symmetrizer has no effect.

        rocfft_params p;
        p.length         = length;
        p.precision      = fft_precision_double;
        p.transform_type = fft_transform_type_real_forward;
        p.placement      = fft_placement_notinplace;
        p.validate();
        if(verbose)
        {
            std::cout << "\t" << p.str("\n\t") << std::endl;
        }
        ASSERT_TRUE(p.valid(verbose));
        ASSERT_TRUE(p.create_plan() == fft_status_success);

        gpubuf ibuf, obuf;
        ASSERT_TRUE(ibuf.alloc(p.ibuffer_sizes()[0]) == hipSuccess);
        ASSERT_TRUE(obuf.alloc(p.obuffer_sizes()[0]) == hipSuccess);

        initreal_cm(p.length_cm(), p.istride_cm(), ibuf.data());

        std::vector<void*> pibuf = {ibuf.data()};
        std::vector<void*> pobuf = {obuf.data()};

        ASSERT_TRUE(p.execute(pibuf.data(), pobuf.data()) == fft_status_success);

        std::vector<hipDoubleComplex> h_output(p.osize[0]);
        std::fill(h_output.begin(), h_output.end(), hipDoubleComplex{0.0, 0.0});

        ASSERT_TRUE(
            hipMemcpy(h_output.data(), obuf.data(), p.obuffer_sizes()[0], hipMemcpyDeviceToHost)
            == hipSuccess);

        impose_hermitian_symmetry_cm(p.length_cm(), p.olength_cm(), p.ostride_cm(), obuf.data());

        std::vector<hipDoubleComplex> h_output_resym(p.osize[0]);
        std::fill(h_output_resym.begin(), h_output_resym.end(), hipDoubleComplex{0.0, 0.0});

        ASSERT_TRUE(
            hipMemcpy(
                h_output_resym.data(), obuf.data(), p.obuffer_sizes()[0], hipMemcpyDeviceToHost)
            == hipSuccess);

        double maxdiff = 0;
        for(unsigned int i = 0; i < h_output.size(); ++i)
        {
            auto rdiff = std::abs(h_output[i].x - h_output_resym[i].x);
            auto idiff = std::abs(h_output[i].y - h_output_resym[i].y);
            maxdiff    = std::max({maxdiff, rdiff, idiff});
        }

        if(verbose)
        {
            std::cout << "maxdiff: " << maxdiff << std::endl;
        }

        if(verbose > 2)
        {
            std::cout << "before symmetrization:\n";
            printbuffer_cm(h_output, p.olength_cm(), p.ostride_cm(), p.nbatch, p.odist);
            std::cout << "after symmetrization:\n";
            printbuffer_cm(h_output_resym, p.olength_cm(), p.ostride_cm(), p.nbatch, p.odist);
        }

        EXPECT_TRUE(maxdiff < 1e-13) << maxdiff << "\n" << p.str() << "\n";
    }
}