File: unit_test.cpp

package info (click to toggle)
rocfft 6.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 5,672 kB
  • sloc: cpp: 55,735; python: 5,774; sh: 428; xml: 204; makefile: 56
file content (621 lines) | stat: -rw-r--r-- 23,326 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
// Copyright (C) 2016 - 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

#include "rocfft/rocfft.h"

#include "../../shared/concurrency.h"
#include "../../shared/environment.h"
#include "../../shared/gpubuf.h"
#include "../../shared/rocfft_complex.h"
#include "hip/hip_runtime_api.h"
#include <boost/scope_exit.hpp>
#include <condition_variable>
#include <cstdlib>
#include <fstream>
#include <gtest/gtest.h>
#include <mutex>
#include <regex>
#include <thread>
#include <vector>

#ifdef _OPENMP
#include <omp.h>
#endif

#if __has_include(<filesystem>)
#include <filesystem>
#else
#include <experimental/filesystem>
namespace std
{
    namespace filesystem = experimental::filesystem;
}
#endif

namespace fs = std::filesystem;

#ifndef WIN32
// get program_invocation_name
#include <errno.h>
#endif

TEST(rocfft_UnitTest, plan_description)
{
    rocfft_plan_description desc = nullptr;
    ASSERT_TRUE(rocfft_status_success == rocfft_plan_description_create(&desc));

    rocfft_array_type in_array_type  = rocfft_array_type_complex_interleaved;
    rocfft_array_type out_array_type = rocfft_array_type_complex_interleaved;

    size_t rank = 1;

    size_t i_strides[3] = {1, 1, 1};
    size_t o_strides[3] = {1, 1, 1};

    size_t idist = 0;
    size_t odist = 0;

    rocfft_plan plan   = NULL;
    size_t      length = 8;

    ASSERT_TRUE(rocfft_status_success
                == rocfft_plan_description_set_data_layout(desc,
                                                           in_array_type,
                                                           out_array_type,
                                                           0,
                                                           0,
                                                           rank,
                                                           i_strides,
                                                           idist,
                                                           rank,
                                                           o_strides,
                                                           odist));
    ASSERT_TRUE(rocfft_status_success
                == rocfft_plan_create(&plan,
                                      rocfft_placement_inplace,
                                      rocfft_transform_type_complex_forward,
                                      rocfft_precision_single,
                                      rank,
                                      &length,
                                      1,
                                      desc));

    ASSERT_TRUE(rocfft_status_success == rocfft_plan_description_destroy(desc));
    ASSERT_TRUE(rocfft_status_success == rocfft_plan_destroy(plan));
}

// Check whether logs can be emitted from multiple threads properly
TEST(rocfft_UnitTest, log_multithreading)
{
    static const int   NUM_THREADS          = 10;
    static const int   NUM_ITERS_PER_THREAD = 50;
    static const char* TRACE_FILE           = "trace.log";

    // clean up environment and temporary file when we exit
    BOOST_SCOPE_EXIT_ALL(=)
    {
        rocfft_cleanup();
        remove(TRACE_FILE);
        // re-init logs with default logging
        rocfft_setup();
    };

    // ask for trace logging, since that's the easiest to trigger
    rocfft_cleanup();
    EnvironmentSetTemp layer("ROCFFT_LAYER", "1");
    EnvironmentSetTemp tracepath("ROCFFT_LOG_TRACE_PATH", TRACE_FILE);

    rocfft_setup();

    // run a whole bunch of threads in parallel, each one doing
    // something small that will write to the trace log
    std::vector<std::thread> threads;
    threads.reserve(NUM_THREADS);
    for(int i = 0; i < NUM_THREADS; ++i)
    {
        threads.emplace_back([]() {
            for(int j = 0; j < NUM_ITERS_PER_THREAD; ++j)
            {
                rocfft_plan_description desc;
                rocfft_plan_description_create(&desc);
                rocfft_plan_description_destroy(desc);
            }
        });
    }

    for(auto& t : threads)
    {
        t.join();
    }

    rocfft_cleanup();

    // now verify that the trace log has one message per line, with nothing garbled
    std::ifstream trace_log(TRACE_FILE);
    std::string   line;
    std::regex    validator("^rocfft_(setup|cleanup|plan_description_(create|destroy),"
                         "description,[x0-9a-fA-F]+)$");
    while(std::getline(trace_log, line))
    {
        bool res = std::regex_match(line, validator);
        ASSERT_TRUE(res) << "line contains invalid content: " << line;
    }
}

// a function that accepts a plan's requested size on input, and
// returns the size to actually allocate for the test
typedef std::function<size_t(size_t)> workmem_sizer;

void workmem_test(workmem_sizer sizer,
                  rocfft_status exec_status_expected,
                  bool          give_null_work_buf = false)
{
    // Prime size requires Bluestein, which guarantees work memory.
    size_t      length = 8191;
    rocfft_plan plan   = NULL;

    ASSERT_EQ(rocfft_plan_create(&plan,
                                 rocfft_placement_inplace,
                                 rocfft_transform_type_complex_forward,
                                 rocfft_precision_single,
                                 1,
                                 &length,
                                 1,
                                 nullptr),
              rocfft_status_success);

    size_t requested_work_size = 0;
    ASSERT_EQ(rocfft_plan_get_work_buffer_size(plan, &requested_work_size), rocfft_status_success);
    ASSERT_GT(requested_work_size, 0U);

    rocfft_execution_info info;
    ASSERT_EQ(rocfft_execution_info_create(&info), rocfft_status_success);

    size_t alloc_work_size = sizer(requested_work_size);
    gpubuf work_buffer;
    if(alloc_work_size)
    {
        ASSERT_EQ(work_buffer.alloc(alloc_work_size), hipSuccess);

        void*         work_buffer_ptr;
        rocfft_status set_work_expected_status;
        if(give_null_work_buf)
        {
            work_buffer_ptr          = nullptr;
            set_work_expected_status = rocfft_status_invalid_work_buffer;
        }
        else
        {
            work_buffer_ptr          = work_buffer.data();
            set_work_expected_status = rocfft_status_success;
        }
        ASSERT_EQ(rocfft_execution_info_set_work_buffer(info, work_buffer_ptr, alloc_work_size),
                  set_work_expected_status);
    }

    // allocate 2x length for complex
    std::vector<float> data_host(length * 2, 1.0f);
    gpubuf             data_device;
    auto               data_size_bytes = data_host.size() * sizeof(float);

    ASSERT_EQ(data_device.alloc(data_size_bytes), hipSuccess);
    ASSERT_EQ(
        hipMemcpy(data_device.data(), data_host.data(), data_size_bytes, hipMemcpyHostToDevice),
        hipSuccess);
    std::vector<void*> ibuffers(1, static_cast<void*>(data_device.data()));

    ASSERT_EQ(rocfft_execute(plan, ibuffers.data(), nullptr, info), exec_status_expected);

    rocfft_execution_info_destroy(info);
    rocfft_plan_destroy(plan);
}

// check what happens if work memory is required but is not provided
// - library should allocate
TEST(rocfft_UnitTest, workmem_missing)
{
    workmem_test([](size_t) { return 0; }, rocfft_status_success);
}

// check what happens if work memory is required but not enough is provided
TEST(rocfft_UnitTest, workmem_small)
{
    workmem_test([](size_t requested) { return requested / 2; }, rocfft_status_invalid_work_buffer);
}

// hard to imagine this being a problem, but try giving too much as well
TEST(rocfft_UnitTest, workmem_big)
{
    workmem_test([](size_t requested) { return requested * 2; }, rocfft_status_success);
}

// check if a user explicitly gives a null pointer - set work buffer
// should fail, but transform should succeed because library
// allocates
TEST(rocfft_UnitTest, workmem_null)
{
    workmem_test([](size_t requested) { return requested; }, rocfft_status_success, true);
}

#ifdef ROCFFT_RUNTIME_COMPILE
static const size_t RTC_PROBLEM_SIZE = 2304;
// runtime compilation cache tests
TEST(rocfft_UnitTest, rtc_cache)
{
    // PRECONDITIONS

    // - set cache location to custom path, requires uninitializing
    //   the lib and reinitializing with some env vars
    // - also enable RTC logging so we can tell when something was
    //   actually compiled
    const std::string rtc_cache_path = std::tmpnam(nullptr);
    const std::string rtc_log_path   = std::tmpnam(nullptr);

    void*  empty_cache           = nullptr;
    size_t empty_cache_bytes     = 0;
    void*  onekernel_cache       = nullptr;
    size_t onekernel_cache_bytes = 0;

    // cleanup
    BOOST_SCOPE_EXIT_ALL(=)
    {
        // close log file handles
        rocfft_cleanup();
        remove(rtc_cache_path.c_str());
        remove(rtc_log_path.c_str());
        // re-init lib now that the env vars are gone
        rocfft_setup();
        if(empty_cache)
            rocfft_cache_buffer_free(empty_cache);
        if(onekernel_cache)
            rocfft_cache_buffer_free(onekernel_cache);
    };

    rocfft_cleanup();
    EnvironmentSetTemp cache_env("ROCFFT_RTC_CACHE_PATH", rtc_cache_path.c_str());
    EnvironmentSetTemp layer_env("ROCFFT_LAYER", "32");
    EnvironmentSetTemp log_env("ROCFFT_LOG_RTC_PATH", rtc_log_path.c_str());
    rocfft_setup();

    // - serialize empty cache as baseline
    ASSERT_EQ(rocfft_cache_serialize(&empty_cache, &empty_cache_bytes), rocfft_status_success);

    // END PRECONDITIONS

    // pick a length that's runtime compiled
    auto build_plan = [&]() {
        rocfft_plan plan = nullptr;
        ASSERT_TRUE(rocfft_status_success
                    == rocfft_plan_create(&plan,
                                          rocfft_placement_inplace,
                                          rocfft_transform_type_complex_forward,
                                          rocfft_precision_single,
                                          1,
                                          &RTC_PROBLEM_SIZE,
                                          1,
                                          nullptr));
        // we don't need to actually execute the plan, so we can
        // destroy it right away.  this ensures that we don't hold on
        // to a plan after we cleanup the library
        rocfft_plan_destroy(plan);
        plan = nullptr;
    };
    // check the RTC log to see if an FFT kernel got compiled
    auto fft_kernel_was_compiled = [&]() {
        // HACK: logging is done in a worker thread, so sleep for a
        // bit to give it a chance to actually write.  It at least
        // should flush after writing.
        std::this_thread::sleep_for(std::chrono::milliseconds(100));
        // look for a ROCFFT_RTC_BEGIN line that indicates RTC happened
        std::ifstream logfile(rtc_log_path);
        std::string   line;
        while(std::getline(logfile, line))
        {
            if(line.find("ROCFFT_RTC_BEGIN") != std::string::npos
               && line.find("fft_") != std::string::npos)
                return true;
        }
        return false;
    };

    // build a plan that requires runtime compilation,
    // close logs and ensure a kernel was built
    build_plan();
    ASSERT_EQ(rocfft_cache_serialize(&onekernel_cache, &onekernel_cache_bytes),
              rocfft_status_success);
    rocfft_cleanup();
    ASSERT_TRUE(fft_kernel_was_compiled());

    // serialized cache should be bigger than empty cache
    ASSERT_GT(onekernel_cache_bytes, empty_cache_bytes);

    // blow away the cache, reinit the library,
    // retry building the plan again and ensure the kernel was rebuilt
    remove(rtc_cache_path.c_str());
    rocfft_setup();
    build_plan();
    rocfft_cache_buffer_free(onekernel_cache);
    onekernel_cache = nullptr;
    ASSERT_EQ(rocfft_cache_serialize(&onekernel_cache, &onekernel_cache_bytes),
              rocfft_status_success);
    rocfft_cleanup();
    ASSERT_TRUE(fft_kernel_was_compiled());
    ASSERT_GT(onekernel_cache_bytes, empty_cache_bytes);

    // re-init library without blowing away cache.  rebuild plan and
    // check that the kernel was not recompiled.
    rocfft_setup();
    build_plan();
    rocfft_cleanup();
    ASSERT_FALSE(fft_kernel_was_compiled());

    // blow away cache again, deserialize one-kernel cache.  re-init
    // library and rebuild plan - kernel should again not be
    // recompiled
    remove(rtc_cache_path.c_str());
    rocfft_setup();
    ASSERT_EQ(rocfft_cache_deserialize(onekernel_cache, onekernel_cache_bytes),
              rocfft_status_success);
    rocfft_cleanup();
    ASSERT_FALSE(fft_kernel_was_compiled());

    rocfft_setup();
    build_plan();
    rocfft_cleanup();
    ASSERT_FALSE(fft_kernel_was_compiled());

    // use the cache as a system cache and make the user one an empty
    // in-memory cache.  kernel should still not be recompiled.
    EnvironmentSetTemp cache_sys_env("ROCFFT_RTC_SYS_CACHE_PATH", rtc_cache_path.c_str());
    EnvironmentSetTemp cache_empty_env("ROCFFT_RTC_CACHE_PATH", ":memory:");
    rocfft_setup();
    build_plan();
    rocfft_cleanup();
    ASSERT_FALSE(fft_kernel_was_compiled());

    // check that the system cache is not written to, even if it's
    // writable by the current user.  after removing the cache, the
    // kernel should always be recompiled since rocFFT has no durable
    // place to write it to.
    remove(rtc_cache_path.c_str());
    rocfft_setup();
    build_plan();
    rocfft_cleanup();
    ASSERT_TRUE(fft_kernel_was_compiled());
    rocfft_setup();
    build_plan();
    rocfft_cleanup();
    ASSERT_TRUE(fft_kernel_was_compiled());
}

// make sure cache API functions tolerate null pointers without crashing
TEST(rocfft_UnitTest, rtc_cache_null)
{
    void*  buf     = nullptr;
    size_t buf_len = 0;
    ASSERT_EQ(rocfft_cache_serialize(nullptr, &buf_len), rocfft_status_invalid_arg_value);
    ASSERT_EQ(rocfft_cache_serialize(&buf, nullptr), rocfft_status_invalid_arg_value);
    ASSERT_EQ(rocfft_cache_buffer_free(nullptr), rocfft_status_success);
    ASSERT_EQ(rocfft_cache_deserialize(nullptr, 12345), rocfft_status_invalid_arg_value);
    ASSERT_EQ(rocfft_cache_deserialize(&buf_len, 0), rocfft_status_invalid_arg_value);
}

// make sure RTC gracefully handles a helper process that crashes
TEST(rocfft_UnitTest, rtc_helper_crash)
{
#ifdef WIN32
    char filename[MAX_PATH];
    GetModuleFileNameA(NULL, filename, MAX_PATH);
    fs::path test_exe    = filename;
    fs::path crasher_exe = test_exe.replace_filename("rtc_helper_crash.exe");
#else
    fs::path           test_exe     = program_invocation_name;
    fs::path           crasher_exe  = test_exe.replace_filename("rtc_helper_crash");
#endif

    // use the crashing helper
    EnvironmentSetTemp env_helper("ROCFFT_RTC_PROCESS_HELPER", crasher_exe.string().c_str());
    // don't touch the cache, to force compilation
    EnvironmentSetTemp env_read("ROCFFT_RTC_CACHE_READ_DISABLE", "1");
    EnvironmentSetTemp env_write("ROCFFT_RTC_CACHE_WRITE_DISABLE", "1");
    // force out-of-process compile
    EnvironmentSetTemp env_process("ROCFFT_RTC_PROCESS", "2");

    rocfft_plan plan = nullptr;
    ASSERT_TRUE(rocfft_status_success
                == rocfft_plan_create(&plan,
                                      rocfft_placement_inplace,
                                      rocfft_transform_type_complex_forward,
                                      rocfft_precision_single,
                                      1,
                                      &RTC_PROBLEM_SIZE,
                                      1,
                                      nullptr));

    // alloc a complex buffer
    gpubuf_t<rocfft_complex<float>> data;
    ASSERT_EQ(data.alloc(RTC_PROBLEM_SIZE * sizeof(rocfft_complex<float>)), hipSuccess);

    std::vector<void*> ibuffers(1, static_cast<void*>(data.data()));

    ASSERT_EQ(rocfft_execute(plan, ibuffers.data(), nullptr, nullptr), rocfft_status_success);

    rocfft_plan_destroy(plan);
    plan = nullptr;

    rocfft_cleanup();
    rocfft_setup();

    // also try with forcing use of the subprocess, which is a
    // different code path from the default "try in-process, then
    // fall back to out-of-process"
    EnvironmentSetTemp env_force("ROCFFT_RTC_PROCESS", "1");

    ASSERT_TRUE(rocfft_status_success
                == rocfft_plan_create(&plan,
                                      rocfft_placement_inplace,
                                      rocfft_transform_type_complex_forward,
                                      rocfft_precision_single,
                                      1,
                                      &RTC_PROBLEM_SIZE,
                                      1,
                                      nullptr));
    ASSERT_EQ(rocfft_execute(plan, ibuffers.data(), nullptr, nullptr), rocfft_status_success);

    rocfft_plan_destroy(plan);
    plan = nullptr;
}

TEST(rocfft_UnitTest, rtc_test_harness)
{
    // check that hipcc is available since this test requires it
    //
    // NOTE: using system() for launching subprocesses for simplicity
    // and portability
#ifdef WIN32
    static const char* test_command = "hipcc --version > NUL";
#else
    static const char* test_command = "hipcc --version > /dev/null";
#endif
    if(std::system(test_command) != 0)
        GTEST_SKIP();

    rocfft_cleanup();

    BOOST_SCOPE_EXIT_ALL()
    {
        // reinit rocFFT so caching goes back to normal
        rocfft_cleanup();
        rocfft_setup();
    };

    // extra scope to control lifetime of env vars
    {
        // rtc test harness writes to system's temp directory
        auto tmp_path = fs::temp_directory_path();

        // activate writing of rtc test harnesses
        EnvironmentSetTemp env_harness("ROCFFT_DEBUG_GENERATE_KERNEL_HARNESS", "1");

        // set path for writing rtc test harnesses source files
        EnvironmentSetTemp env_harness_path("ROCFFT_DEBUG_KERNEL_HARNESS_PATH",
                                            tmp_path.string().c_str());

        // ensure every kernel gets compiled once
        EnvironmentSetTemp env_cache("ROCFFT_RTC_CACHE_PATH", ":memory:");
        EnvironmentSetTemp env_sys_cache("ROCFFT_RTC_SYS_CACHE_PATH", ":memory:");

        rocfft_setup();

        // ensure stale files from previous runs of this test won't cause
        // problems - clean up any rocfft_kernel_harness_*.cpp files that
        // might be left behind
        for(const auto& entry : std::filesystem::directory_iterator{tmp_path})
        {
            auto filename = entry.path().filename();
            if(filename.string().compare(0, 22, "rocfft_kernel_harness_") == 0
               && filename.extension().string() == ".cpp")
                fs::remove(entry);
        }

        // construct a few different types of plans to try to get all
        // different kernels compiled

        auto create_destroy_plan
            = [](rocfft_transform_type type, const size_t dim, const size_t* lengths) -> void {
            rocfft_plan plan = nullptr;
            ASSERT_EQ(rocfft_plan_create(&plan,
                                         rocfft_placement_inplace,
                                         type,
                                         rocfft_precision_single,
                                         dim,
                                         lengths,
                                         1,
                                         nullptr),
                      rocfft_status_success);
            ASSERT_EQ(rocfft_plan_destroy(plan), rocfft_status_success);
            plan = nullptr;
        };
        // large 1D R2C + C2R
        const size_t L1D_PROBLEM_SIZE[1] = {16384};
        create_destroy_plan(rocfft_transform_type_real_forward, 1, L1D_PROBLEM_SIZE);
        create_destroy_plan(rocfft_transform_type_real_inverse, 1, L1D_PROBLEM_SIZE);

        // small bluestein R2C + C2R (also covers odd length)
        const size_t SMALL_BLUESTEIN_PROBLEM_SIZE[1] = {37};
        create_destroy_plan(rocfft_transform_type_real_forward, 1, SMALL_BLUESTEIN_PROBLEM_SIZE);
        create_destroy_plan(rocfft_transform_type_real_inverse, 1, SMALL_BLUESTEIN_PROBLEM_SIZE);

        // large bluestein C2C
        const size_t LARGE_BLUESTEIN_PROBLEM_SIZE[1] = {8191};
        create_destroy_plan(rocfft_transform_type_complex_forward, 1, LARGE_BLUESTEIN_PROBLEM_SIZE);

        // L1D_TRTRT
        const size_t L1D_TRTRT_PROBLEM_SIZE[1] = {680};
        create_destroy_plan(rocfft_transform_type_complex_forward, 1, L1D_TRTRT_PROBLEM_SIZE);

        // small 3D (exercises 2D_SINGLE)
        const size_t SMALL_3D_PROBLEM_SIZE[3] = {25, 25, 25};
        create_destroy_plan(rocfft_transform_type_complex_forward, 3, SMALL_3D_PROBLEM_SIZE);

        // larger 3D
        const size_t LARGE_3D_PROBLEM_SIZE[3] = {200, 200, 200};
        create_destroy_plan(rocfft_transform_type_complex_forward, 3, LARGE_3D_PROBLEM_SIZE);

        // now try to compile each file - they'd need hand-editing to test
        // something useful, but we can at least ensure they build.

        // enumerate all the files
        std::vector<std::pair<std::string, int>> files;
        size_t                                   i = 0;
        for(;; ++i)
        {
            // construct name of main file
            fs::path main_file = tmp_path / ("rocfft_kernel_harness_" + std::to_string(i) + ".cpp");

            if(!fs::exists(main_file))
                break;

            files.emplace_back(main_file.string(), -1);
        }

        // we should have generated at least a few kernels
        ASSERT_FALSE(files.empty());

#ifdef _OPENMP
#pragma omp parallel for num_threads(rocfft_concurrency())
#endif
        for(i = 0; i < files.size(); ++i)
        {
#ifdef WIN32
            const std::string command = "hipcc -std=c++17 -o NUL " + files[i].first;
#else
            const std::string command = "hipcc -std=c++17 -o /dev/null " + files[i].first;
#endif
            files[i].second = std::system(command.c_str());
        }

        // check that all compiles succeeded
        for(const auto& file : files)
            ASSERT_EQ(file.second, 0);
    }
}

#endif